1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 #include <map> 36 using namespace llvm; 37 38 /// See comments in Cloning.h. 39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 40 ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo) { 43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 45 46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 47 48 // Loop over all instructions, and copy them over. 49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 50 II != IE; ++II) { 51 Instruction *NewInst = II->clone(); 52 if (II->hasName()) 53 NewInst->setName(II->getName()+NameSuffix); 54 NewBB->getInstList().push_back(NewInst); 55 VMap[&*II] = NewInst; // Add instruction map to value. 56 57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 59 if (isa<ConstantInt>(AI->getArraySize())) 60 hasStaticAllocas = true; 61 else 62 hasDynamicAllocas = true; 63 } 64 } 65 66 if (CodeInfo) { 67 CodeInfo->ContainsCalls |= hasCalls; 68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 70 BB != &BB->getParent()->getEntryBlock(); 71 } 72 return NewBB; 73 } 74 75 // Clone OldFunc into NewFunc, transforming the old arguments into references to 76 // VMap values. 77 // 78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 79 ValueToValueMapTy &VMap, 80 bool ModuleLevelChanges, 81 SmallVectorImpl<ReturnInst*> &Returns, 82 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 83 ValueMapTypeRemapper *TypeMapper, 84 ValueMaterializer *Materializer) { 85 assert(NameSuffix && "NameSuffix cannot be null!"); 86 87 #ifndef NDEBUG 88 for (const Argument &I : OldFunc->args()) 89 assert(VMap.count(&I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 // Fix up the personality function that got copied over. 99 if (OldFunc->hasPersonalityFn()) 100 NewFunc->setPersonalityFn( 101 MapValue(OldFunc->getPersonalityFn(), VMap, 102 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 103 TypeMapper, Materializer)); 104 105 AttributeSet OldAttrs = OldFunc->getAttributes(); 106 // Clone any argument attributes that are present in the VMap. 107 for (const Argument &OldArg : OldFunc->args()) 108 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 109 AttributeSet attrs = 110 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 111 if (attrs.getNumSlots() > 0) 112 NewArg->addAttr(attrs); 113 } 114 115 NewFunc->setAttributes( 116 NewFunc->getAttributes() 117 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 118 OldAttrs.getRetAttributes()) 119 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 120 OldAttrs.getFnAttributes())); 121 122 // Loop over all of the basic blocks in the function, cloning them as 123 // appropriate. Note that we save BE this way in order to handle cloning of 124 // recursive functions into themselves. 125 // 126 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 127 BI != BE; ++BI) { 128 const BasicBlock &BB = *BI; 129 130 // Create a new basic block and copy instructions into it! 131 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 132 133 // Add basic block mapping. 134 VMap[&BB] = CBB; 135 136 // It is only legal to clone a function if a block address within that 137 // function is never referenced outside of the function. Given that, we 138 // want to map block addresses from the old function to block addresses in 139 // the clone. (This is different from the generic ValueMapper 140 // implementation, which generates an invalid blockaddress when 141 // cloning a function.) 142 if (BB.hasAddressTaken()) { 143 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 144 const_cast<BasicBlock*>(&BB)); 145 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 146 } 147 148 // Note return instructions for the caller. 149 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 150 Returns.push_back(RI); 151 } 152 153 // Loop over all of the instructions in the function, fixing up operand 154 // references as we go. This uses VMap to do all the hard work. 155 for (Function::iterator BB = 156 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 157 BE = NewFunc->end(); 158 BB != BE; ++BB) 159 // Loop over all instructions, fixing each one as we find it... 160 for (Instruction &II : *BB) 161 RemapInstruction(&II, VMap, 162 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 163 TypeMapper, Materializer); 164 } 165 166 // Find the MDNode which corresponds to the subprogram data that described F. 167 static DISubprogram *FindSubprogram(const Function *F, 168 DebugInfoFinder &Finder) { 169 for (DISubprogram *Subprogram : Finder.subprograms()) { 170 if (Subprogram->describes(F)) 171 return Subprogram; 172 } 173 return nullptr; 174 } 175 176 // Add an operand to an existing MDNode. The new operand will be added at the 177 // back of the operand list. 178 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs, 179 Metadata *NewSP) { 180 SmallVector<Metadata *, 16> NewSPs; 181 NewSPs.reserve(SPs.size() + 1); 182 for (auto *SP : SPs) 183 NewSPs.push_back(SP); 184 NewSPs.push_back(NewSP); 185 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs)); 186 } 187 188 // Clone the module-level debug info associated with OldFunc. The cloned data 189 // will point to NewFunc instead. 