1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 #include <map> 36 using namespace llvm; 37 38 /// See comments in Cloning.h. 39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 40 ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo) { 43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 45 46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 47 48 // Loop over all instructions, and copy them over. 49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 50 II != IE; ++II) { 51 Instruction *NewInst = II->clone(); 52 if (II->hasName()) 53 NewInst->setName(II->getName()+NameSuffix); 54 NewBB->getInstList().push_back(NewInst); 55 VMap[&*II] = NewInst; // Add instruction map to value. 56 57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 59 if (isa<ConstantInt>(AI->getArraySize())) 60 hasStaticAllocas = true; 61 else 62 hasDynamicAllocas = true; 63 } 64 } 65 66 if (CodeInfo) { 67 CodeInfo->ContainsCalls |= hasCalls; 68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 70 BB != &BB->getParent()->getEntryBlock(); 71 } 72 return NewBB; 73 } 74 75 // Clone OldFunc into NewFunc, transforming the old arguments into references to 76 // VMap values. 77 // 78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 79 ValueToValueMapTy &VMap, 80 bool ModuleLevelChanges, 81 SmallVectorImpl<ReturnInst*> &Returns, 82 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 83 ValueMapTypeRemapper *TypeMapper, 84 ValueMaterializer *Materializer) { 85 assert(NameSuffix && "NameSuffix cannot be null!"); 86 87 #ifndef NDEBUG 88 for (const Argument &I : OldFunc->args()) 89 assert(VMap.count(&I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 AttributeSet OldAttrs = OldFunc->getAttributes(); 99 // Clone any argument attributes that are present in the VMap. 100 for (const Argument &OldArg : OldFunc->args()) 101 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 102 AttributeSet attrs = 103 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 104 if (attrs.getNumSlots() > 0) 105 NewArg->addAttr(attrs); 106 } 107 108 NewFunc->setAttributes( 109 NewFunc->getAttributes() 110 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 111 OldAttrs.getRetAttributes()) 112 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 113 OldAttrs.getFnAttributes())); 114 115 // Loop over all of the basic blocks in the function, cloning them as 116 // appropriate. Note that we save BE this way in order to handle cloning of 117 // recursive functions into themselves. 118 // 119 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 120 BI != BE; ++BI) { 121 const BasicBlock &BB = *BI; 122 123 // Create a new basic block and copy instructions into it! 124 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 125 126 // Add basic block mapping. 127 VMap[&BB] = CBB; 128 129 // It is only legal to clone a function if a block address within that 130 // function is never referenced outside of the function. Given that, we 131 // want to map block addresses from the old function to block addresses in 132 // the clone. (This is different from the generic ValueMapper 133 // implementation, which generates an invalid blockaddress when 134 // cloning a function.) 135 if (BB.hasAddressTaken()) { 136 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 137 const_cast<BasicBlock*>(&BB)); 138 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 139 } 140 141 // Note return instructions for the caller. 142 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 143 Returns.push_back(RI); 144 } 145 146 // Loop over all of the instructions in the function, fixing up operand 147 // references as we go. This uses VMap to do all the hard work. 148 for (Function::iterator BB = 149 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 150 BE = NewFunc->end(); 151 BB != BE; ++BB) 152 // Loop over all instructions, fixing each one as we find it... 153 for (Instruction &II : *BB) 154 RemapInstruction(&II, VMap, 155 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 156 TypeMapper, Materializer); 157 } 158 159 // Find the MDNode which corresponds to the subprogram data that described F. 160 static DISubprogram *FindSubprogram(const Function *F, 161 DebugInfoFinder &Finder) { 162 for (DISubprogram *Subprogram : Finder.subprograms()) { 163 if (Subprogram->describes(F)) 164 return Subprogram; 165 } 166 return nullptr; 167 } 168 169 // Add an operand to an existing MDNode. The new operand will be added at the 170 // back of the operand list. 171 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs, 172 Metadata *NewSP) { 173 SmallVector<Metadata *, 16> NewSPs; 174 NewSPs.reserve(SPs.size() + 1); 175 for (auto *SP : SPs) 176 NewSPs.push_back(SP); 177 NewSPs.push_back(NewSP); 178 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs)); 179 } 180 181 // Clone the module-level debug info associated with OldFunc. The cloned data 182 // will point to NewFunc instead. 