1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 41 ValueToValueMapTy &VMap, 42 const Twine &NameSuffix, Function *F, 43 ClonedCodeInfo *CodeInfo) { 44 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 45 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 46 47 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 48 49 // Loop over all instructions, and copy them over. 50 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 51 II != IE; ++II) { 52 Instruction *NewInst = II->clone(); 53 if (II->hasName()) 54 NewInst->setName(II->getName()+NameSuffix); 55 NewBB->getInstList().push_back(NewInst); 56 VMap[&*II] = NewInst; // Add instruction map to value. 57 58 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 59 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 60 if (isa<ConstantInt>(AI->getArraySize())) 61 hasStaticAllocas = true; 62 else 63 hasDynamicAllocas = true; 64 } 65 } 66 67 if (CodeInfo) { 68 CodeInfo->ContainsCalls |= hasCalls; 69 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 70 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 71 BB != &BB->getParent()->getEntryBlock(); 72 } 73 return NewBB; 74 } 75 76 // Clone OldFunc into NewFunc, transforming the old arguments into references to 77 // VMap values. 78 // 79 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 80 ValueToValueMapTy &VMap, 81 bool ModuleLevelChanges, 82 SmallVectorImpl<ReturnInst*> &Returns, 83 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 84 ValueMapTypeRemapper *TypeMapper, 85 ValueMaterializer *Materializer) { 86 assert(NameSuffix && "NameSuffix cannot be null!"); 87 88 #ifndef NDEBUG 89 for (const Argument &I : OldFunc->args()) 90 assert(VMap.count(&I) && "No mapping from source argument specified!"); 91 #endif 92 93 // Copy all attributes other than those stored in the AttributeList. We need 94 // to remap the parameter indices of the AttributeList. 95 AttributeList NewAttrs = NewFunc->getAttributes(); 96 NewFunc->copyAttributesFrom(OldFunc); 97 NewFunc->setAttributes(NewAttrs); 98 99 // Fix up the personality function that got copied over. 100 if (OldFunc->hasPersonalityFn()) 101 NewFunc->setPersonalityFn( 102 MapValue(OldFunc->getPersonalityFn(), VMap, 103 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 104 TypeMapper, Materializer)); 105 106 SmallVector<AttributeSet, 4> AttrVec(NewFunc->arg_size() + 2); 107 AttributeList OldAttrs = OldFunc->getAttributes(); 108 109 // Copy the return attributes. 110 AttrVec[0] = OldAttrs.getRetAttributes(); 111 112 // Clone any argument attributes that are present in the VMap. 113 for (const Argument &OldArg : OldFunc->args()) 114 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 115 AttrVec[NewArg->getArgNo() + 1] = 116 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 117 } 118 119 // Copy any function attributes. 120 AttrVec.back() = OldAttrs.getFnAttributes(); 121 122 NewFunc->setAttributes(AttributeList::get(NewFunc->getContext(), AttrVec)); 123 124 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 125 OldFunc->getAllMetadata(MDs); 126 for (auto MD : MDs) 127 NewFunc->addMetadata( 128 MD.first, 129 *MapMetadata(MD.second, VMap, 130 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 131 TypeMapper, Materializer)); 132 133 // Loop over all of the basic blocks in the function, cloning them as 134 // appropriate. Note that we save BE this way in order to handle cloning of 135 // recursive functions into themselves. 136 // 137 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 138 BI != BE; ++BI) { 139 const BasicBlock &BB = *BI; 140 141 // Create a new basic block and copy instructions into it! 142 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 143 144 // Add basic block mapping. 145 VMap[&BB] = CBB; 146 147 // It is only legal to clone a function if a block address within that 148 // function is never referenced outside of the function. Given that, we 149 // want to map block addresses from the old function to block addresses in 150 // the clone. (This is different from the generic ValueMapper 151 // implementation, which generates an invalid blockaddress when 152 // cloning a function.) 153 if (BB.hasAddressTaken()) { 154 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 155 const_cast<BasicBlock*>(&BB)); 156 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 157 } 158 159 // Note return instructions for the caller. 