190 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 191 ValueToValueMapTy &VMap) { 192 DebugInfoFinder Finder; 193 Finder.processModule(*OldFunc->getParent()); 194 195 const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 196 if (!OldSubprogramMDNode) return; 197 198 auto *NewSubprogram = 199 cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap)); 200 NewFunc->setSubprogram(NewSubprogram); 201 202 for (auto *CU : Finder.compile_units()) { 203 auto Subprograms = CU->getSubprograms(); 204 // If the compile unit's function list contains the old function, it should 205 // also contain the new one. 206 for (auto *SP : Subprograms) { 207 if (SP == OldSubprogramMDNode) { 208 AddOperand(CU, Subprograms, NewSubprogram); 209 break; 210 } 211 } 212 } 213 } 214 215 /// Return a copy of the specified function, but without 216 /// embedding the function into another module. Also, any references specified 217 /// in the VMap are changed to refer to their mapped value instead of the 218 /// original one. If any of the arguments to the function are in the VMap, 219 /// the arguments are deleted from the resultant function. The VMap is 220 /// updated to include mappings from all of the instructions and basicblocks in 221 /// the function from their old to new values. 222 /// 223 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 224 bool ModuleLevelChanges, 225 ClonedCodeInfo *CodeInfo) { 226 std::vector<Type*> ArgTypes; 227 228 // The user might be deleting arguments to the function by specifying them in 229 // the VMap. If so, we need to not add the arguments to the arg ty vector 230 // 231 for (const Argument &I : F->args()) 232 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 233 ArgTypes.push_back(I.getType()); 234 235 // Create a new function type... 236 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 237 ArgTypes, F->getFunctionType()->isVarArg()); 238 239 // Create the new function... 240 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 241 242 // Loop over the arguments, copying the names of the mapped arguments over... 243 Function::arg_iterator DestI = NewF->arg_begin(); 244 for (const Argument & I : F->args()) 245 if (VMap.count(&I) == 0) { // Is this argument preserved? 246 DestI->setName(I.getName()); // Copy the name over... 247 VMap[&I] = &*DestI++; // Add mapping to VMap 248 } 249 250 if (ModuleLevelChanges) 251 CloneDebugInfoMetadata(NewF, F, VMap); 252 253 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 254 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 255 return NewF; 256 } 257 258 259 260 namespace { 261 /// This is a private class used to implement CloneAndPruneFunctionInto. 262 struct PruningFunctionCloner { 263 Function *NewFunc; 264 const Function *OldFunc; 265 ValueToValueMapTy &VMap; 266 bool ModuleLevelChanges; 267 const char *NameSuffix; 268 ClonedCodeInfo *CodeInfo; 269 CloningDirector *Director; 270 ValueMapTypeRemapper *TypeMapper; 271 ValueMaterializer *Materializer; 272 273 public: 274 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 275 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 276 const char *nameSuffix, ClonedCodeInfo *codeInfo, 277 CloningDirector *Director) 278 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 279 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 280 CodeInfo(codeInfo), Director(Director) { 281 // These are optional components. The Director may return null. 282 if (Director) { 283 TypeMapper = Director->getTypeRemapper(); 284 Materializer = Director->getValueMaterializer(); 285 } else { 286 TypeMapper = nullptr; 287 Materializer = nullptr; 288 } 289 } 290 291 /// The specified block is found to be reachable, clone it and 292 /// anything that it can reach. 293 void CloneBlock(const BasicBlock *BB, 294 BasicBlock::const_iterator StartingInst, 295 std::vector<const BasicBlock*> &ToClone); 296 }; 297 } 298 299 /// The specified block is found to be reachable, clone it and 300 /// anything that it can reach. 301 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 302 BasicBlock::const_iterator StartingInst, 303 std::vector<const BasicBlock*> &ToClone){ 304 WeakVH &BBEntry = VMap[BB]; 305 306 // Have we already cloned this block? 