1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "clone-function"
39 
40 /// See comments in Cloning.h.
41 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
42                                   const Twine &NameSuffix, Function *F,
43                                   ClonedCodeInfo *CodeInfo,
44                                   DebugInfoFinder *DIFinder) {
45   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46   if (BB->hasName())
47     NewBB->setName(BB->getName() + NameSuffix);
48 
49   bool hasCalls = false, hasDynamicAllocas = false;
50   Module *TheModule = F ? F->getParent() : nullptr;
51 
52   // Loop over all instructions, and copy them over.
53   for (const Instruction &I : *BB) {
54     if (DIFinder && TheModule)
55       DIFinder->processInstruction(*TheModule, I);
56 
57     Instruction *NewInst = I.clone();
58     if (I.hasName())
59       NewInst->setName(I.getName() + NameSuffix);
60     NewBB->getInstList().push_back(NewInst);
61     VMap[&I] = NewInst; // Add instruction map to value.
62 
63     hasCalls |= (isa<CallInst>(I) && !I.isDebugOrPseudoInst());
64     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65       if (!AI->isStaticAlloca()) {
66         hasDynamicAllocas = true;
67       }
68     }
69   }
70 
71   if (CodeInfo) {
72     CodeInfo->ContainsCalls |= hasCalls;
73     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
74   }
75   return NewBB;
76 }
77 
78 // Clone OldFunc into NewFunc, transforming the old arguments into references to
79 // VMap values.
80 //
81 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
82                              ValueToValueMapTy &VMap,
83                              CloneFunctionChangeType Changes,
84                              SmallVectorImpl<ReturnInst *> &Returns,
85                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
86                              ValueMapTypeRemapper *TypeMapper,
87                              ValueMaterializer *Materializer) {
88   assert(NameSuffix && "NameSuffix cannot be null!");
89 
90 #ifndef NDEBUG
91   for (const Argument &I : OldFunc->args())
92     assert(VMap.count(&I) && "No mapping from source argument specified!");
93 #endif
94 
95   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
96 
97   // Copy all attributes other than those stored in the AttributeList.  We need
98   // to remap the parameter indices of the AttributeList.
99   AttributeList NewAttrs = NewFunc->getAttributes();
100   NewFunc->copyAttributesFrom(OldFunc);
101   NewFunc->setAttributes(NewAttrs);
102 
103   // Fix up the personality function that got copied over.
104   if (OldFunc->hasPersonalityFn())
105     NewFunc->setPersonalityFn(
106         MapValue(OldFunc->getPersonalityFn(), VMap,
107                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
108                  TypeMapper, Materializer));
109 
110   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
111   AttributeList OldAttrs = OldFunc->getAttributes();
112 
113   // Clone any argument attributes that are present in the VMap.
114   for (const Argument &OldArg : OldFunc->args()) {
115     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
116       NewArgAttrs[NewArg->getArgNo()] =
117           OldAttrs.getParamAttrs(OldArg.getArgNo());
118     }
119   }
120 
121   NewFunc->setAttributes(
122       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
123                          OldAttrs.getRetAttrs(), NewArgAttrs));
124 
125   // Everything else beyond this point deals with function instructions,
126   // so if we are dealing with a function declaration, we're done.
127   if (OldFunc->isDeclaration())
128     return;
129 
130   // When we remap instructions within the same module, we want to avoid
131   // duplicating inlined DISubprograms, so record all subprograms we find as we
132   // duplicate instructions and then freeze them in the MD map. We also record
133   // information about dbg.value and dbg.declare to avoid duplicating the
134   // types.
135   Optional<DebugInfoFinder> DIFinder;
136 
137   // Track the subprogram attachment that needs to be cloned to fine-tune the
138   // mapping within the same module.
139   DISubprogram *SPClonedWithinModule = nullptr;
140   if (Changes < CloneFunctionChangeType::DifferentModule) {
141     assert((NewFunc->getParent() == nullptr ||
142             NewFunc->getParent() == OldFunc->getParent()) &&
143            "Expected NewFunc to have the same parent, or no parent");
144 
145     // Need to find subprograms, types, and compile units.
146     DIFinder.emplace();
147 
148     SPClonedWithinModule = OldFunc->getSubprogram();
149     if (SPClonedWithinModule)
150       DIFinder->processSubprogram(SPClonedWithinModule);
151   } else {
152     assert((NewFunc->getParent() == nullptr ||
153             NewFunc->getParent() != OldFunc->getParent()) &&
154            "Expected NewFunc to have different parents, or no parent");
155 
156     if (Changes == CloneFunctionChangeType::DifferentModule) {
157       assert(NewFunc->getParent() &&
158              "Need parent of new function to maintain debug info invariants");
159 
160       // Need to find all the compile units.
