1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/Support/CFG.h" 26 #include "llvm/Transforms/Utils/ValueMapper.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DebugInfo.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include <map> 31 using namespace llvm; 32 33 // CloneBasicBlock - See comments in Cloning.h 34 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 35 ValueToValueMapTy &VMap, 36 const Twine &NameSuffix, Function *F, 37 ClonedCodeInfo *CodeInfo) { 38 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 39 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 40 41 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 42 43 // Loop over all instructions, and copy them over. 44 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 45 II != IE; ++II) { 46 Instruction *NewInst = II->clone(); 47 if (II->hasName()) 48 NewInst->setName(II->getName()+NameSuffix); 49 NewBB->getInstList().push_back(NewInst); 50 VMap[II] = NewInst; // Add instruction map to value. 51 52 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 53 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 54 if (isa<ConstantInt>(AI->getArraySize())) 55 hasStaticAllocas = true; 56 else 57 hasDynamicAllocas = true; 58 } 59 } 60 61 if (CodeInfo) { 62 CodeInfo->ContainsCalls |= hasCalls; 63 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator()); 64 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 65 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 66 BB != &BB->getParent()->getEntryBlock(); 67 } 68 return NewBB; 69 } 70 71 // Clone OldFunc into NewFunc, transforming the old arguments into references to 72 // VMap values. 73 // 74 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 75 ValueToValueMapTy &VMap, 76 bool ModuleLevelChanges, 77 SmallVectorImpl<ReturnInst*> &Returns, 78 const char *NameSuffix, ClonedCodeInfo *CodeInfo) { 79 assert(NameSuffix && "NameSuffix cannot be null!"); 80 81 #ifndef NDEBUG 82 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 83 E = OldFunc->arg_end(); I != E; ++I) 84 assert(VMap.count(I) && "No mapping from source argument specified!"); 85 #endif 86 87 // Clone any attributes. 88 if (NewFunc->arg_size() == OldFunc->arg_size()) 89 NewFunc->copyAttributesFrom(OldFunc); 90 else { 91 //Some arguments were deleted with the VMap. Copy arguments one by one 92 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 93 E = OldFunc->arg_end(); I != E; ++I) 94 if (Argument* Anew = dyn_cast<Argument>(VMap[I])) 95 Anew->addAttr( OldFunc->getAttributes() 96 .getParamAttributes(I->getArgNo() + 1)); 97 NewFunc->setAttributes(NewFunc->getAttributes() 98 .addAttr(0, OldFunc->getAttributes() 99 .getRetAttributes())); 100 NewFunc->setAttributes(NewFunc->getAttributes() 101 .addAttr(~0, OldFunc->getAttributes() 102 .getFnAttributes())); 103 104 } 105 106 // Loop over all of the basic blocks in the function, cloning them as 107 // appropriate. Note that we save BE this way in order to handle cloning of 108 // recursive functions into themselves. 109 // 110 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 111 BI != BE; ++BI) { 112 const BasicBlock &BB = *BI; 113 114 // Create a new basic block and copy instructions into it! 115 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, 116 CodeInfo); 117 VMap[&BB] = CBB; // Add basic block mapping. 118 119 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 120 Returns.push_back(RI); 121 } 122 123 // Loop over all of the instructions in the function, fixing up operand 124 // references as we go. This uses VMap to do all the hard work. 125 // 126 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 127 BE = NewFunc->end(); BB != BE; ++BB) 128 // Loop over all instructions, fixing each one as we find it... 129 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 130 RemapInstruction(II, VMap, ModuleLevelChanges); 131 } 132 133 /// CloneFunction - Return a copy of the specified function, but without 134 /// embedding the function into another module. Also, any references specified 135 /// in the VMap are changed to refer to their mapped value instead of the 136 /// original one. If any of the arguments to the function are in the VMap, 137 /// the arguments are deleted from the resultant function. The VMap is 138 /// updated to include mappings from all of the instructions and basicblocks in 139 /// the function from their old to new values. 