160 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 161 Returns.push_back(RI); 162 } 163 164 // Loop over all of the instructions in the function, fixing up operand 165 // references as we go. This uses VMap to do all the hard work. 166 for (Function::iterator BB = 167 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 168 BE = NewFunc->end(); 169 BB != BE; ++BB) 170 // Loop over all instructions, fixing each one as we find it... 171 for (Instruction &II : *BB) 172 RemapInstruction(&II, VMap, 173 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 174 TypeMapper, Materializer); 175 } 176 177 /// Return a copy of the specified function and add it to that function's 178 /// module. Also, any references specified in the VMap are changed to refer to 179 /// their mapped value instead of the original one. If any of the arguments to 180 /// the function are in the VMap, the arguments are deleted from the resultant 181 /// function. The VMap is updated to include mappings from all of the 182 /// instructions and basicblocks in the function from their old to new values. 183 /// 184 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 185 ClonedCodeInfo *CodeInfo) { 186 std::vector<Type*> ArgTypes; 187 188 // The user might be deleting arguments to the function by specifying them in 189 // the VMap. If so, we need to not add the arguments to the arg ty vector 190 // 191 for (const Argument &I : F->args()) 192 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 193 ArgTypes.push_back(I.getType()); 194 195 // Create a new function type... 196 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 197 ArgTypes, F->getFunctionType()->isVarArg()); 198 199 // Create the new function... 200 Function *NewF = 201 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent()); 202 203 // Loop over the arguments, copying the names of the mapped arguments over... 204 Function::arg_iterator DestI = NewF->arg_begin(); 205 for (const Argument & I : F->args()) 206 if (VMap.count(&I) == 0) { // Is this argument preserved? 207 DestI->setName(I.getName()); // Copy the name over... 208 VMap[&I] = &*DestI++; // Add mapping to VMap 209 } 210 211 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 212 CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "", 213 CodeInfo); 214 215 return NewF; 216 } 217 218 219 220 namespace { 221 /// This is a private class used to implement CloneAndPruneFunctionInto. 222 struct PruningFunctionCloner { 223 Function *NewFunc; 224 const Function *OldFunc; 225 ValueToValueMapTy &VMap; 226 bool ModuleLevelChanges; 227 const char *NameSuffix; 228 ClonedCodeInfo *CodeInfo; 229 230 public: 231 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 232 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 233 const char *nameSuffix, ClonedCodeInfo *codeInfo) 234 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 235 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 236 CodeInfo(codeInfo) {} 237 238 /// The specified block is found to be reachable, clone it and 239 /// anything that it can reach. 240 void CloneBlock(const BasicBlock *BB, 241 BasicBlock::const_iterator StartingInst, 242 std::vector<const BasicBlock*> &ToClone); 243 }; 244 } 245 246 /// The specified block is found to be reachable, clone it and 247 /// anything that it can reach. 248 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 249 BasicBlock::const_iterator StartingInst, 250 std::vector<const BasicBlock*> &ToClone){ 251 WeakVH &BBEntry = VMap[BB]; 252 253 // Have we already cloned this block? 254 if (BBEntry) return; 255 256 // Nope, clone it now. 257 BasicBlock *NewBB; 258 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 259 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 260 261 // It is only legal to clone a function if a block address within that 262 // function is never referenced outside of the function. Given that, we 263 // want to map block addresses from the old function to block addresses in 264 // the clone. (This is different from the generic ValueMapper 265 // implementation, which generates an invalid blockaddress when 266 // cloning a function.) 267 // 268 // Note that we don't need to fix the mapping for unreachable blocks; 269 // the default mapping there is safe. 270 if (BB->hasAddressTaken()) { 271 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 272 const_cast<BasicBlock*>(BB)); 273 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 274 } 275 276 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 277 278 // Loop over all instructions, and copy them over, DCE'ing as we go. This 279 // loop doesn't include the terminator. 280 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 281 II != IE; ++II) { 282 283 Instruction *NewInst = II->clone(); 284 285 // Eagerly remap operands to the newly cloned instruction, except for PHI 286 // nodes for which we defer processing until we update the CFG. 287 if (!isa<PHINode>(NewInst)) { 288 RemapInstruction(NewInst, VMap, 289 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 290 291 // If we can simplify this instruction to some other value, simply add 292 // a mapping to that value rather than inserting a new instruction into 293 // the basic block. 