161       DIFinder.emplace();
162     }
163   }
164 
165   // Loop over all of the basic blocks in the function, cloning them as
166   // appropriate.  Note that we save BE this way in order to handle cloning of
167   // recursive functions into themselves.
168   for (const BasicBlock &BB : *OldFunc) {
169 
170     // Create a new basic block and copy instructions into it!
171     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
172                                       DIFinder ? &*DIFinder : nullptr);
173 
174     // Add basic block mapping.
175     VMap[&BB] = CBB;
176 
177     // It is only legal to clone a function if a block address within that
178     // function is never referenced outside of the function.  Given that, we
179     // want to map block addresses from the old function to block addresses in
180     // the clone. (This is different from the generic ValueMapper
181     // implementation, which generates an invalid blockaddress when
182     // cloning a function.)
183     if (BB.hasAddressTaken()) {
184       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
185                                               const_cast<BasicBlock *>(&BB));
186       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
187     }
188 
189     // Note return instructions for the caller.
190     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
191       Returns.push_back(RI);
192   }
193 
194   if (Changes < CloneFunctionChangeType::DifferentModule &&
195       DIFinder->subprogram_count() > 0) {
196     // Turn on module-level changes, since we need to clone (some of) the
197     // debug info metadata.
198     //
199     // FIXME: Metadata effectively owned by a function should be made
200     // local, and only that local metadata should be cloned.
201     ModuleLevelChanges = true;
202 
203     auto mapToSelfIfNew = [&VMap](MDNode *N) {
204       // Avoid clobbering an existing mapping.
205       (void)VMap.MD().try_emplace(N, N);
206     };
207 
208     // Avoid cloning types, compile units, and (other) subprograms.
209     for (DISubprogram *ISP : DIFinder->subprograms())
210       if (ISP != SPClonedWithinModule)
211         mapToSelfIfNew(ISP);
212 
213     for (DICompileUnit *CU : DIFinder->compile_units())
214       mapToSelfIfNew(CU);
215 
216     for (DIType *Type : DIFinder->types())
217       mapToSelfIfNew(Type);
218   } else {
219     assert(!SPClonedWithinModule &&
220            "Subprogram should be in DIFinder->subprogram_count()...");
221   }
222 
223   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
224   // Duplicate the metadata that is attached to the cloned function.
225   // Subprograms/CUs/types that were already mapped to themselves won't be
226   // duplicated.
227   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
228   OldFunc->getAllMetadata(MDs);
229   for (auto MD : MDs) {
230     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
231                                                 TypeMapper, Materializer));
232   }
233 
234   // Loop over all of the instructions in the new function, fixing up operand
235   // references as we go. This uses VMap to do all the hard work.
236   for (Function::iterator
237            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
238            BE = NewFunc->end();
239        BB != BE; ++BB)
240     // Loop over all instructions, fixing each one as we find it...
241     for (Instruction &II : *BB)
242       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
243 
244   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
245   // same module, the compile unit will already be listed (or not). When
246   // cloning a module, CloneModule() will handle creating the named metadata.
247   if (Changes != CloneFunctionChangeType::DifferentModule)
248     return;
249 
250   // Update !llvm.dbg.cu with compile units added to the new module if this
251   // function is being cloned in isolation.
252   //
253   // FIXME: This is making global / module-level changes, which doesn't seem
254   // like the right encapsulation  Consider dropping the requirement to update
255   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
256   // non-discardable compile units) instead of discovering compile units by
257   // visiting the metadata attached to global values, which would allow this
258   // code to be deleted. Alternatively, perhaps give responsibility for this
259   // update to CloneFunctionInto's callers.
260   auto *NewModule = NewFunc->getParent();
261   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
262   // Avoid multiple insertions of the same DICompileUnit to NMD.