183 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 184 ValueToValueMapTy &VMap) { 185 DebugInfoFinder Finder; 186 Finder.processModule(*OldFunc->getParent()); 187 188 const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 189 if (!OldSubprogramMDNode) return; 190 191 auto *NewSubprogram = 192 cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap)); 193 NewFunc->setSubprogram(NewSubprogram); 194 195 for (auto *CU : Finder.compile_units()) { 196 auto Subprograms = CU->getSubprograms(); 197 // If the compile unit's function list contains the old function, it should 198 // also contain the new one. 199 for (auto *SP : Subprograms) { 200 if (SP == OldSubprogramMDNode) { 201 AddOperand(CU, Subprograms, NewSubprogram); 202 break; 203 } 204 } 205 } 206 } 207 208 /// Return a copy of the specified function, but without 209 /// embedding the function into another module. Also, any references specified 210 /// in the VMap are changed to refer to their mapped value instead of the 211 /// original one. If any of the arguments to the function are in the VMap, 212 /// the arguments are deleted from the resultant function. The VMap is 213 /// updated to include mappings from all of the instructions and basicblocks in 214 /// the function from their old to new values. 215 /// 216 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 217 bool ModuleLevelChanges, 218 ClonedCodeInfo *CodeInfo) { 219 std::vector<Type*> ArgTypes; 220 221 // The user might be deleting arguments to the function by specifying them in 222 // the VMap. If so, we need to not add the arguments to the arg ty vector 223 // 224 for (const Argument &I : F->args()) 225 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 226 ArgTypes.push_back(I.getType()); 227 228 // Create a new function type... 229 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 230 ArgTypes, F->getFunctionType()->isVarArg()); 231 232 // Create the new function... 233 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 234 235 // Loop over the arguments, copying the names of the mapped arguments over... 236 Function::arg_iterator DestI = NewF->arg_begin(); 237 for (const Argument & I : F->args()) 238 if (VMap.count(&I) == 0) { // Is this argument preserved? 239 DestI->setName(I.getName()); // Copy the name over... 240 VMap[&I] = &*DestI++; // Add mapping to VMap 241 } 242 243 if (ModuleLevelChanges) 244 CloneDebugInfoMetadata(NewF, F, VMap); 245 246 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 247 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 248 return NewF; 249 } 250 251 252 253 namespace { 254 /// This is a private class used to implement CloneAndPruneFunctionInto. 255 struct PruningFunctionCloner { 256 Function *NewFunc; 257 const Function *OldFunc; 258 ValueToValueMapTy &VMap; 259 bool ModuleLevelChanges; 260 const char *NameSuffix; 261 ClonedCodeInfo *CodeInfo; 262 CloningDirector *Director; 263 ValueMapTypeRemapper *TypeMapper; 264 ValueMaterializer *Materializer; 265 266 public: 267 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 268 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 269 const char *nameSuffix, ClonedCodeInfo *codeInfo, 270 CloningDirector *Director) 271 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 272 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 273 CodeInfo(codeInfo), Director(Director) { 274 // These are optional components. The Director may return null. 275 if (Director) { 276 TypeMapper = Director->getTypeRemapper(); 277 Materializer = Director->getValueMaterializer(); 278 } else { 279 TypeMapper = nullptr; 280 Materializer = nullptr; 281 } 282 } 283 284 /// The specified block is found to be reachable, clone it and 285 /// anything that it can reach. 286 void CloneBlock(const BasicBlock *BB, 287 BasicBlock::const_iterator StartingInst, 288 std::vector<const BasicBlock*> &ToClone); 289 }; 290 } 291 292 /// The specified block is found to be reachable, clone it and 293 /// anything that it can reach. 294 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 295 BasicBlock::const_iterator StartingInst, 296 std::vector<const BasicBlock*> &ToClone){ 297 WeakVH &BBEntry = VMap[BB]; 298 299 // Have we already cloned this block? 300 if (BBEntry) return; 301 302 // Nope, clone it now. 303 BasicBlock *NewBB; 304 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 305 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 306 307 // It is only legal to clone a function if a block address within that 308 // function is never referenced outside of the function. Given that, we 309 // want to map block addresses from the old function to block addresses in 310 // the clone. (This is different from the generic ValueMapper 311 // implementation, which generates an invalid blockaddress when 312 // cloning a function.) 313 // 314 // Note that we don't need to fix the mapping for unreachable blocks; 315 // the default mapping there is safe. 316 if (BB->hasAddressTaken()) { 317 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 318 const_cast<BasicBlock*>(BB)); 319 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 320 } 321 322 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 323 324 // Loop over all instructions, and copy them over, DCE'ing as we go. This 325 // loop doesn't include the terminator. 