140 /// 141 Function *llvm::CloneFunction(const Function *F, 142 ValueToValueMapTy &VMap, 143 bool ModuleLevelChanges, 144 ClonedCodeInfo *CodeInfo) { 145 std::vector<const Type*> ArgTypes; 146 147 // The user might be deleting arguments to the function by specifying them in 148 // the VMap. If so, we need to not add the arguments to the arg ty vector 149 // 150 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 151 I != E; ++I) 152 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 153 ArgTypes.push_back(I->getType()); 154 155 // Create a new function type... 156 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 157 ArgTypes, F->getFunctionType()->isVarArg()); 158 159 // Create the new function... 160 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 161 162 // Loop over the arguments, copying the names of the mapped arguments over... 163 Function::arg_iterator DestI = NewF->arg_begin(); 164 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 165 I != E; ++I) 166 if (VMap.count(I) == 0) { // Is this argument preserved? 167 DestI->setName(I->getName()); // Copy the name over... 168 VMap[I] = DestI++; // Add mapping to VMap 169 } 170 171 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 172 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 173 return NewF; 174 } 175 176 177 178 namespace { 179 /// PruningFunctionCloner - This class is a private class used to implement 180 /// the CloneAndPruneFunctionInto method. 181 struct PruningFunctionCloner { 182 Function *NewFunc; 183 const Function *OldFunc; 184 ValueToValueMapTy &VMap; 185 bool ModuleLevelChanges; 186 SmallVectorImpl<ReturnInst*> &Returns; 187 const char *NameSuffix; 188 ClonedCodeInfo *CodeInfo; 189 const TargetData *TD; 190 public: 191 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 192 ValueToValueMapTy &valueMap, 193 bool moduleLevelChanges, 194 SmallVectorImpl<ReturnInst*> &returns, 195 const char *nameSuffix, 196 ClonedCodeInfo *codeInfo, 197 const TargetData *td) 198 : NewFunc(newFunc), OldFunc(oldFunc), 199 VMap(valueMap), ModuleLevelChanges(moduleLevelChanges), 200 Returns(returns), NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) { 201 } 202 203 /// CloneBlock - The specified block is found to be reachable, clone it and 204 /// anything that it can reach. 205 void CloneBlock(const BasicBlock *BB, 206 std::vector<const BasicBlock*> &ToClone); 207 208 public: 209 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 210 /// mapping its operands through VMap if they are available. 211 Constant *ConstantFoldMappedInstruction(const Instruction *I); 212 }; 213 } 214 215 /// CloneBlock - The specified block is found to be reachable, clone it and 216 /// anything that it can reach. 217 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 218 std::vector<const BasicBlock*> &ToClone){ 219 TrackingVH<Value> &BBEntry = VMap[BB]; 220 221 // Have we already cloned this block? 222 if (BBEntry) return; 223 224 // Nope, clone it now. 225 BasicBlock *NewBB; 226 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 227 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 228 229 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 230 231 // Loop over all instructions, and copy them over, DCE'ing as we go. This 232 // loop doesn't include the terminator. 233 for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end(); 234 II != IE; ++II) { 235 // If this instruction constant folds, don't bother cloning the instruction, 236 // instead, just add the constant to the value map. 237 if (Constant *C = ConstantFoldMappedInstruction(II)) { 238 VMap[II] = C; 239 continue; 240 } 241 242 Instruction *NewInst = II->clone(); 243 if (II->hasName()) 244 NewInst->setName(II->getName()+NameSuffix); 245 NewBB->getInstList().push_back(NewInst); 246 VMap[II] = NewInst; // Add instruction map to value. 247 248 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 249 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 250 if (isa<ConstantInt>(AI->getArraySize())) 251 hasStaticAllocas = true; 252 else 253 hasDynamicAllocas = true; 254 } 255 } 256 257 // Finally, clone over the terminator. 