263   SmallPtrSet<const void *, 8> Visited;
264   for (auto *Operand : NMD->operands())
265     Visited.insert(Operand);
266   for (auto *Unit : DIFinder->compile_units()) {
267     MDNode *MappedUnit =
268         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
269     if (Visited.insert(MappedUnit).second)
270       NMD->addOperand(MappedUnit);
271   }
272 }
273 
274 /// Return a copy of the specified function and add it to that function's
275 /// module.  Also, any references specified in the VMap are changed to refer to
276 /// their mapped value instead of the original one.  If any of the arguments to
277 /// the function are in the VMap, the arguments are deleted from the resultant
278 /// function.  The VMap is updated to include mappings from all of the
279 /// instructions and basicblocks in the function from their old to new values.
280 ///
281 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
282                               ClonedCodeInfo *CodeInfo) {
283   std::vector<Type *> ArgTypes;
284 
285   // The user might be deleting arguments to the function by specifying them in
286   // the VMap.  If so, we need to not add the arguments to the arg ty vector
287   //
288   for (const Argument &I : F->args())
289     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
290       ArgTypes.push_back(I.getType());
291 
292   // Create a new function type...
293   FunctionType *FTy =
294       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
295                         F->getFunctionType()->isVarArg());
296 
297   // Create the new function...
298   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
299                                     F->getName(), F->getParent());
300 
301   // Loop over the arguments, copying the names of the mapped arguments over...
302   Function::arg_iterator DestI = NewF->arg_begin();
303   for (const Argument &I : F->args())
304     if (VMap.count(&I) == 0) {     // Is this argument preserved?
305       DestI->setName(I.getName()); // Copy the name over...
306       VMap[&I] = &*DestI++;        // Add mapping to VMap
307     }
308 
309   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
310   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
311                     Returns, "", CodeInfo);
312 
313   return NewF;
314 }
315 
316 namespace {
317 /// This is a private class used to implement CloneAndPruneFunctionInto.
318 struct PruningFunctionCloner {
319   Function *NewFunc;
320   const Function *OldFunc;
321   ValueToValueMapTy &VMap;
322   bool ModuleLevelChanges;
323   const char *NameSuffix;
324   ClonedCodeInfo *CodeInfo;
325 
326 public:
327   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
328                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
329                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
330       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
331         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
332         CodeInfo(codeInfo) {}
333 
334   /// The specified block is found to be reachable, clone it and
335   /// anything that it can reach.
336   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
337                   std::vector<const BasicBlock *> &ToClone);
338 };
339 } // namespace
340 
341 /// The specified block is found to be reachable, clone it and
342 /// anything that it can reach.
343 void PruningFunctionCloner::CloneBlock(
344     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
345     std::vector<const BasicBlock *> &ToClone) {
346   WeakTrackingVH &BBEntry = VMap[BB];
347 
348   // Have we already cloned this block?
349   if (BBEntry)
350     return;
351 
352   // Nope, clone it now.
353   BasicBlock *NewBB;
354   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
355   if (BB->hasName())
356     NewBB->setName(BB->getName() + NameSuffix);
357 
358   // It is only legal to clone a function if a block address within that
359   // function is never referenced outside of the function.  Given that, we
360   // want to map block addresses from the old function to block addresses in
361   // the clone. (This is different from the generic ValueMapper
362   // implementation, which generates an invalid blockaddress when
363   // cloning a function.)
364   //
365   // Note that we don't need to fix the mapping for unreachable blocks;
366   // the default mapping there is safe.
367   if (BB->hasAddressTaken()) {
368     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
369                                             const_cast<BasicBlock *>(BB));
370     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
371   }
372 
373   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
374 
375   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
376   // loop doesn't include the terminator.
377   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
378        ++II) {
379 
380     Instruction *NewInst = II->clone();
381 
382     // Eagerly remap operands to the newly cloned instruction, except for PHI
383     // nodes for which we defer processing until we update the CFG.
384     if (!isa<PHINode>(NewInst)) {
385       RemapInstruction(NewInst, VMap,
386                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
387 
388       // If we can simplify this instruction to some other value, simply add
389       // a mapping to that value rather than inserting a new instruction into
390       // the basic block.
391       if (Value *V =
392               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
393         // On the off-chance that this simplifies to an instruction in the old
394         // function, map it back into the new function.
