1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Transforms/Utils/ValueMapper.h" 34 #include <map> 35 using namespace llvm; 36 37 /// See comments in Cloning.h. 38 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 39 ValueToValueMapTy &VMap, 40 const Twine &NameSuffix, Function *F, 41 ClonedCodeInfo *CodeInfo) { 42 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 43 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 44 45 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 46 47 // Loop over all instructions, and copy them over. 48 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 49 II != IE; ++II) { 50 Instruction *NewInst = II->clone(); 51 if (II->hasName()) 52 NewInst->setName(II->getName()+NameSuffix); 53 NewBB->getInstList().push_back(NewInst); 54 VMap[II] = NewInst; // Add instruction map to value. 55 56 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 57 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 58 if (isa<ConstantInt>(AI->getArraySize())) 59 hasStaticAllocas = true; 60 else 61 hasDynamicAllocas = true; 62 } 63 } 64 65 if (CodeInfo) { 66 CodeInfo->ContainsCalls |= hasCalls; 67 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 68 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 69 BB != &BB->getParent()->getEntryBlock(); 70 } 71 return NewBB; 72 } 73 74 // Clone OldFunc into NewFunc, transforming the old arguments into references to 75 // VMap values. 76 // 77 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 78 ValueToValueMapTy &VMap, 79 bool ModuleLevelChanges, 80 SmallVectorImpl<ReturnInst*> &Returns, 81 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 82 ValueMapTypeRemapper *TypeMapper, 83 ValueMaterializer *Materializer) { 84 assert(NameSuffix && "NameSuffix cannot be null!"); 85 86 #ifndef NDEBUG 87 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 88 E = OldFunc->arg_end(); I != E; ++I) 89 assert(VMap.count(I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 AttributeSet OldAttrs = OldFunc->getAttributes(); 99 // Clone any argument attributes that are present in the VMap. 100 for (const Argument &OldArg : OldFunc->args()) 101 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 102 AttributeSet attrs = 103 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 104 if (attrs.getNumSlots() > 0) 105 NewArg->addAttr(attrs); 106 } 107 108 NewFunc->setAttributes( 109 NewFunc->getAttributes() 110 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 111 OldAttrs.getRetAttributes()) 112 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 113 OldAttrs.getFnAttributes())); 114 115 // Loop over all of the basic blocks in the function, cloning them as 116 // appropriate. Note that we save BE this way in order to handle cloning of 117 // recursive functions into themselves. 118 // 119 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 120 BI != BE; ++BI) { 121 const BasicBlock &BB = *BI; 122 123 // Create a new basic block and copy instructions into it! 124 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 125 126 // Add basic block mapping. 127 VMap[&BB] = CBB; 128 129 // It is only legal to clone a function if a block address within that 130 // function is never referenced outside of the function. Given that, we 131 // want to map block addresses from the old function to block addresses in 132 // the clone. (This is different from the generic ValueMapper 133 // implementation, which generates an invalid blockaddress when 134 // cloning a function.) 135 if (BB.hasAddressTaken()) { 136 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 137 const_cast<BasicBlock*>(&BB)); 138 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 139 } 140 141 // Note return instructions for the caller. 142 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 143 Returns.push_back(RI); 144 } 145 146 // Loop over all of the instructions in the function, fixing up operand 147 // references as we go. This uses VMap to do all the hard work. 148 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 149 BE = NewFunc->end(); BB != BE; ++BB) 150 // Loop over all instructions, fixing each one as we find it... 151 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 152 RemapInstruction(II, VMap, 153 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 154 TypeMapper, Materializer); 155 } 156 157 // Find the MDNode which corresponds to the subprogram data that