258 const TerminatorInst *OldTI = BB->getTerminator(); 259 bool TerminatorDone = false; 260 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 261 if (BI->isConditional()) { 262 // If the condition was a known constant in the callee... 263 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 264 // Or is a known constant in the caller... 265 if (Cond == 0) { 266 Value *V = VMap[BI->getCondition()]; 267 Cond = dyn_cast_or_null<ConstantInt>(V); 268 } 269 270 // Constant fold to uncond branch! 271 if (Cond) { 272 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 273 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 274 ToClone.push_back(Dest); 275 TerminatorDone = true; 276 } 277 } 278 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 279 // If switching on a value known constant in the caller. 280 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 281 if (Cond == 0) { // Or known constant after constant prop in the callee... 282 Value *V = VMap[SI->getCondition()]; 283 Cond = dyn_cast_or_null<ConstantInt>(V); 284 } 285 if (Cond) { // Constant fold to uncond branch! 286 BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond)); 287 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 288 ToClone.push_back(Dest); 289 TerminatorDone = true; 290 } 291 } 292 293 if (!TerminatorDone) { 294 Instruction *NewInst = OldTI->clone(); 295 if (OldTI->hasName()) 296 NewInst->setName(OldTI->getName()+NameSuffix); 297 NewBB->getInstList().push_back(NewInst); 298 VMap[OldTI] = NewInst; // Add instruction map to value. 299 300 // Recursively clone any reachable successor blocks. 301 const TerminatorInst *TI = BB->getTerminator(); 302 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 303 ToClone.push_back(TI->getSuccessor(i)); 304 } 305 306 if (CodeInfo) { 307 CodeInfo->ContainsCalls |= hasCalls; 308 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI); 309 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 310 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 311 BB != &BB->getParent()->front(); 312 } 313 314 if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator())) 315 Returns.push_back(RI); 316 } 317 318 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 319 /// mapping its operands through VMap if they are available. 320 Constant *PruningFunctionCloner:: 321 ConstantFoldMappedInstruction(const Instruction *I) { 322 SmallVector<Constant*, 8> Ops; 323 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 324 if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i), 325 VMap, ModuleLevelChanges))) 326 Ops.push_back(Op); 327 else 328 return 0; // All operands not constant! 329 330 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 331 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 332 TD); 333 334 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 335 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) 336 if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr) 337 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 338 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 339 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), 340 CE); 341 342 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0], 343 Ops.size(), TD); 344 } 345 346 static DebugLoc 347 UpdateInlinedAtInfo(const DebugLoc &InsnDL, const DebugLoc &TheCallDL, 348 LLVMContext &Ctx) { 349 DebugLoc NewLoc = TheCallDL; 350 if (MDNode *IA = InsnDL.getInlinedAt(Ctx)) 351 NewLoc = UpdateInlinedAtInfo(DebugLoc::getFromDILocation(IA), TheCallDL, 352 Ctx); 353 354 return DebugLoc::get(InsnDL.getLine(), InsnDL.getCol(), 355 InsnDL.getScope(Ctx), NewLoc.getAsMDNode(Ctx)); 356 } 357 358 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, 359 /// except that it does some simple constant prop and DCE on the fly. The 360 /// effect of this is to copy significantly less code in cases where (for 361 /// example) a function call with constant arguments is inlined, and those 362 /// constant arguments cause a significant amount of code in the callee to be 363 /// dead. Since this doesn't produce an exact copy of the input, it can't be 364 /// used for things like CloneFunction or CloneModule. 