395         if (NewFunc != OldFunc)
396           if (Value *MappedV = VMap.lookup(V))
397             V = MappedV;
398 
399         if (!NewInst->mayHaveSideEffects()) {
400           VMap[&*II] = V;
401           NewInst->deleteValue();
402           continue;
403         }
404       }
405     }
406 
407     if (II->hasName())
408       NewInst->setName(II->getName() + NameSuffix);
409     VMap[&*II] = NewInst; // Add instruction map to value.
410     NewBB->getInstList().push_back(NewInst);
411     hasCalls |= (isa<CallInst>(II) && !II->isDebugOrPseudoInst());
412 
413     if (CodeInfo) {
414       CodeInfo->OrigVMap[&*II] = NewInst;
415       if (auto *CB = dyn_cast<CallBase>(&*II))
416         if (CB->hasOperandBundles())
417           CodeInfo->OperandBundleCallSites.push_back(NewInst);
418     }
419 
420     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
421       if (isa<ConstantInt>(AI->getArraySize()))
422         hasStaticAllocas = true;
423       else
424         hasDynamicAllocas = true;
425     }
426   }
427 
428   // Finally, clone over the terminator.
429   const Instruction *OldTI = BB->getTerminator();
430   bool TerminatorDone = false;
431   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
432     if (BI->isConditional()) {
433       // If the condition was a known constant in the callee...
434       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
435       // Or is a known constant in the caller...
436       if (!Cond) {
437         Value *V = VMap.lookup(BI->getCondition());
438         Cond = dyn_cast_or_null<ConstantInt>(V);
439       }
440 
441       // Constant fold to uncond branch!
442       if (Cond) {
443         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
444         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
445         ToClone.push_back(Dest);
446         TerminatorDone = true;
447       }
448     }
449   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
450     // If switching on a value known constant in the caller.
451     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
452     if (!Cond) { // Or known constant after constant prop in the callee...
453       Value *V = VMap.lookup(SI->getCondition());
454       Cond = dyn_cast_or_null<ConstantInt>(V);
455     }
456     if (Cond) { // Constant fold to uncond branch!
457       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
458       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
459       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
460       ToClone.push_back(Dest);
461       TerminatorDone = true;
462     }
463   }
464 
465   if (!TerminatorDone) {
466     Instruction *NewInst = OldTI->clone();
467     if (OldTI->hasName())
468       NewInst->setName(OldTI->getName() + NameSuffix);
469     NewBB->getInstList().push_back(NewInst);
470     VMap[OldTI] = NewInst; // Add instruction map to value.
471 
472     if (CodeInfo) {
473       CodeInfo->OrigVMap[OldTI] = NewInst;
474       if (auto *CB = dyn_cast<CallBase>(OldTI))
475         if (CB->hasOperandBundles())
476           CodeInfo->OperandBundleCallSites.push_back(NewInst);
477     }
478 
479     // Recursively clone any reachable successor blocks.
480     append_range(ToClone, successors(BB->getTerminator()));
481   }
482 
483   if (CodeInfo) {
484     CodeInfo->ContainsCalls |= hasCalls;
485     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
486     CodeInfo->ContainsDynamicAllocas |=
487         hasStaticAllocas && BB != &BB->getParent()->front();
488   }
489 }
490 
491 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
492 /// entire function. Instead it starts at an instruction provided by the caller
493 /// and copies (and prunes) only the code reachable from that instruction.
494 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
495                                      const Instruction *StartingInst,
496                                      ValueToValueMapTy &VMap,
497                                      bool ModuleLevelChanges,
498                                      SmallVectorImpl<ReturnInst *> &Returns,
499                                      const char *NameSuffix,
500                                      ClonedCodeInfo *CodeInfo) {
501   assert(NameSuffix && "NameSuffix cannot be null!");
502 
503   ValueMapTypeRemapper *TypeMapper = nullptr;
504   ValueMaterializer *Materializer = nullptr;
505 
506 #ifndef NDEBUG
507   // If the cloning starts at the beginning of the function, verify that
508   // the function arguments are mapped.
509   if (!StartingInst)
510     for (const Argument &II : OldFunc->args())
511       assert(VMap.count(&II) && "No mapping from source argument specified!");
512 #endif
513 
514   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
515                             NameSuffix, CodeInfo);
516   const BasicBlock *StartingBB;
517   if (StartingInst)
518     StartingBB = StartingInst->getParent();
519   else {
520     StartingBB = &OldFunc->getEntryBlock();
521     StartingInst = &StartingBB->front();
522   }
523 
524   // Clone the entry block, and anything recursively reachable from it.
525   std::vector<const BasicBlock *> CloneWorklist;
526   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
527   while (!CloneWorklist.empty()) {
528     const BasicBlock *BB = CloneWorklist.back();
529     CloneWorklist.pop_back();
530     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
531   }
532 
533   // Loop over all of the basic blocks in the old function.  If the block was
534   // reachable, we have cloned it and the old block is now in the value map:
535   // insert it into the new function in the right order.  If not, ignore it.