294 if (Value *V = 295 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 296 // On the off-chance that this simplifies to an instruction in the old 297 // function, map it back into the new function. 298 if (Value *MappedV = VMap.lookup(V)) 299 V = MappedV; 300 301 if (!NewInst->mayHaveSideEffects()) { 302 VMap[&*II] = V; 303 delete NewInst; 304 continue; 305 } 306 } 307 } 308 309 if (II->hasName()) 310 NewInst->setName(II->getName()+NameSuffix); 311 VMap[&*II] = NewInst; // Add instruction map to value. 312 NewBB->getInstList().push_back(NewInst); 313 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 314 315 if (CodeInfo) 316 if (auto CS = ImmutableCallSite(&*II)) 317 if (CS.hasOperandBundles()) 318 CodeInfo->OperandBundleCallSites.push_back(NewInst); 319 320 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 321 if (isa<ConstantInt>(AI->getArraySize())) 322 hasStaticAllocas = true; 323 else 324 hasDynamicAllocas = true; 325 } 326 } 327 328 // Finally, clone over the terminator. 329 const TerminatorInst *OldTI = BB->getTerminator(); 330 bool TerminatorDone = false; 331 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 332 if (BI->isConditional()) { 333 // If the condition was a known constant in the callee... 334 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 335 // Or is a known constant in the caller... 336 if (!Cond) { 337 Value *V = VMap.lookup(BI->getCondition()); 338 Cond = dyn_cast_or_null<ConstantInt>(V); 339 } 340 341 // Constant fold to uncond branch! 342 if (Cond) { 343 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 344 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 345 ToClone.push_back(Dest); 346 TerminatorDone = true; 347 } 348 } 349 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 350 // If switching on a value known constant in the caller. 351 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 352 if (!Cond) { // Or known constant after constant prop in the callee... 353 Value *V = VMap.lookup(SI->getCondition()); 354 Cond = dyn_cast_or_null<ConstantInt>(V); 355 } 356 if (Cond) { // Constant fold to uncond branch! 357 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 358 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 359 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 360 ToClone.push_back(Dest); 361 TerminatorDone = true; 362 } 363 } 364 365 if (!TerminatorDone) { 366 Instruction *NewInst = OldTI->clone(); 367 if (OldTI->hasName()) 368 NewInst->setName(OldTI->getName()+NameSuffix); 369 NewBB->getInstList().push_back(NewInst); 370 VMap[OldTI] = NewInst; // Add instruction map to value. 371 372 if (CodeInfo) 373 if (auto CS = ImmutableCallSite(OldTI)) 374 if (CS.hasOperandBundles()) 375 CodeInfo->OperandBundleCallSites.push_back(NewInst); 376 377 // Recursively clone any reachable successor blocks. 378 const TerminatorInst *TI = BB->getTerminator(); 379 for (const BasicBlock *Succ : TI->successors()) 380 ToClone.push_back(Succ); 381 } 382 383 if (CodeInfo) { 384 CodeInfo->ContainsCalls |= hasCalls; 385 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 386 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 387 BB != &BB->getParent()->front(); 388 } 389 } 390 391 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 392 /// entire function. Instead it starts at an instruction provided by the caller 393 /// and copies (and prunes) only the code reachable from that instruction. 394 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 395 const Instruction *StartingInst, 396 ValueToValueMapTy &VMap, 397 bool ModuleLevelChanges, 398 SmallVectorImpl<ReturnInst *> &Returns, 399 const char *NameSuffix, 400 ClonedCodeInfo *CodeInfo) { 401 assert(NameSuffix && "NameSuffix cannot be null!"); 402 403 ValueMapTypeRemapper *TypeMapper = nullptr; 404 ValueMaterializer *Materializer = nullptr; 405 406 #ifndef NDEBUG 407 // If the cloning starts at the beginning of the function, verify that 408 // the function arguments are mapped. 