365 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 366 ValueToValueMapTy &VMap, 367 bool ModuleLevelChanges, 368 SmallVectorImpl<ReturnInst*> &Returns, 369 const char *NameSuffix, 370 ClonedCodeInfo *CodeInfo, 371 const TargetData *TD, 372 Instruction *TheCall) { 373 assert(NameSuffix && "NameSuffix cannot be null!"); 374 375 #ifndef NDEBUG 376 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 377 E = OldFunc->arg_end(); II != E; ++II) 378 assert(VMap.count(II) && "No mapping from source argument specified!"); 379 #endif 380 381 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 382 Returns, NameSuffix, CodeInfo, TD); 383 384 // Clone the entry block, and anything recursively reachable from it. 385 std::vector<const BasicBlock*> CloneWorklist; 386 CloneWorklist.push_back(&OldFunc->getEntryBlock()); 387 while (!CloneWorklist.empty()) { 388 const BasicBlock *BB = CloneWorklist.back(); 389 CloneWorklist.pop_back(); 390 PFC.CloneBlock(BB, CloneWorklist); 391 } 392 393 // Loop over all of the basic blocks in the old function. If the block was 394 // reachable, we have cloned it and the old block is now in the value map: 395 // insert it into the new function in the right order. If not, ignore it. 396 // 397 // Defer PHI resolution until rest of function is resolved. 398 SmallVector<const PHINode*, 16> PHIToResolve; 399 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 400 BI != BE; ++BI) { 401 Value *V = VMap[BI]; 402 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 403 if (NewBB == 0) continue; // Dead block. 404 405 // Add the new block to the new function. 406 NewFunc->getBasicBlockList().push_back(NewBB); 407 408 // Loop over all of the instructions in the block, fixing up operand 409 // references as we go. This uses VMap to do all the hard work. 410 // 411 BasicBlock::iterator I = NewBB->begin(); 412 413 DebugLoc TheCallDL; 414 if (TheCall) 415 TheCallDL = TheCall->getDebugLoc(); 416 417 // Handle PHI nodes specially, as we have to remove references to dead 418 // blocks. 419 if (PHINode *PN = dyn_cast<PHINode>(I)) { 420 // Skip over all PHI nodes, remembering them for later. 421 BasicBlock::const_iterator OldI = BI->begin(); 422 for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI) { 423 if (I->hasMetadata()) { 424 if (!TheCallDL.isUnknown()) { 425 DebugLoc IDL = I->getDebugLoc(); 426 if (!IDL.isUnknown()) { 427 DebugLoc NewDL = UpdateInlinedAtInfo(IDL, TheCallDL, 428 I->getContext()); 429 I->setDebugLoc(NewDL); 430 } 431 } else { 432 // The cloned instruction has dbg info but the call instruction 433 // does not have dbg info. Remove dbg info from cloned instruction. 434 I->setDebugLoc(DebugLoc()); 435 } 436 } 437 PHIToResolve.push_back(cast<PHINode>(OldI)); 438 } 439 } 440 441 // FIXME: 442 // FIXME: 443 // FIXME: Unclone all this metadata stuff. 444 // FIXME: 445 // FIXME: 446 447 // Otherwise, remap the rest of the instructions normally. 448 for (; I != NewBB->end(); ++I) { 449 if (I->hasMetadata()) { 450 if (!TheCallDL.isUnknown()) { 451 DebugLoc IDL = I->getDebugLoc(); 452 if (!IDL.isUnknown()) { 453 DebugLoc NewDL = UpdateInlinedAtInfo(IDL, TheCallDL, 454 I->getContext()); 455 I->setDebugLoc(NewDL); 456 } 457 } else { 458 // The cloned instruction has dbg info but the call instruction 459 // does not have dbg info. Remove dbg info from cloned instruction. 460 I->setDebugLoc(DebugLoc()); 461 } 462 } 463 RemapInstruction(I, VMap, ModuleLevelChanges); 464 } 465 } 466 467 // Defer PHI resolution until rest of function is resolved, PHI resolution 468 // requires the CFG to be up-to-date. 469 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 470 const PHINode *OPN = PHIToResolve[phino]; 471 unsigned NumPreds = OPN->getNumIncomingValues(); 472 const BasicBlock *OldBB = OPN->getParent(); 473 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 474 475 // Map operands for blocks that are live and remove operands for blocks 476 // that are dead. 477 for (; phino != PHIToResolve.size() && 478 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 479 OPN = PHIToResolve[phino]; 480 PHINode *PN = cast<PHINode>(VMap[OPN]); 481 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 482 Value *V = VMap[PN->getIncomingBlock(pred)]; 483 if (BasicBlock *MappedBlock = 484 cast_or_null<BasicBlock>(V)) { 485 Value *InVal = MapValue(PN->getIncomingValue(pred), 486 VMap, ModuleLevelChanges); 487 assert(InVal && "Unknown input value?"); 488 PN->setIncomingValue(pred, InVal); 489 PN->setIncomingBlock(pred, MappedBlock); 490 } else { 491 PN->removeIncomingValue(pred, false); 492 --pred, --e; // Revisit the next entry. 