described F. 158 static DISubprogram *FindSubprogram(const Function *F, 159 DebugInfoFinder &Finder) { 160 for (DISubprogram *Subprogram : Finder.subprograms()) { 161 if (Subprogram->describes(F)) 162 return Subprogram; 163 } 164 return nullptr; 165 } 166 167 // Add an operand to an existing MDNode. The new operand will be added at the 168 // back of the operand list. 169 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs, 170 Metadata *NewSP) { 171 SmallVector<Metadata *, 16> NewSPs; 172 NewSPs.reserve(SPs.size() + 1); 173 for (auto *SP : SPs) 174 NewSPs.push_back(SP); 175 NewSPs.push_back(NewSP); 176 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs)); 177 } 178 179 // Clone the module-level debug info associated with OldFunc. The cloned data 180 // will point to NewFunc instead. 181 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 182 ValueToValueMapTy &VMap) { 183 DebugInfoFinder Finder; 184 Finder.processModule(*OldFunc->getParent()); 185 186 const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 187 if (!OldSubprogramMDNode) return; 188 189 // Ensure that OldFunc appears in the map. 190 // (if it's already there it must point to NewFunc anyway) 191 VMap[OldFunc] = NewFunc; 192 auto *NewSubprogram = 193 cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap)); 194 195 for (auto *CU : Finder.compile_units()) { 196 auto Subprograms = CU->getSubprograms(); 197 // If the compile unit's function list contains the old function, it should 198 // also contain the new one. 199 for (auto *SP : Subprograms) { 200 if (SP == OldSubprogramMDNode) { 201 AddOperand(CU, Subprograms, NewSubprogram); 202 break; 203 } 204 } 205 } 206 } 207 208 /// Return a copy of the specified function, but without 209 /// embedding the function into another module. Also, any references specified 210 /// in the VMap are changed to refer to their mapped value instead of the 211 /// original one. If any of the arguments to the function are in the VMap, 212 /// the arguments are deleted from the resultant function. The VMap is 213 /// updated to include mappings from all of the instructions and basicblocks in 214 /// the function from their old to new values. 215 /// 216 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 217 bool ModuleLevelChanges, 218 ClonedCodeInfo *CodeInfo) { 219 std::vector<Type*> ArgTypes; 220 221 // The user might be deleting arguments to the function by specifying them in 222 // the VMap. If so, we need to not add the arguments to the arg ty vector 223 // 224 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 225 I != E; ++I) 226 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 227 ArgTypes.push_back(I->getType()); 228 229 // Create a new function type... 230 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 231 ArgTypes, F->getFunctionType()->isVarArg()); 232 233 // Create the new function... 234 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 235 236 // Loop over the arguments, copying the names of the mapped arguments over... 237 Function::arg_iterator DestI = NewF->arg_begin(); 238 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 239 I != E; ++I) 240 if (VMap.count(I) == 0) { // Is this argument preserved? 241 DestI->setName(I->getName()); // Copy the name over... 242 VMap[I] = DestI++; // Add mapping to VMap 243 } 244 245 if (ModuleLevelChanges) 246 CloneDebugInfoMetadata(NewF, F, VMap); 247 248 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 249 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 250 return NewF; 251 } 252 253 254 255 namespace { 256 /// This is a private class used to implement CloneAndPruneFunctionInto. 257 struct PruningFunctionCloner { 258 Function *NewFunc; 259 const Function *OldFunc; 260 ValueToValueMapTy &VMap; 261 bool ModuleLevelChanges; 262 const char *NameSuffix; 263 ClonedCodeInfo *CodeInfo; 264 CloningDirector *Director; 265 ValueMapTypeRemapper *TypeMapper; 266 ValueMaterializer *Materializer; 267 268 public: 269 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 270 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 271 const char *nameSuffix, ClonedCodeInfo *codeInfo, 272 CloningDirector *Director) 273 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 274 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 275 CodeInfo(codeInfo), Director(Director) { 276 // These are optional components. The Director may return null. 277 if (Director) { 278 TypeMapper = Director->getTypeRemapper(); 279 Materializer = Director->getValueMaterializer(); 280 } else { 281 TypeMapper = nullptr; 282 Materializer = nullptr; 283 } 284 } 285 286 /// The specified block is found to be reachable, clone it and 287 /// anything that it can reach. 