536   //
537   // Defer PHI resolution until rest of function is resolved.
538   SmallVector<const PHINode *, 16> PHIToResolve;
539   for (const BasicBlock &BI : *OldFunc) {
540     Value *V = VMap.lookup(&BI);
541     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
542     if (!NewBB)
543       continue; // Dead block.
544 
545     // Add the new block to the new function.
546     NewFunc->getBasicBlockList().push_back(NewBB);
547 
548     // Handle PHI nodes specially, as we have to remove references to dead
549     // blocks.
550     for (const PHINode &PN : BI.phis()) {
551       // PHI nodes may have been remapped to non-PHI nodes by the caller or
552       // during the cloning process.
553       if (isa<PHINode>(VMap[&PN]))
554         PHIToResolve.push_back(&PN);
555       else
556         break;
557     }
558 
559     // Finally, remap the terminator instructions, as those can't be remapped
560     // until all BBs are mapped.
561     RemapInstruction(NewBB->getTerminator(), VMap,
562                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
563                      TypeMapper, Materializer);
564   }
565 
566   // Defer PHI resolution until rest of function is resolved, PHI resolution
567   // requires the CFG to be up-to-date.
568   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
569     const PHINode *OPN = PHIToResolve[phino];
570     unsigned NumPreds = OPN->getNumIncomingValues();
571     const BasicBlock *OldBB = OPN->getParent();
572     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
573 
574     // Map operands for blocks that are live and remove operands for blocks
575     // that are dead.
576     for (; phino != PHIToResolve.size() &&
577            PHIToResolve[phino]->getParent() == OldBB;
578          ++phino) {
579       OPN = PHIToResolve[phino];
580       PHINode *PN = cast<PHINode>(VMap[OPN]);
581       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
582         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
583         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
584           Value *InVal =
585               MapValue(PN->getIncomingValue(pred), VMap,
586                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
587           assert(InVal && "Unknown input value?");
588           PN->setIncomingValue(pred, InVal);
589           PN->setIncomingBlock(pred, MappedBlock);
590         } else {
591           PN->removeIncomingValue(pred, false);
592           --pred; // Revisit the next entry.
593           --e;
594         }
595       }
596     }
597 
598     // The loop above has removed PHI entries for those blocks that are dead
599     // and has updated others.  However, if a block is live (i.e. copied over)
600     // but its terminator has been changed to not go to this block, then our
601     // phi nodes will have invalid entries.  Update the PHI nodes in this
602     // case.
603     PHINode *PN = cast<PHINode>(NewBB->begin());
604     NumPreds = pred_size(NewBB);
605     if (NumPreds != PN->getNumIncomingValues()) {
606       assert(NumPreds < PN->getNumIncomingValues());
607       // Count how many times each predecessor comes to this block.
608       std::map<BasicBlock *, unsigned> PredCount;
609       for (BasicBlock *Pred : predecessors(NewBB))
610         --PredCount[Pred];
611 
612       // Figure out how many entries to remove from each PHI.
613       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
614         ++PredCount[PN->getIncomingBlock(i)];
615 
616       // At this point, the excess predecessor entries are positive in the
617       // map.  Loop over all of the PHIs and remove excess predecessor
618       // entries.
619       BasicBlock::iterator I = NewBB->begin();
620       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
621         for (const auto &PCI : PredCount) {
622           BasicBlock *Pred = PCI.first;
623           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
624             PN->removeIncomingValue(Pred, false);
625         }
626       }
627     }
628 
629     // If the loops above have made these phi nodes have 0 or 1 operand,
630     // replace them with undef or the input value.  We must do this for
631     // correctness, because 0-operand phis are not valid.
632     PN = cast<PHINode>(NewBB->begin());
633     if (PN->getNumIncomingValues() == 0) {
634       BasicBlock::iterator I = NewBB->begin();
635       BasicBlock::const_iterator OldI = OldBB->begin();
636       while ((PN = dyn_cast<PHINode>(I++))) {
637         Value *NV = UndefValue::get(PN->getType());
638         PN->replaceAllUsesWith(NV);
639         assert(VMap[&*OldI] == PN && "VMap mismatch");
640         VMap[&*OldI] = NV;
641         PN->eraseFromParent();
642         ++OldI;
643       }
644     }
645   }
646 
647   // Make a second pass over the PHINodes now that all of them have been
648   // remapped into the new function, simplifying the PHINode and performing any
649   // recursive simplifications exposed. This will transparently update the
650   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
651   // two PHINodes, the iteration over the old PHIs remains valid, and the
652   // mapping will just map us to the new node (which may not even be a PHI
653   // node).