307 if (BBEntry) return; 308 309 // Nope, clone it now. 310 BasicBlock *NewBB; 311 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 312 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 313 314 // It is only legal to clone a function if a block address within that 315 // function is never referenced outside of the function. Given that, we 316 // want to map block addresses from the old function to block addresses in 317 // the clone. (This is different from the generic ValueMapper 318 // implementation, which generates an invalid blockaddress when 319 // cloning a function.) 320 // 321 // Note that we don't need to fix the mapping for unreachable blocks; 322 // the default mapping there is safe. 323 if (BB->hasAddressTaken()) { 324 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 325 const_cast<BasicBlock*>(BB)); 326 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 327 } 328 329 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 330 331 // Loop over all instructions, and copy them over, DCE'ing as we go. This 332 // loop doesn't include the terminator. 333 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 334 II != IE; ++II) { 335 // If the "Director" remaps the instruction, don't clone it. 336 if (Director) { 337 CloningDirector::CloningAction Action = 338 Director->handleInstruction(VMap, &*II, NewBB); 339 // If the cloning director says stop, we want to stop everything, not 340 // just break out of the loop (which would cause the terminator to be 341 // cloned). The cloning director is responsible for inserting a proper 342 // terminator into the new basic block in this case. 343 if (Action == CloningDirector::StopCloningBB) 344 return; 345 // If the cloning director says skip, continue to the next instruction. 346 // In this case, the cloning director is responsible for mapping the 347 // skipped instruction to some value that is defined in the new 348 // basic block. 349 if (Action == CloningDirector::SkipInstruction) 350 continue; 351 } 352 353 Instruction *NewInst = II->clone(); 354 355 // Eagerly remap operands to the newly cloned instruction, except for PHI 356 // nodes for which we defer processing until we update the CFG. 357 if (!isa<PHINode>(NewInst)) { 358 RemapInstruction(NewInst, VMap, 359 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 360 TypeMapper, Materializer); 361 362 // If we can simplify this instruction to some other value, simply add 363 // a mapping to that value rather than inserting a new instruction into 364 // the basic block. 365 if (Value *V = 366 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 367 // On the off-chance that this simplifies to an instruction in the old 368 // function, map it back into the new function. 369 if (Value *MappedV = VMap.lookup(V)) 370 V = MappedV; 371 372 VMap[&*II] = V; 373 delete NewInst; 374 continue; 375 } 376 } 377 378 if (II->hasName()) 379 NewInst->setName(II->getName()+NameSuffix); 380 VMap[&*II] = NewInst; // Add instruction map to value. 381 NewBB->getInstList().push_back(NewInst); 382 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 383 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 384 if (isa<ConstantInt>(AI->getArraySize())) 385 hasStaticAllocas = true; 386 else 387 hasDynamicAllocas = true; 388 } 389 } 390 391 // Finally, clone over the terminator. 392 const TerminatorInst *OldTI = BB->getTerminator(); 393 bool TerminatorDone = false; 394 if (Director) { 395 CloningDirector::CloningAction Action 396 = Director->handleInstruction(VMap, OldTI, NewBB); 397 // If the cloning director says stop, we want to stop everything, not 398 // just break out of the loop (which would cause the terminator to be 399 // cloned). The cloning director is responsible for inserting a proper 400 // terminator into the new basic block in this case. 401 if (Action == CloningDirector::StopCloningBB) 402 return; 403 if (Action == CloningDirector::CloneSuccessors) { 404 // If the director says to skip with a terminate instruction, we still 405 // need to clone this block's successors. 406 const TerminatorInst *TI = NewBB->getTerminator(); 407 for (const BasicBlock *Succ : TI->successors()) 408 ToClone.push_back(Succ); 409 return; 410 } 411 assert(Action != CloningDirector::SkipInstruction && 412 "SkipInstruction is not valid for terminators."); 413 } 414 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 415 if (BI->isConditional()) { 416 // If the condition was a known constant in the callee... 417 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 418 // Or is a known constant in the caller... 419 if (!Cond) { 420 Value *V = VMap[BI->getCondition()]; 421 Cond = dyn_cast_or_null<ConstantInt>(V); 422 } 423 424 // Constant fold to uncond branch! 