288 void CloneBlock(const BasicBlock *BB, 289 BasicBlock::const_iterator StartingInst, 290 std::vector<const BasicBlock*> &ToClone); 291 }; 292 } 293 294 /// The specified block is found to be reachable, clone it and 295 /// anything that it can reach. 296 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 297 BasicBlock::const_iterator StartingInst, 298 std::vector<const BasicBlock*> &ToClone){ 299 WeakVH &BBEntry = VMap[BB]; 300 301 // Have we already cloned this block? 302 if (BBEntry) return; 303 304 // Nope, clone it now. 305 BasicBlock *NewBB; 306 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 307 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 308 309 // It is only legal to clone a function if a block address within that 310 // function is never referenced outside of the function. Given that, we 311 // want to map block addresses from the old function to block addresses in 312 // the clone. (This is different from the generic ValueMapper 313 // implementation, which generates an invalid blockaddress when 314 // cloning a function.) 315 // 316 // Note that we don't need to fix the mapping for unreachable blocks; 317 // the default mapping there is safe. 318 if (BB->hasAddressTaken()) { 319 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 320 const_cast<BasicBlock*>(BB)); 321 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 322 } 323 324 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 325 326 // Loop over all instructions, and copy them over, DCE'ing as we go. This 327 // loop doesn't include the terminator. 328 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 329 II != IE; ++II) { 330 // If the "Director" remaps the instruction, don't clone it. 331 if (Director) { 332 CloningDirector::CloningAction Action 333 = Director->handleInstruction(VMap, II, NewBB); 334 // If the cloning director says stop, we want to stop everything, not 335 // just break out of the loop (which would cause the terminator to be 336 // cloned). The cloning director is responsible for inserting a proper 337 // terminator into the new basic block in this case. 338 if (Action == CloningDirector::StopCloningBB) 339 return; 340 // If the cloning director says skip, continue to the next instruction. 341 // In this case, the cloning director is responsible for mapping the 342 // skipped instruction to some value that is defined in the new 343 // basic block. 344 if (Action == CloningDirector::SkipInstruction) 345 continue; 346 } 347 348 Instruction *NewInst = II->clone(); 349 350 // Eagerly remap operands to the newly cloned instruction, except for PHI 351 // nodes for which we defer processing until we update the CFG. 352 if (!isa<PHINode>(NewInst)) { 353 RemapInstruction(NewInst, VMap, 354 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 355 TypeMapper, Materializer); 356 357 // If we can simplify this instruction to some other value, simply add 358 // a mapping to that value rather than inserting a new instruction into 359 // the basic block. 360 if (Value *V = 361 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 362 // On the off-chance that this simplifies to an instruction in the old 363 // function, map it back into the new function. 364 if (Value *MappedV = VMap.lookup(V)) 365 V = MappedV; 366 367 VMap[II] = V; 368 delete NewInst; 369 continue; 370 } 371 } 372 373 if (II->hasName()) 374 NewInst->setName(II->getName()+NameSuffix); 375 VMap[II] = NewInst; // Add instruction map to value. 376 NewBB->getInstList().push_back(NewInst); 377 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 378 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 379 if (isa<ConstantInt>(AI->getArraySize())) 380 hasStaticAllocas = true; 381 else 382 hasDynamicAllocas = true; 383 } 384 } 385 386 // Finally, clone over the terminator. 