326 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 327 II != IE; ++II) { 328 // If the "Director" remaps the instruction, don't clone it. 329 if (Director) { 330 CloningDirector::CloningAction Action = 331 Director->handleInstruction(VMap, &*II, NewBB); 332 // If the cloning director says stop, we want to stop everything, not 333 // just break out of the loop (which would cause the terminator to be 334 // cloned). The cloning director is responsible for inserting a proper 335 // terminator into the new basic block in this case. 336 if (Action == CloningDirector::StopCloningBB) 337 return; 338 // If the cloning director says skip, continue to the next instruction. 339 // In this case, the cloning director is responsible for mapping the 340 // skipped instruction to some value that is defined in the new 341 // basic block. 342 if (Action == CloningDirector::SkipInstruction) 343 continue; 344 } 345 346 Instruction *NewInst = II->clone(); 347 348 // Eagerly remap operands to the newly cloned instruction, except for PHI 349 // nodes for which we defer processing until we update the CFG. 350 if (!isa<PHINode>(NewInst)) { 351 RemapInstruction(NewInst, VMap, 352 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 353 TypeMapper, Materializer); 354 355 // If we can simplify this instruction to some other value, simply add 356 // a mapping to that value rather than inserting a new instruction into 357 // the basic block. 358 if (Value *V = 359 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 360 // On the off-chance that this simplifies to an instruction in the old 361 // function, map it back into the new function. 362 if (Value *MappedV = VMap.lookup(V)) 363 V = MappedV; 364 365 VMap[&*II] = V; 366 delete NewInst; 367 continue; 368 } 369 } 370 371 if (II->hasName()) 372 NewInst->setName(II->getName()+NameSuffix); 373 VMap[&*II] = NewInst; // Add instruction map to value. 374 NewBB->getInstList().push_back(NewInst); 375 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 376 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 377 if (isa<ConstantInt>(AI->getArraySize())) 378 hasStaticAllocas = true; 379 else 380 hasDynamicAllocas = true; 381 } 382 } 383 384 // Finally, clone over the terminator. 385 const TerminatorInst *OldTI = BB->getTerminator(); 386 bool TerminatorDone = false; 387 if (Director) { 388 CloningDirector::CloningAction Action 389 = Director->handleInstruction(VMap, OldTI, NewBB); 390 // If the cloning director says stop, we want to stop everything, not 391 // just break out of the loop (which would cause the terminator to be 392 // cloned). The cloning director is responsible for inserting a proper 393 // terminator into the new basic block in this case. 394 if (Action == CloningDirector::StopCloningBB) 395 return; 396 if (Action == CloningDirector::CloneSuccessors) { 397 // If the director says to skip with a terminate instruction, we still 398 // need to clone this block's successors. 399 const TerminatorInst *TI = NewBB->getTerminator(); 400 for (const BasicBlock *Succ : TI->successors()) 401 ToClone.push_back(Succ); 402 return; 403 } 404 assert(Action != CloningDirector::SkipInstruction && 405 "SkipInstruction is not valid for terminators."); 406 } 407 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 408 if (BI->isConditional()) { 409 // If the condition was a known constant in the callee... 410 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 411 // Or is a known constant in the caller... 412 if (!Cond) { 413 Value *V = VMap[BI->getCondition()]; 414 Cond = dyn_cast_or_null<ConstantInt>(V); 415 } 416 417 // Constant fold to uncond branch! 418 if (Cond) { 419 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 420 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 421 ToClone.push_back(Dest); 422 TerminatorDone = true; 423 } 424 } 425 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 426 // If switching on a value known constant in the caller. 427 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 428 if (!Cond) { // Or known constant after constant prop in the callee... 429 Value *V = VMap[SI->getCondition()]; 430 Cond = dyn_cast_or_null<ConstantInt>(V); 431 } 432 if (Cond) { // Constant fold to uncond branch! 433 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 434 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 435 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 436 ToClone.push_back(Dest); 437 TerminatorDone = true; 438 } 439 } 440 441 if (!TerminatorDone) { 442 Instruction *NewInst = OldTI->clone(); 443 if (OldTI->hasName()) 444 NewInst->setName(OldTI->getName()+NameSuffix); 445 NewBB->getInstList().push_back(NewInst); 446 VMap[OldTI] = NewInst; // Add instruction map to value. 447 448 // Recursively clone any reachable successor blocks. 449 const TerminatorInst *TI = BB->getTerminator(); 450 for (const BasicBlock *Succ : TI->successors()) 451 ToClone.push_back(Succ); 452 } 453 454 if (CodeInfo) { 455 CodeInfo->ContainsCalls |= hasCalls; 456 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 457 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 458 BB != &BB->getParent()->front(); 459 } 460 } 461 462 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 463 /// entire function. Instead it starts at an instruction provided by the caller 464 /// and copies (and prunes) only the code reachable from that instruction. 