425 if (Cond) { 426 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 427 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 428 ToClone.push_back(Dest); 429 TerminatorDone = true; 430 } 431 } 432 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 433 // If switching on a value known constant in the caller. 434 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 435 if (!Cond) { // Or known constant after constant prop in the callee... 436 Value *V = VMap[SI->getCondition()]; 437 Cond = dyn_cast_or_null<ConstantInt>(V); 438 } 439 if (Cond) { // Constant fold to uncond branch! 440 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 441 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 442 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 443 ToClone.push_back(Dest); 444 TerminatorDone = true; 445 } 446 } 447 448 if (!TerminatorDone) { 449 Instruction *NewInst = OldTI->clone(); 450 if (OldTI->hasName()) 451 NewInst->setName(OldTI->getName()+NameSuffix); 452 NewBB->getInstList().push_back(NewInst); 453 VMap[OldTI] = NewInst; // Add instruction map to value. 454 455 // Recursively clone any reachable successor blocks. 456 const TerminatorInst *TI = BB->getTerminator(); 457 for (const BasicBlock *Succ : TI->successors()) 458 ToClone.push_back(Succ); 459 } 460 461 if (CodeInfo) { 462 CodeInfo->ContainsCalls |= hasCalls; 463 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 464 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 465 BB != &BB->getParent()->front(); 466 } 467 } 468 469 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 470 /// entire function. Instead it starts at an instruction provided by the caller 471 /// and copies (and prunes) only the code reachable from that instruction. 472 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 473 const Instruction *StartingInst, 474 ValueToValueMapTy &VMap, 475 bool ModuleLevelChanges, 476 SmallVectorImpl<ReturnInst *> &Returns, 477 const char *NameSuffix, 478 ClonedCodeInfo *CodeInfo, 479 CloningDirector *Director) { 480 assert(NameSuffix && "NameSuffix cannot be null!"); 481 482 ValueMapTypeRemapper *TypeMapper = nullptr; 483 ValueMaterializer *Materializer = nullptr; 484 485 if (Director) { 486 TypeMapper = Director->getTypeRemapper(); 487 Materializer = Director->getValueMaterializer(); 488 } 489 490 #ifndef NDEBUG 491 // If the cloning starts at the beginning of the function, verify that 492 // the function arguments are mapped. 493 if (!StartingInst) 494 for (const Argument &II : OldFunc->args()) 495 assert(VMap.count(&II) && "No mapping from source argument specified!"); 496 #endif 497 498 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 499 NameSuffix, CodeInfo, Director); 500 const BasicBlock *StartingBB; 501 if (StartingInst) 502 StartingBB = StartingInst->getParent(); 503 else { 504 StartingBB = &OldFunc->getEntryBlock(); 505 StartingInst = &StartingBB->front(); 506 } 507 508 // Clone the entry block, and anything recursively reachable from it. 509 std::vector<const BasicBlock*> CloneWorklist; 510 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 511 while (!CloneWorklist.empty()) { 512 const BasicBlock *BB = CloneWorklist.back(); 513 CloneWorklist.pop_back(); 514 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 515 } 516 517 // Loop over all of the basic blocks in the old function. If the block was 518 // reachable, we have cloned it and the old block is now in the value map: 519 // insert it into the new function in the right order. If not, ignore it. 520 // 521 // Defer PHI resolution until rest of function is resolved. 522 SmallVector<const PHINode*, 16> PHIToResolve; 523 for (const BasicBlock &BI : *OldFunc) { 524 Value *V = VMap[&BI]; 525 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 526 if (!NewBB) continue; // Dead block. 527 528 // Add the new block to the new function. 529 NewFunc->getBasicBlockList().push_back(NewBB); 530 531 // Handle PHI nodes specially, as we have to remove references to dead 532 // blocks. 533 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 534 // PHI nodes may have been remapped to non-PHI nodes by the caller or 535 // during the cloning process. 536 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 537 if (isa<PHINode>(VMap[PN])) 538 PHIToResolve.push_back(PN); 539 else 540 break; 541 } else { 542 break; 543 } 544 } 545 546 // Finally, remap the terminator instructions, as those can't be remapped 547 // until all BBs are mapped. 