493 } 494 } 495 } 496 497 // The loop above has removed PHI entries for those blocks that are dead 498 // and has updated others. However, if a block is live (i.e. copied over) 499 // but its terminator has been changed to not go to this block, then our 500 // phi nodes will have invalid entries. Update the PHI nodes in this 501 // case. 502 PHINode *PN = cast<PHINode>(NewBB->begin()); 503 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 504 if (NumPreds != PN->getNumIncomingValues()) { 505 assert(NumPreds < PN->getNumIncomingValues()); 506 // Count how many times each predecessor comes to this block. 507 std::map<BasicBlock*, unsigned> PredCount; 508 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 509 PI != E; ++PI) 510 --PredCount[*PI]; 511 512 // Figure out how many entries to remove from each PHI. 513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 514 ++PredCount[PN->getIncomingBlock(i)]; 515 516 // At this point, the excess predecessor entries are positive in the 517 // map. Loop over all of the PHIs and remove excess predecessor 518 // entries. 519 BasicBlock::iterator I = NewBB->begin(); 520 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 521 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 522 E = PredCount.end(); PCI != E; ++PCI) { 523 BasicBlock *Pred = PCI->first; 524 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 525 PN->removeIncomingValue(Pred, false); 526 } 527 } 528 } 529 530 // If the loops above have made these phi nodes have 0 or 1 operand, 531 // replace them with undef or the input value. We must do this for 532 // correctness, because 0-operand phis are not valid. 533 PN = cast<PHINode>(NewBB->begin()); 534 if (PN->getNumIncomingValues() == 0) { 535 BasicBlock::iterator I = NewBB->begin(); 536 BasicBlock::const_iterator OldI = OldBB->begin(); 537 while ((PN = dyn_cast<PHINode>(I++))) { 538 Value *NV = UndefValue::get(PN->getType()); 539 PN->replaceAllUsesWith(NV); 540 assert(VMap[OldI] == PN && "VMap mismatch"); 541 VMap[OldI] = NV; 542 PN->eraseFromParent(); 543 ++OldI; 544 } 545 } 546 // NOTE: We cannot eliminate single entry phi nodes here, because of 547 // VMap. Single entry phi nodes can have multiple VMap entries 548 // pointing at them. Thus, deleting one would require scanning the VMap 549 // to update any entries in it that would require that. This would be 550 // really slow. 551 } 552 553 // Now that the inlined function body has been fully constructed, go through 554 // and zap unconditional fall-through branches. This happen all the time when 555 // specializing code: code specialization turns conditional branches into 556 // uncond branches, and this code folds them. 557 Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]); 558 while (I != NewFunc->end()) { 559 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 560 if (!BI || BI->isConditional()) { ++I; continue; } 561 562 // Note that we can't eliminate uncond branches if the destination has 563 // single-entry PHI nodes. Eliminating the single-entry phi nodes would 564 // require scanning the VMap to update any entries that point to the phi 565 // node. 566 BasicBlock *Dest = BI->getSuccessor(0); 567 if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) { 568 ++I; continue; 569 } 570 571 // We know all single-entry PHI nodes in the inlined function have been 572 // removed, so we just need to splice the blocks. 573 BI->eraseFromParent(); 574 575 // Move all the instructions in the succ to the pred. 576 I->getInstList().splice(I->end(), Dest->getInstList()); 577 578 // Make all PHI nodes that referred to Dest now refer to I as their source. 579 Dest->replaceAllUsesWith(I); 580 581 // Remove the dest block. 582 Dest->eraseFromParent(); 583 584 // Do not increment I, iteratively merge all things this block branches to. 585 } 586 } 587