465 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 466 const Instruction *StartingInst, 467 ValueToValueMapTy &VMap, 468 bool ModuleLevelChanges, 469 SmallVectorImpl<ReturnInst *> &Returns, 470 const char *NameSuffix, 471 ClonedCodeInfo *CodeInfo, 472 CloningDirector *Director) { 473 assert(NameSuffix && "NameSuffix cannot be null!"); 474 475 ValueMapTypeRemapper *TypeMapper = nullptr; 476 ValueMaterializer *Materializer = nullptr; 477 478 if (Director) { 479 TypeMapper = Director->getTypeRemapper(); 480 Materializer = Director->getValueMaterializer(); 481 } 482 483 #ifndef NDEBUG 484 // If the cloning starts at the beginning of the function, verify that 485 // the function arguments are mapped. 486 if (!StartingInst) 487 for (const Argument &II : OldFunc->args()) 488 assert(VMap.count(&II) && "No mapping from source argument specified!"); 489 #endif 490 491 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 492 NameSuffix, CodeInfo, Director); 493 const BasicBlock *StartingBB; 494 if (StartingInst) 495 StartingBB = StartingInst->getParent(); 496 else { 497 StartingBB = &OldFunc->getEntryBlock(); 498 StartingInst = &StartingBB->front(); 499 } 500 501 // Clone the entry block, and anything recursively reachable from it. 502 std::vector<const BasicBlock*> CloneWorklist; 503 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 504 while (!CloneWorklist.empty()) { 505 const BasicBlock *BB = CloneWorklist.back(); 506 CloneWorklist.pop_back(); 507 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 508 } 509 510 // Loop over all of the basic blocks in the old function. If the block was 511 // reachable, we have cloned it and the old block is now in the value map: 512 // insert it into the new function in the right order. If not, ignore it. 513 // 514 // Defer PHI resolution until rest of function is resolved. 515 SmallVector<const PHINode*, 16> PHIToResolve; 516 for (const BasicBlock &BI : *OldFunc) { 517 Value *V = VMap[&BI]; 518 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 519 if (!NewBB) continue; // Dead block. 520 521 // Add the new block to the new function. 522 NewFunc->getBasicBlockList().push_back(NewBB); 523 524 // Handle PHI nodes specially, as we have to remove references to dead 525 // blocks. 526 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 527 // PHI nodes may have been remapped to non-PHI nodes by the caller or 528 // during the cloning process. 529 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 530 if (isa<PHINode>(VMap[PN])) 531 PHIToResolve.push_back(PN); 532 else 533 break; 534 } else { 535 break; 536 } 537 } 538 539 // Finally, remap the terminator instructions, as those can't be remapped 540 // until all BBs are mapped. 541 RemapInstruction(NewBB->getTerminator(), VMap, 542 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 543 TypeMapper, Materializer); 544 } 545 546 // Defer PHI resolution until rest of function is resolved, PHI resolution 547 // requires the CFG to be up-to-date. 548 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 549 const PHINode *OPN = PHIToResolve[phino]; 550 unsigned NumPreds = OPN->getNumIncomingValues(); 551 const BasicBlock *OldBB = OPN->getParent(); 552 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 553 554 // Map operands for blocks that are live and remove operands for blocks 555 // that are dead. 556 for (; phino != PHIToResolve.size() && 557 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 558 OPN = PHIToResolve[phino]; 559 PHINode *PN = cast<PHINode>(VMap[OPN]); 560 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 561 Value *V = VMap[PN->getIncomingBlock(pred)]; 562 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 563 Value *InVal = MapValue(PN->getIncomingValue(pred), 564 VMap, 565 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 566 assert(InVal && "Unknown input value?"); 567 PN->setIncomingValue(pred, InVal); 568 PN->setIncomingBlock(pred, MappedBlock); 569 } else { 570 PN->removeIncomingValue(pred, false); 571 --pred, --e; // Revisit the next entry. 572 } 573 } 574 } 575 576 // The loop above has removed PHI entries for those blocks that are dead 577 // and has updated others. However, if a block is live (i.e. copied over) 578 // but its terminator has been changed to not go to this block, then our 579 // phi nodes will have invalid entries. Update the PHI nodes in this 580 // case. 581 PHINode *PN = cast<PHINode>(NewBB->begin()); 582 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 583 if (NumPreds != PN->getNumIncomingValues()) { 584 assert(NumPreds < PN->getNumIncomingValues()); 585 // Count how many times each predecessor comes to this block. 