548 RemapInstruction(NewBB->getTerminator(), VMap, 549 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 550 TypeMapper, Materializer); 551 } 552 553 // Defer PHI resolution until rest of function is resolved, PHI resolution 554 // requires the CFG to be up-to-date. 555 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 556 const PHINode *OPN = PHIToResolve[phino]; 557 unsigned NumPreds = OPN->getNumIncomingValues(); 558 const BasicBlock *OldBB = OPN->getParent(); 559 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 560 561 // Map operands for blocks that are live and remove operands for blocks 562 // that are dead. 563 for (; phino != PHIToResolve.size() && 564 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 565 OPN = PHIToResolve[phino]; 566 PHINode *PN = cast<PHINode>(VMap[OPN]); 567 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 568 Value *V = VMap[PN->getIncomingBlock(pred)]; 569 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 570 Value *InVal = MapValue(PN->getIncomingValue(pred), 571 VMap, 572 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 573 assert(InVal && "Unknown input value?"); 574 PN->setIncomingValue(pred, InVal); 575 PN->setIncomingBlock(pred, MappedBlock); 576 } else { 577 PN->removeIncomingValue(pred, false); 578 --pred, --e; // Revisit the next entry. 579 } 580 } 581 } 582 583 // The loop above has removed PHI entries for those blocks that are dead 584 // and has updated others. However, if a block is live (i.e. copied over) 585 // but its terminator has been changed to not go to this block, then our 586 // phi nodes will have invalid entries. Update the PHI nodes in this 587 // case. 588 PHINode *PN = cast<PHINode>(NewBB->begin()); 589 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 590 if (NumPreds != PN->getNumIncomingValues()) { 591 assert(NumPreds < PN->getNumIncomingValues()); 592 // Count how many times each predecessor comes to this block. 593 std::map<BasicBlock*, unsigned> PredCount; 594 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 595 PI != E; ++PI) 596 --PredCount[*PI]; 597 598 // Figure out how many entries to remove from each PHI. 599 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 600 ++PredCount[PN->getIncomingBlock(i)]; 601 602 // At this point, the excess predecessor entries are positive in the 603 // map. Loop over all of the PHIs and remove excess predecessor 604 // entries. 605 BasicBlock::iterator I = NewBB->begin(); 606 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 607 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 608 E = PredCount.end(); PCI != E; ++PCI) { 609 BasicBlock *Pred = PCI->first; 610 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 611 PN->removeIncomingValue(Pred, false); 612 } 613 } 614 } 615 616 // If the loops above have made these phi nodes have 0 or 1 operand, 617 // replace them with undef or the input value. We must do this for 618 // correctness, because 0-operand phis are not valid. 619 PN = cast<PHINode>(NewBB->begin()); 620 if (PN->getNumIncomingValues() == 0) { 621 BasicBlock::iterator I = NewBB->begin(); 622 BasicBlock::const_iterator OldI = OldBB->begin(); 623 while ((PN = dyn_cast<PHINode>(I++))) { 624 Value *NV = UndefValue::get(PN->getType()); 625 PN->replaceAllUsesWith(NV); 626 assert(VMap[&*OldI] == PN && "VMap mismatch"); 627 VMap[&*OldI] = NV; 628 PN->eraseFromParent(); 629 ++OldI; 630 } 631 } 632 } 633 634 // Make a second pass over the PHINodes now that all of them have been 635 // remapped into the new function, simplifying the PHINode and performing any 636 // recursive simplifications exposed. This will transparently update the 637 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 638 // two PHINodes, the iteration over the old PHIs remains valid, and the 639 // mapping will just map us to the new node (which may not even be a PHI 640 // node). 641 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 642 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 643 recursivelySimplifyInstruction(PN); 644 645 // Now that the inlined function body has been fully constructed, go through 646 // and zap unconditional fall-through branches. This happens all the time when 647 // specializing code: code specialization turns conditional branches into 648 // uncond branches, and this code folds them. 649 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 650 Function::iterator I = Begin; 651 while (I != NewFunc->end()) { 652 // Check if this block has become dead during inlining or other 653 // simplifications. Note that the first block will appear dead, as it has 654 // not yet been wired up properly. 