654   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
655   SmallSetVector<const Value *, 8> Worklist;
656   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
657     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
658       Worklist.insert(PHIToResolve[Idx]);
659 
660   // Note that we must test the size on each iteration, the worklist can grow.
661   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
662     const Value *OrigV = Worklist[Idx];
663     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
664     if (!I)
665       continue;
666 
667     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
668     // the CGSCC.
669     CallBase *CB = dyn_cast<CallBase>(I);
670     if (CB && CB->getCalledFunction() &&
671         !CB->getCalledFunction()->isIntrinsic())
672       continue;
673 
674     // See if this instruction simplifies.
675     Value *SimpleV = SimplifyInstruction(I, DL);
676     if (!SimpleV)
677       continue;
678 
679     // Stash away all the uses of the old instruction so we can check them for
680     // recursive simplifications after a RAUW. This is cheaper than checking all
681     // uses of To on the recursive step in most cases.
682     for (const User *U : OrigV->users())
683       Worklist.insert(cast<Instruction>(U));
684 
685     // Replace the instruction with its simplified value.
686     I->replaceAllUsesWith(SimpleV);
687 
688     // If the original instruction had no side effects, remove it.
689     if (isInstructionTriviallyDead(I))
690       I->eraseFromParent();
691     else
692       VMap[OrigV] = I;
693   }
694 
695   // Simplify conditional branches and switches with a constant operand. We try
696   // to prune these out when cloning, but if the simplification required
697   // looking through PHI nodes, those are only available after forming the full
698   // basic block. That may leave some here, and we still want to prune the dead
699   // code as early as possible.
700   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
701   for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
702     ConstantFoldTerminator(&BB);
703 
704   // Some blocks may have become unreachable as a result. Find and delete them.
705   {
706     SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
707     SmallVector<BasicBlock *, 16> Worklist;
708     Worklist.push_back(&*Begin);
709     while (!Worklist.empty()) {
710       BasicBlock *BB = Worklist.pop_back_val();
711       if (ReachableBlocks.insert(BB).second)
712         append_range(Worklist, successors(BB));
713     }
714 
715     SmallVector<BasicBlock *, 16> UnreachableBlocks;
716     for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
717       if (!ReachableBlocks.contains(&BB))
718         UnreachableBlocks.push_back(&BB);
719     DeleteDeadBlocks(UnreachableBlocks);
720   }
721 
722   // Now that the inlined function body has been fully constructed, go through
723   // and zap unconditional fall-through branches. This happens all the time when
724   // specializing code: code specialization turns conditional branches into
725   // uncond branches, and this code folds them.
726   Function::iterator I = Begin;
727   while (I != NewFunc->end()) {
728     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
729     if (!BI || BI->isConditional()) {
730       ++I;
731       continue;
732     }
733 
734     BasicBlock *Dest = BI->getSuccessor(0);
735     if (!Dest->getSinglePredecessor()) {
736       ++I;
737       continue;
738     }
739 
740     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
741     // above should have zapped all of them..
742     assert(!isa<PHINode>(Dest->begin()));
743 
744     // We know all single-entry PHI nodes in the inlined function have been
745     // removed, so we just need to splice the blocks.
746     BI->eraseFromParent();
747 
748     // Make all PHI nodes that referred to Dest now refer to I as their source.
749     Dest->replaceAllUsesWith(&*I);
750 
751     // Move all the instructions in the succ to the pred.
752     I->getInstList().splice(I->end(), Dest->getInstList());
753 
754     // Remove the dest block.
755     Dest->eraseFromParent();
756 
757     // Do not increment I, iteratively merge all things this block branches to.
758   }
759 
760   // Make a final pass over the basic blocks from the old function to gather
761   // any return instructions which survived folding. We have to do this here
762   // because we can iteratively remove and merge returns above.
763   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
764                           E = NewFunc->end();
765        I != E; ++I)
766     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
767       Returns.push_back(RI);
768 }
769 
770 /// This works exactly like CloneFunctionInto,
771 /// except that it does some simple constant prop and DCE on the fly.  The
772 /// effect of this is to copy significantly less code in cases where (for
773 /// example) a function call with constant arguments is inlined, and those
774 /// constant arguments cause a significant amount of code in the callee to be
775 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
776 /// used for things like CloneFunction or CloneModule.