387 const TerminatorInst *OldTI = BB->getTerminator(); 388 bool TerminatorDone = false; 389 if (Director) { 390 CloningDirector::CloningAction Action 391 = Director->handleInstruction(VMap, OldTI, NewBB); 392 // If the cloning director says stop, we want to stop everything, not 393 // just break out of the loop (which would cause the terminator to be 394 // cloned). The cloning director is responsible for inserting a proper 395 // terminator into the new basic block in this case. 396 if (Action == CloningDirector::StopCloningBB) 397 return; 398 if (Action == CloningDirector::CloneSuccessors) { 399 // If the director says to skip with a terminate instruction, we still 400 // need to clone this block's successors. 401 const TerminatorInst *TI = NewBB->getTerminator(); 402 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 403 ToClone.push_back(TI->getSuccessor(i)); 404 return; 405 } 406 assert(Action != CloningDirector::SkipInstruction && 407 "SkipInstruction is not valid for terminators."); 408 } 409 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 410 if (BI->isConditional()) { 411 // If the condition was a known constant in the callee... 412 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 413 // Or is a known constant in the caller... 414 if (!Cond) { 415 Value *V = VMap[BI->getCondition()]; 416 Cond = dyn_cast_or_null<ConstantInt>(V); 417 } 418 419 // Constant fold to uncond branch! 420 if (Cond) { 421 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 422 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 423 ToClone.push_back(Dest); 424 TerminatorDone = true; 425 } 426 } 427 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 428 // If switching on a value known constant in the caller. 429 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 430 if (!Cond) { // Or known constant after constant prop in the callee... 431 Value *V = VMap[SI->getCondition()]; 432 Cond = dyn_cast_or_null<ConstantInt>(V); 433 } 434 if (Cond) { // Constant fold to uncond branch! 435 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 436 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 437 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 438 ToClone.push_back(Dest); 439 TerminatorDone = true; 440 } 441 } 442 443 if (!TerminatorDone) { 444 Instruction *NewInst = OldTI->clone(); 445 if (OldTI->hasName()) 446 NewInst->setName(OldTI->getName()+NameSuffix); 447 NewBB->getInstList().push_back(NewInst); 448 VMap[OldTI] = NewInst; // Add instruction map to value. 449 450 // Recursively clone any reachable successor blocks. 451 const TerminatorInst *TI = BB->getTerminator(); 452 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 453 ToClone.push_back(TI->getSuccessor(i)); 454 } 455 456 if (CodeInfo) { 457 CodeInfo->ContainsCalls |= hasCalls; 458 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 459 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 460 BB != &BB->getParent()->front(); 461 } 462 } 463 464 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 465 /// entire function. Instead it starts at an instruction provided by the caller 466 /// and copies (and prunes) only the code reachable from that instruction. 467 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 468 const Instruction *StartingInst, 469 ValueToValueMapTy &VMap, 470 bool ModuleLevelChanges, 471 SmallVectorImpl<ReturnInst *> &Returns, 472 const char *NameSuffix, 473 ClonedCodeInfo *CodeInfo, 474 CloningDirector *Director) { 475 assert(NameSuffix && "NameSuffix cannot be null!"); 476 477 ValueMapTypeRemapper *TypeMapper = nullptr; 478 ValueMaterializer *Materializer = nullptr; 479 480 if (Director) { 481 TypeMapper = Director->getTypeRemapper(); 482 Materializer = Director->getValueMaterializer(); 483 } 484 485 #ifndef NDEBUG 486 // If the cloning starts at the begining of the function, verify that 487 // the function arguments are mapped. 488 if (!StartingInst) 489 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 490 E = OldFunc->arg_end(); II != E; ++II) 491 assert(VMap.count(II) && "No mapping from source argument specified!"); 492 #endif 493 494 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 495 NameSuffix, CodeInfo, Director); 496 const BasicBlock *StartingBB; 497 if (StartingInst) 498 StartingBB = StartingInst->getParent(); 499 else { 500 StartingBB = &OldFunc->getEntryBlock(); 501 StartingInst = StartingBB->begin(); 502 } 503 504 // Clone the entry block, and anything recursively reachable from it. 505 std::vector<const BasicBlock*> CloneWorklist; 506 PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist); 507 while (!CloneWorklist.empty()) { 508 const BasicBlock *BB = CloneWorklist.back(); 509 CloneWorklist.pop_back(); 510 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 511 } 512 513 // Loop over all of the basic blocks in the old function. If the block was 514 // reachable, we have cloned it and the old block is now in the value map: 515 // insert it into the new function in the right order. If not, ignore it. 516 // 517 // Defer PHI resolution until rest of function is resolved. 