655 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 656 I->getSinglePredecessor() == &*I)) { 657 BasicBlock *DeadBB = &*I++; 658 DeleteDeadBlock(DeadBB); 659 continue; 660 } 661 662 // We need to simplify conditional branches and switches with a constant 663 // operand. We try to prune these out when cloning, but if the 664 // simplification required looking through PHI nodes, those are only 665 // available after forming the full basic block. That may leave some here, 666 // and we still want to prune the dead code as early as possible. 667 ConstantFoldTerminator(&*I); 668 669 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 670 if (!BI || BI->isConditional()) { ++I; continue; } 671 672 BasicBlock *Dest = BI->getSuccessor(0); 673 if (!Dest->getSinglePredecessor()) { 674 ++I; continue; 675 } 676 677 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 678 // above should have zapped all of them.. 679 assert(!isa<PHINode>(Dest->begin())); 680 681 // We know all single-entry PHI nodes in the inlined function have been 682 // removed, so we just need to splice the blocks. 683 BI->eraseFromParent(); 684 685 // Make all PHI nodes that referred to Dest now refer to I as their source. 686 Dest->replaceAllUsesWith(&*I); 687 688 // Move all the instructions in the succ to the pred. 689 I->getInstList().splice(I->end(), Dest->getInstList()); 690 691 // Remove the dest block. 692 Dest->eraseFromParent(); 693 694 // Do not increment I, iteratively merge all things this block branches to. 695 } 696 697 // Make a final pass over the basic blocks from the old function to gather 698 // any return instructions which survived folding. We have to do this here 699 // because we can iteratively remove and merge returns above. 700 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 701 E = NewFunc->end(); 702 I != E; ++I) 703 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 704 Returns.push_back(RI); 705 } 706 707 708 /// This works exactly like CloneFunctionInto, 709 /// except that it does some simple constant prop and DCE on the fly. The 710 /// effect of this is to copy significantly less code in cases where (for 711 /// example) a function call with constant arguments is inlined, and those 712 /// constant arguments cause a significant amount of code in the callee to be 713 /// dead. Since this doesn't produce an exact copy of the input, it can't be 714 /// used for things like CloneFunction or CloneModule. 715 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 716 ValueToValueMapTy &VMap, 717 bool ModuleLevelChanges, 718 SmallVectorImpl<ReturnInst*> &Returns, 719 const char *NameSuffix, 720 ClonedCodeInfo *CodeInfo, 721 Instruction *TheCall) { 722 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 723 ModuleLevelChanges, Returns, NameSuffix, CodeInfo, 724 nullptr); 725 } 726 727 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 728 void llvm::remapInstructionsInBlocks( 729 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 730 // Rewrite the code to refer to itself. 731 for (auto *BB : Blocks) 732 for (auto &Inst : *BB) 733 RemapInstruction(&Inst, VMap, 734 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 735 } 736 737 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 738 /// Blocks. 739 /// 740 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 741 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 742 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 743 Loop *OrigLoop, ValueToValueMapTy &VMap, 744 const Twine &NameSuffix, LoopInfo *LI, 745 DominatorTree *DT, 746 SmallVectorImpl<BasicBlock *> &Blocks) { 747 Function *F = OrigLoop->getHeader()->getParent(); 748 Loop *ParentLoop = OrigLoop->getParentLoop(); 749 750 Loop *NewLoop = new Loop(); 751 if (ParentLoop) 752 ParentLoop->addChildLoop(NewLoop); 753 else 754 LI->addTopLevelLoop(NewLoop); 755 756 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 757 assert(OrigPH && "No preheader"); 758 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 759 // To rename the loop PHIs. 760 VMap[OrigPH] = NewPH; 761 Blocks.push_back(NewPH); 762 763 // Update LoopInfo. 764 if (ParentLoop) 765 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 766 767 // Update DominatorTree. 768 DT->addNewBlock(NewPH, LoopDomBB); 769 770 for (BasicBlock *BB : OrigLoop->getBlocks()) { 771 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 772 VMap[BB] = NewBB; 773 774 // Update LoopInfo. 775 NewLoop->addBasicBlockToLoop(NewBB, *LI); 776 777 // Update DominatorTree. 778 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 779 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 780 781 Blocks.push_back(NewBB); 782 } 783 784 // Move them physically from the end of the block list. 785 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 786 NewPH); 787 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 788 NewLoop->getHeader()->getIterator(), F->end()); 789 790 return NewLoop; 791 } 792