777 void llvm::CloneAndPruneFunctionInto(
778     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
779     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
780     const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
781   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
782                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
783 }
784 
785 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
786 void llvm::remapInstructionsInBlocks(
787     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
788   // Rewrite the code to refer to itself.
789   for (auto *BB : Blocks)
790     for (auto &Inst : *BB)
791       RemapInstruction(&Inst, VMap,
792                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
793 }
794 
795 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
796 /// Blocks.
797 ///
798 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
799 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
800 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
801                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
802                                    const Twine &NameSuffix, LoopInfo *LI,
803                                    DominatorTree *DT,
804                                    SmallVectorImpl<BasicBlock *> &Blocks) {
805   Function *F = OrigLoop->getHeader()->getParent();
806   Loop *ParentLoop = OrigLoop->getParentLoop();
807   DenseMap<Loop *, Loop *> LMap;
808 
809   Loop *NewLoop = LI->AllocateLoop();
810   LMap[OrigLoop] = NewLoop;
811   if (ParentLoop)
812     ParentLoop->addChildLoop(NewLoop);
813   else
814     LI->addTopLevelLoop(NewLoop);
815 
816   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
817   assert(OrigPH && "No preheader");
818   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
819   // To rename the loop PHIs.
820   VMap[OrigPH] = NewPH;
821   Blocks.push_back(NewPH);
822 
823   // Update LoopInfo.
824   if (ParentLoop)
825     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
826 
827   // Update DominatorTree.
828   DT->addNewBlock(NewPH, LoopDomBB);
829 
830   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
831     Loop *&NewLoop = LMap[CurLoop];
832     if (!NewLoop) {
833       NewLoop = LI->AllocateLoop();
834 
835       // Establish the parent/child relationship.
836       Loop *OrigParent = CurLoop->getParentLoop();
837       assert(OrigParent && "Could not find the original parent loop");
838       Loop *NewParentLoop = LMap[OrigParent];
839       assert(NewParentLoop && "Could not find the new parent loop");
840 
841       NewParentLoop->addChildLoop(NewLoop);
842     }
843   }
844 
845   for (BasicBlock *BB : OrigLoop->getBlocks()) {
846     Loop *CurLoop = LI->getLoopFor(BB);
847     Loop *&NewLoop = LMap[CurLoop];
848     assert(NewLoop && "Expecting new loop to be allocated");
849 
850     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
851     VMap[BB] = NewBB;
852 
853     // Update LoopInfo.
854     NewLoop->addBasicBlockToLoop(NewBB, *LI);
855 
856     // Add DominatorTree node. After seeing all blocks, update to correct
857     // IDom.
858     DT->addNewBlock(NewBB, NewPH);
859 
860     Blocks.push_back(NewBB);
861   }
862 
863   for (BasicBlock *BB : OrigLoop->getBlocks()) {
864     // Update loop headers.
865     Loop *CurLoop = LI->getLoopFor(BB);
866     if (BB == CurLoop->getHeader())
867       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
868 
869     // Update DominatorTree.
870     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
871     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
872                                  cast<BasicBlock>(VMap[IDomBB]));
873   }
874 
875   // Move them physically from the end of the block list.
876   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
877                                 NewPH);
878   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
879                                 NewLoop->getHeader()->getIterator(), F->end());
880 
881   return NewLoop;
882 }
883 
884 /// Duplicate non-Phi instructions from the beginning of block up to
885 /// StopAt instruction into a split block between BB and its predecessor.
886 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
887     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
888     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
889 
890   assert(count(successors(PredBB), BB) == 1 &&
891          "There must be a single edge between PredBB and BB!");
892   // We are going to have to map operands from the original BB block to the new
893   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
894   // account for entry from PredBB.
895   BasicBlock::iterator BI = BB->begin();
896   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
897     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
898 
899   BasicBlock *NewBB = SplitEdge(PredBB, BB);
900   NewBB->setName(PredBB->getName() + ".split");
901   Instruction *NewTerm = NewBB->getTerminator();
902 
903   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
904   //        in the update set here.
905   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
906                     {DominatorTree::Insert, PredBB, NewBB},
907                     {DominatorTree::Insert, NewBB, BB}});
908 
909   // Clone the non-phi instructions of BB into NewBB, keeping track of the
910   // mapping and using it to remap operands in the cloned instructions.