518 SmallVector<const PHINode*, 16> PHIToResolve; 519 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 520 BI != BE; ++BI) { 521 Value *V = VMap[BI]; 522 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 523 if (!NewBB) continue; // Dead block. 524 525 // Add the new block to the new function. 526 NewFunc->getBasicBlockList().push_back(NewBB); 527 528 // Handle PHI nodes specially, as we have to remove references to dead 529 // blocks. 530 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { 531 // PHI nodes may have been remapped to non-PHI nodes by the caller or 532 // during the cloning process. 533 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 534 if (isa<PHINode>(VMap[PN])) 535 PHIToResolve.push_back(PN); 536 else 537 break; 538 } else { 539 break; 540 } 541 } 542 543 // Finally, remap the terminator instructions, as those can't be remapped 544 // until all BBs are mapped. 545 RemapInstruction(NewBB->getTerminator(), VMap, 546 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 547 TypeMapper, Materializer); 548 } 549 550 // Defer PHI resolution until rest of function is resolved, PHI resolution 551 // requires the CFG to be up-to-date. 552 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 553 const PHINode *OPN = PHIToResolve[phino]; 554 unsigned NumPreds = OPN->getNumIncomingValues(); 555 const BasicBlock *OldBB = OPN->getParent(); 556 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 557 558 // Map operands for blocks that are live and remove operands for blocks 559 // that are dead. 560 for (; phino != PHIToResolve.size() && 561 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 562 OPN = PHIToResolve[phino]; 563 PHINode *PN = cast<PHINode>(VMap[OPN]); 564 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 565 Value *V = VMap[PN->getIncomingBlock(pred)]; 566 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 567 Value *InVal = MapValue(PN->getIncomingValue(pred), 568 VMap, 569 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 570 assert(InVal && "Unknown input value?"); 571 PN->setIncomingValue(pred, InVal); 572 PN->setIncomingBlock(pred, MappedBlock); 573 } else { 574 PN->removeIncomingValue(pred, false); 575 --pred, --e; // Revisit the next entry. 576 } 577 } 578 } 579 580 // The loop above has removed PHI entries for those blocks that are dead 581 // and has updated others. However, if a block is live (i.e. copied over) 582 // but its terminator has been changed to not go to this block, then our 583 // phi nodes will have invalid entries. Update the PHI nodes in this 584 // case. 585 PHINode *PN = cast<PHINode>(NewBB->begin()); 586 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 587 if (NumPreds != PN->getNumIncomingValues()) { 588 assert(NumPreds < PN->getNumIncomingValues()); 589 // Count how many times each predecessor comes to this block. 590 std::map<BasicBlock*, unsigned> PredCount; 591 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 592 PI != E; ++PI) 593 --PredCount[*PI]; 594 595 // Figure out how many entries to remove from each PHI. 596 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 597 ++PredCount[PN->getIncomingBlock(i)]; 598 599 // At this point, the excess predecessor entries are positive in the 600 // map. Loop over all of the PHIs and remove excess predecessor 601 // entries. 602 BasicBlock::iterator I = NewBB->begin(); 603 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 604 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 605 E = PredCount.end(); PCI != E; ++PCI) { 606 BasicBlock *Pred = PCI->first; 607 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 608 PN->removeIncomingValue(Pred, false); 609 } 610 } 611 } 612 613 // If the loops above have made these phi nodes have 0 or 1 operand, 614 // replace them with undef or the input value. We must do this for 615 // correctness, because 0-operand phis are not valid. 