409 if (!StartingInst) 410 for (const Argument &II : OldFunc->args()) 411 assert(VMap.count(&II) && "No mapping from source argument specified!"); 412 #endif 413 414 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 415 NameSuffix, CodeInfo); 416 const BasicBlock *StartingBB; 417 if (StartingInst) 418 StartingBB = StartingInst->getParent(); 419 else { 420 StartingBB = &OldFunc->getEntryBlock(); 421 StartingInst = &StartingBB->front(); 422 } 423 424 // Clone the entry block, and anything recursively reachable from it. 425 std::vector<const BasicBlock*> CloneWorklist; 426 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 427 while (!CloneWorklist.empty()) { 428 const BasicBlock *BB = CloneWorklist.back(); 429 CloneWorklist.pop_back(); 430 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 431 } 432 433 // Loop over all of the basic blocks in the old function. If the block was 434 // reachable, we have cloned it and the old block is now in the value map: 435 // insert it into the new function in the right order. If not, ignore it. 436 // 437 // Defer PHI resolution until rest of function is resolved. 438 SmallVector<const PHINode*, 16> PHIToResolve; 439 for (const BasicBlock &BI : *OldFunc) { 440 Value *V = VMap.lookup(&BI); 441 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 442 if (!NewBB) continue; // Dead block. 443 444 // Add the new block to the new function. 445 NewFunc->getBasicBlockList().push_back(NewBB); 446 447 // Handle PHI nodes specially, as we have to remove references to dead 448 // blocks. 449 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 450 // PHI nodes may have been remapped to non-PHI nodes by the caller or 451 // during the cloning process. 452 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 453 if (isa<PHINode>(VMap[PN])) 454 PHIToResolve.push_back(PN); 455 else 456 break; 457 } else { 458 break; 459 } 460 } 461 462 // Finally, remap the terminator instructions, as those can't be remapped 463 // until all BBs are mapped. 464 RemapInstruction(NewBB->getTerminator(), VMap, 465 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 466 TypeMapper, Materializer); 467 } 468 469 // Defer PHI resolution until rest of function is resolved, PHI resolution 470 // requires the CFG to be up-to-date. 471 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 472 const PHINode *OPN = PHIToResolve[phino]; 473 unsigned NumPreds = OPN->getNumIncomingValues(); 474 const BasicBlock *OldBB = OPN->getParent(); 475 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 476 477 // Map operands for blocks that are live and remove operands for blocks 478 // that are dead. 479 for (; phino != PHIToResolve.size() && 480 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 481 OPN = PHIToResolve[phino]; 482 PHINode *PN = cast<PHINode>(VMap[OPN]); 483 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 484 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 485 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 486 Value *InVal = MapValue(PN->getIncomingValue(pred), 487 VMap, 488 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 489 assert(InVal && "Unknown input value?"); 490 PN->setIncomingValue(pred, InVal); 491 PN->setIncomingBlock(pred, MappedBlock); 492 } else { 493 PN->removeIncomingValue(pred, false); 494 --pred; // Revisit the next entry. 495 --e; 496 } 497 } 498 } 499 500 // The loop above has removed PHI entries for those blocks that are dead 501 // and has updated others. However, if a block is live (i.e. copied over) 502 // but its terminator has been changed to not go to this block, then our 503 // phi nodes will have invalid entries. Update the PHI nodes in this 504 // case. 505 PHINode *PN = cast<PHINode>(NewBB->begin()); 506 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 507 if (NumPreds != PN->getNumIncomingValues()) { 508 assert(NumPreds < PN->getNumIncomingValues()); 509 // Count how many times each predecessor comes to this block. 510 std::map<BasicBlock*, unsigned> PredCount; 511 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 512 PI != E; ++PI) 513 --PredCount[*PI]; 514 515 // Figure out how many entries to remove from each PHI. 516 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 517 ++PredCount[PN->getIncomingBlock(i)]; 518 519 // At this point, the excess predecessor entries are positive in the 520 // map. Loop over all of the PHIs and remove excess predecessor 521 // entries. 522 BasicBlock::iterator I = NewBB->begin(); 523 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 524 for (const auto &PCI : PredCount) { 525 BasicBlock *Pred = PCI.first; 526 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 527 PN->removeIncomingValue(Pred, false); 528 } 529 } 530 } 531 532 // If the loops above have made these phi nodes have 0 or 1 operand, 533 // replace them with undef or the input value. We must do this for 534 // correctness, because 0-operand phis are not valid. 