911   // Stop once we see the terminator too. This covers the case where BB's
912   // terminator gets replaced and StopAt == BB's terminator.
913   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
914     Instruction *New = BI->clone();
915     New->setName(BI->getName());
916     New->insertBefore(NewTerm);
917     ValueMapping[&*BI] = New;
918 
919     // Remap operands to patch up intra-block references.
920     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
921       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
922         auto I = ValueMapping.find(Inst);
923         if (I != ValueMapping.end())
924           New->setOperand(i, I->second);
925       }
926   }
927 
928   return NewBB;
929 }
930 
931 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
932                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
933                               StringRef Ext, LLVMContext &Context) {
934   MDBuilder MDB(Context);
935 
936   for (auto *ScopeList : NoAliasDeclScopes) {
937     for (auto &MDOperand : ScopeList->operands()) {
938       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
939         AliasScopeNode SNANode(MD);
940 
941         std::string Name;
942         auto ScopeName = SNANode.getName();
943         if (!ScopeName.empty())
944           Name = (Twine(ScopeName) + ":" + Ext).str();
945         else
946           Name = std::string(Ext);
947 
948         MDNode *NewScope = MDB.createAnonymousAliasScope(
949             const_cast<MDNode *>(SNANode.getDomain()), Name);
950         ClonedScopes.insert(std::make_pair(MD, NewScope));
951       }
952     }
953   }
954 }
955 
956 void llvm::adaptNoAliasScopes(Instruction *I,
957                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
958                               LLVMContext &Context) {
959   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
960     bool NeedsReplacement = false;
961     SmallVector<Metadata *, 8> NewScopeList;
962     for (auto &MDOp : ScopeList->operands()) {
963       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
964         if (auto *NewMD = ClonedScopes.lookup(MD)) {
965           NewScopeList.push_back(NewMD);
966           NeedsReplacement = true;
967           continue;
968         }
969         NewScopeList.push_back(MD);
970       }
971     }
972     if (NeedsReplacement)
973       return MDNode::get(Context, NewScopeList);
974     return nullptr;
975   };
976 
977   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
978     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
979       Decl->setScopeList(NewScopeList);
980 
981   auto replaceWhenNeeded = [&](unsigned MD_ID) {
982     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
983       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
984         I->setMetadata(MD_ID, NewScopeList);
985   };
986   replaceWhenNeeded(LLVMContext::MD_noalias);
987   replaceWhenNeeded(LLVMContext::MD_alias_scope);
988 }
989 
990 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
991                                       ArrayRef<BasicBlock *> NewBlocks,
992                                       LLVMContext &Context, StringRef Ext) {
993   if (NoAliasDeclScopes.empty())
994     return;
995 
996   DenseMap<MDNode *, MDNode *> ClonedScopes;
997   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
998                     << NoAliasDeclScopes.size() << " node(s)\n");
999 
1000   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1001   // Identify instructions using metadata that needs adaptation
1002   for (BasicBlock *NewBlock : NewBlocks)
1003     for (Instruction &I : *NewBlock)
1004       adaptNoAliasScopes(&I, ClonedScopes, Context);
1005 }
1006 
1007 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1008                                       Instruction *IStart, Instruction *IEnd,
1009                                       LLVMContext &Context, StringRef Ext) {
1010   if (NoAliasDeclScopes.empty())
1011     return;
1012 
1013   DenseMap<MDNode *, MDNode *> ClonedScopes;
1014   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1015                     << NoAliasDeclScopes.size() << " node(s)\n");
1016 
1017   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1018   // Identify instructions using metadata that needs adaptation
1019   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1020   auto ItStart = IStart->getIterator();
1021   auto ItEnd = IEnd->getIterator();
1022   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1023   for (auto &I : llvm::make_range(ItStart, ItEnd))
1024     adaptNoAliasScopes(&I, ClonedScopes, Context);
1025 }
1026 
1027 void llvm::identifyNoAliasScopesToClone(
1028     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1029   for (BasicBlock *BB : BBs)
1030     for (Instruction &I : *BB)
1031       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1032         NoAliasDeclScopes.push_back(Decl->getScopeList());
1033 }
1034 
1035 void llvm::identifyNoAliasScopesToClone(
1036     BasicBlock::iterator Start, BasicBlock::iterator End,
1037     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1038   for (Instruction &I : make_range(Start, End))
1039     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1040       NoAliasDeclScopes.push_back(Decl->getScopeList());
1041 }
1042