616 PN = cast<PHINode>(NewBB->begin()); 617 if (PN->getNumIncomingValues() == 0) { 618 BasicBlock::iterator I = NewBB->begin(); 619 BasicBlock::const_iterator OldI = OldBB->begin(); 620 while ((PN = dyn_cast<PHINode>(I++))) { 621 Value *NV = UndefValue::get(PN->getType()); 622 PN->replaceAllUsesWith(NV); 623 assert(VMap[OldI] == PN && "VMap mismatch"); 624 VMap[OldI] = NV; 625 PN->eraseFromParent(); 626 ++OldI; 627 } 628 } 629 } 630 631 // Make a second pass over the PHINodes now that all of them have been 632 // remapped into the new function, simplifying the PHINode and performing any 633 // recursive simplifications exposed. This will transparently update the 634 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 635 // two PHINodes, the iteration over the old PHIs remains valid, and the 636 // mapping will just map us to the new node (which may not even be a PHI 637 // node). 638 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 639 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 640 recursivelySimplifyInstruction(PN); 641 642 // Now that the inlined function body has been fully constructed, go through 643 // and zap unconditional fall-through branches. This happens all the time when 644 // specializing code: code specialization turns conditional branches into 645 // uncond branches, and this code folds them. 646 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]); 647 Function::iterator I = Begin; 648 while (I != NewFunc->end()) { 649 // Check if this block has become dead during inlining or other 650 // simplifications. Note that the first block will appear dead, as it has 651 // not yet been wired up properly. 652 if (I != Begin && (pred_begin(I) == pred_end(I) || 653 I->getSinglePredecessor() == I)) { 654 BasicBlock *DeadBB = I++; 655 DeleteDeadBlock(DeadBB); 656 continue; 657 } 658 659 // We need to simplify conditional branches and switches with a constant 660 // operand. We try to prune these out when cloning, but if the 661 // simplification required looking through PHI nodes, those are only 662 // available after forming the full basic block. That may leave some here, 663 // and we still want to prune the dead code as early as possible. 664 ConstantFoldTerminator(I); 665 666 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 667 if (!BI || BI->isConditional()) { ++I; continue; } 668 669 BasicBlock *Dest = BI->getSuccessor(0); 670 if (!Dest->getSinglePredecessor()) { 671 ++I; continue; 672 } 673 674 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 675 // above should have zapped all of them.. 676 assert(!isa<PHINode>(Dest->begin())); 677 678 // We know all single-entry PHI nodes in the inlined function have been 679 // removed, so we just need to splice the blocks. 680 BI->eraseFromParent(); 681 682 // Make all PHI nodes that referred to Dest now refer to I as their source. 683 Dest->replaceAllUsesWith(I); 684 685 // Move all the instructions in the succ to the pred. 686 I->getInstList().splice(I->end(), Dest->getInstList()); 687 688 // Remove the dest block. 689 Dest->eraseFromParent(); 690 691 // Do not increment I, iteratively merge all things this block branches to. 692 } 693 694 // Make a final pass over the basic blocks from the old function to gather 695 // any return instructions which survived folding. We have to do this here 696 // because we can iteratively remove and merge returns above. 697 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]), 698 E = NewFunc->end(); 699 I != E; ++I) 700 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 701 Returns.push_back(RI); 702 } 703 704 705 /// This works exactly like CloneFunctionInto, 706 /// except that it does some simple constant prop and DCE on the fly. The 707 /// effect of this is to copy significantly less code in cases where (for 708 /// example) a function call with constant arguments is inlined, and those 709 /// constant arguments cause a significant amount of code in the callee to be 710 /// dead. Since this doesn't produce an exact copy of the input, it can't be 711 /// used for things like CloneFunction or CloneModule. 712 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 713 ValueToValueMapTy &VMap, 714 bool ModuleLevelChanges, 715 SmallVectorImpl<ReturnInst*> &Returns, 716 const char *NameSuffix, 717 ClonedCodeInfo *CodeInfo, 718 Instruction *TheCall) { 719 CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap, 720 ModuleLevelChanges, Returns, NameSuffix, CodeInfo, 721 nullptr); 722 } 723