535 PN = cast<PHINode>(NewBB->begin()); 536 if (PN->getNumIncomingValues() == 0) { 537 BasicBlock::iterator I = NewBB->begin(); 538 BasicBlock::const_iterator OldI = OldBB->begin(); 539 while ((PN = dyn_cast<PHINode>(I++))) { 540 Value *NV = UndefValue::get(PN->getType()); 541 PN->replaceAllUsesWith(NV); 542 assert(VMap[&*OldI] == PN && "VMap mismatch"); 543 VMap[&*OldI] = NV; 544 PN->eraseFromParent(); 545 ++OldI; 546 } 547 } 548 } 549 550 // Make a second pass over the PHINodes now that all of them have been 551 // remapped into the new function, simplifying the PHINode and performing any 552 // recursive simplifications exposed. This will transparently update the 553 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 554 // two PHINodes, the iteration over the old PHIs remains valid, and the 555 // mapping will just map us to the new node (which may not even be a PHI 556 // node). 557 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 558 SmallSetVector<const Value *, 8> Worklist; 559 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 560 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 561 Worklist.insert(PHIToResolve[Idx]); 562 563 // Note that we must test the size on each iteration, the worklist can grow. 564 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 565 const Value *OrigV = Worklist[Idx]; 566 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 567 if (!I) 568 continue; 569 570 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 571 // the CGSCC. 572 CallSite CS = CallSite(I); 573 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) 574 continue; 575 576 // See if this instruction simplifies. 577 Value *SimpleV = SimplifyInstruction(I, DL); 578 if (!SimpleV) 579 continue; 580 581 // Stash away all the uses of the old instruction so we can check them for 582 // recursive simplifications after a RAUW. This is cheaper than checking all 583 // uses of To on the recursive step in most cases. 584 for (const User *U : OrigV->users()) 585 Worklist.insert(cast<Instruction>(U)); 586 587 // Replace the instruction with its simplified value. 588 I->replaceAllUsesWith(SimpleV); 589 590 // If the original instruction had no side effects, remove it. 591 if (isInstructionTriviallyDead(I)) 592 I->eraseFromParent(); 593 else 594 VMap[OrigV] = I; 595 } 596 597 // Now that the inlined function body has been fully constructed, go through 598 // and zap unconditional fall-through branches. This happens all the time when 599 // specializing code: code specialization turns conditional branches into 600 // uncond branches, and this code folds them. 601 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 602 Function::iterator I = Begin; 603 while (I != NewFunc->end()) { 604 // Check if this block has become dead during inlining or other 605 // simplifications. Note that the first block will appear dead, as it has 606 // not yet been wired up properly. 607 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 608 I->getSinglePredecessor() == &*I)) { 609 BasicBlock *DeadBB = &*I++; 610 DeleteDeadBlock(DeadBB); 611 continue; 612 } 613 614 // We need to simplify conditional branches and switches with a constant 615 // operand. We try to prune these out when cloning, but if the 616 // simplification required looking through PHI nodes, those are only 617 // available after forming the full basic block. That may leave some here, 618 // and we still want to prune the dead code as early as possible. 619 ConstantFoldTerminator(&*I); 620 621 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 622 if (!BI || BI->isConditional()) { ++I; continue; } 623 624 BasicBlock *Dest = BI->getSuccessor(0); 625 if (!Dest->getSinglePredecessor()) { 626 ++I; continue; 627 } 628 629 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 630 // above should have zapped all of them.. 631 assert(!isa<PHINode>(Dest->begin())); 632 633 // We know all single-entry PHI nodes in the inlined function have been 634 // removed, so we just need to splice the blocks. 635 BI->eraseFromParent(); 636 637 // Make all PHI nodes that referred to Dest now refer to I as their source. 638 Dest->replaceAllUsesWith(&*I); 639 640 // Move all the instructions in the succ to the pred. 641 I->getInstList().splice(I->end(), Dest->getInstList()); 642 643 // Remove the dest block. 644 Dest->eraseFromParent(); 645 646 // Do not increment I, iteratively merge all things this block branches to. 647 } 648 649 // Make a final pass over the basic blocks from the old function to gather 650 // any return instructions which survived folding. We have to do this here 651 // because we can iteratively remove and merge returns above. 652 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 653 E = NewFunc->end(); 654 I != E; ++I) 655 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 656 Returns.push_back(RI); 657 } 658 659 660 /// This works exactly like CloneFunctionInto, 661 /// except that it does some simple constant prop and DCE on the fly. The 662 /// effect of this is to copy significantly less code in cases where (for 663 /// example) a function call with constant arguments is inlined, and those 664 /// constant arguments cause a significant amount of code in the callee to be 665 /// dead. Since this doesn't produce an exact copy of the input, it can't be 666 /// used for things like CloneFunction or CloneModule. 667 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 668 ValueToValueMapTy &VMap, 669 bool ModuleLevelChanges, 670 SmallVectorImpl<ReturnInst*> &Returns, 671 const char *NameSuffix, 672 ClonedCodeInfo *CodeInfo, 673 Instruction *TheCall) { 674 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 675 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 676 } 677 678 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 679 void llvm::remapInstructionsInBlocks( 680 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 681 // Rewrite the code to refer to itself. 682 for (auto *BB : Blocks) 683 for (auto &Inst : *BB) 684 RemapInstruction(&Inst, VMap, 685 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 686 } 687 688 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 689 /// Blocks. 690 /// 691 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 692 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 693 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 694 Loop *OrigLoop, ValueToValueMapTy &VMap, 695 const Twine &NameSuffix, LoopInfo *LI, 696 DominatorTree *DT, 697 SmallVectorImpl<BasicBlock *> &Blocks) { 698 assert(OrigLoop->getSubLoops().empty() && 699 "Loop to be cloned cannot have inner loop"); 700 Function *F = OrigLoop->getHeader()->getParent(); 701 Loop *ParentLoop = OrigLoop->getParentLoop(); 702 703 Loop *NewLoop = new Loop(); 704 if (ParentLoop) 705 ParentLoop->addChildLoop(NewLoop); 706 else 707 LI->addTopLevelLoop(NewLoop); 708 709 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 710 assert(OrigPH && "No preheader"); 711 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 712 // To rename the loop PHIs. 713 VMap[OrigPH] = NewPH; 714 Blocks.push_back(NewPH); 715 716 // Update LoopInfo. 717 if (ParentLoop) 718 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 719 720 // Update DominatorTree. 721 DT->addNewBlock(NewPH, LoopDomBB); 722 723 for (BasicBlock *BB : OrigLoop->getBlocks()) { 724 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 725 VMap[BB] = NewBB; 726 727 // Update LoopInfo. 728 NewLoop->addBasicBlockToLoop(NewBB, *LI); 729 730 // Add DominatorTree node. After seeing all blocks, update to correct IDom. 731 DT->addNewBlock(NewBB, NewPH); 732 733 Blocks.push_back(NewBB); 734 } 735 736 for (BasicBlock *BB : OrigLoop->getBlocks()) { 737 // Update DominatorTree. 738 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 739 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 740 cast<BasicBlock>(VMap[IDomBB])); 741 } 742 743 // Move them physically from the end of the block list. 744 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 745 NewPH); 746 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 747 NewLoop->getHeader()->getIterator(), F->end()); 748 749 return NewLoop; 750 } 751 752 /// \brief Duplicate non-Phi instructions from the beginning of block up to 753 /// StopAt instruction into a split block between BB and its predecessor. 754 BasicBlock * 755 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, 756 Instruction *StopAt, 757 ValueToValueMapTy &ValueMapping) { 758 // We are going to have to map operands from the original BB block to the new 759 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 760 // account for entry from PredBB. 761 BasicBlock::iterator BI = BB->begin(); 762 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 763 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 764 765 BasicBlock *NewBB = SplitEdge(PredBB, BB); 766 NewBB->setName(PredBB->getName() + ".split"); 767 Instruction *NewTerm = NewBB->getTerminator(); 768 769 // Clone the non-phi instructions of BB into NewBB, keeping track of the 770 // mapping and using it to remap operands in the cloned instructions. 771 for (; StopAt != &*BI; ++BI) { 772 Instruction *New = BI->clone(); 773 New->setName(BI->getName()); 774 New->insertBefore(NewTerm); 775 ValueMapping[&*BI] = New; 776 777 // Remap operands to patch up intra-block references. 778 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 779 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 780 auto I = ValueMapping.find(Inst); 781 if (I != ValueMapping.end()) 782 New->setOperand(i, I->second); 783 } 784 } 785 786 return NewBB; 787 } 788