586 std::map<BasicBlock*, unsigned> PredCount; 587 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 588 PI != E; ++PI) 589 --PredCount[*PI]; 590 591 // Figure out how many entries to remove from each PHI. 592 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 593 ++PredCount[PN->getIncomingBlock(i)]; 594 595 // At this point, the excess predecessor entries are positive in the 596 // map. Loop over all of the PHIs and remove excess predecessor 597 // entries. 598 BasicBlock::iterator I = NewBB->begin(); 599 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 600 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 601 E = PredCount.end(); PCI != E; ++PCI) { 602 BasicBlock *Pred = PCI->first; 603 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 604 PN->removeIncomingValue(Pred, false); 605 } 606 } 607 } 608 609 // If the loops above have made these phi nodes have 0 or 1 operand, 610 // replace them with undef or the input value. We must do this for 611 // correctness, because 0-operand phis are not valid. 612 PN = cast<PHINode>(NewBB->begin()); 613 if (PN->getNumIncomingValues() == 0) { 614 BasicBlock::iterator I = NewBB->begin(); 615 BasicBlock::const_iterator OldI = OldBB->begin(); 616 while ((PN = dyn_cast<PHINode>(I++))) { 617 Value *NV = UndefValue::get(PN->getType()); 618 PN->replaceAllUsesWith(NV); 619 assert(VMap[&*OldI] == PN && "VMap mismatch"); 620 VMap[&*OldI] = NV; 621 PN->eraseFromParent(); 622 ++OldI; 623 } 624 } 625 } 626 627 // Make a second pass over the PHINodes now that all of them have been 628 // remapped into the new function, simplifying the PHINode and performing any 629 // recursive simplifications exposed. This will transparently update the 630 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 631 // two PHINodes, the iteration over the old PHIs remains valid, and the 632 // mapping will just map us to the new node (which may not even be a PHI 633 // node). 634 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 635 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 636 recursivelySimplifyInstruction(PN); 637 638 // Now that the inlined function body has been fully constructed, go through 639 // and zap unconditional fall-through branches. This happens all the time when 640 // specializing code: code specialization turns conditional branches into 641 // uncond branches, and this code folds them. 642 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 643 Function::iterator I = Begin; 644 while (I != NewFunc->end()) { 645 // Check if this block has become dead during inlining or other 646 // simplifications. Note that the first block will appear dead, as it has 647 // not yet been wired up properly. 648 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 649 I->getSinglePredecessor() == &*I)) { 650 BasicBlock *DeadBB = &*I++; 651 DeleteDeadBlock(DeadBB); 652 continue; 653 } 654 655 // We need to simplify conditional branches and switches with a constant 656 // operand. We try to prune these out when cloning, but if the 657 // simplification required looking through PHI nodes, those are only 658 // available after forming the full basic block. That may leave some here, 659 // and we still want to prune the dead code as early as possible. 660 ConstantFoldTerminator(&*I); 661 662 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 663 if (!BI || BI->isConditional()) { ++I; continue; } 664 665 BasicBlock *Dest = BI->getSuccessor(0); 666 if (!Dest->getSinglePredecessor()) { 667 ++I; continue; 668 } 669 670 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 671 // above should have zapped all of them.. 672 assert(!isa<PHINode>(Dest->begin())); 673 674 // We know all single-entry PHI nodes in the inlined function have been 675 // removed, so we just need to splice the blocks. 676 BI->eraseFromParent(); 677 678 // Make all PHI nodes that referred to Dest now refer to I as their source. 679 Dest->replaceAllUsesWith(&*I); 680 681 // Move all the instructions in the succ to the pred. 682 I->getInstList().splice(I->end(), Dest->getInstList()); 683 684 // Remove the dest block. 685 Dest->eraseFromParent(); 686 687 // Do not increment I, iteratively merge all things this block branches to. 688 } 689 690 // Make a final pass over the basic blocks from the old function to gather 691 // any return instructions which survived folding. We have to do this here 692 // because we can iteratively remove and merge returns above. 693 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 694 E = NewFunc->end(); 695 I != E; ++I) 696 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 697 Returns.push_back(RI); 698 } 699 700 701 /// This works exactly like CloneFunctionInto, 702 /// except that it does some simple constant prop and DCE on the fly. The 703 /// effect of this is to copy significantly less code in cases where (for 704 /// example) a function call with constant arguments is inlined, and those 705 /// constant arguments cause a significant amount of code in the callee to be 706 /// dead. Since this doesn't produce an exact copy of the input, it can't be 707 /// used for things like CloneFunction or CloneModule. 708 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 709 ValueToValueMapTy &VMap, 710 bool ModuleLevelChanges, 711 SmallVectorImpl<ReturnInst*> &Returns, 712 const char *NameSuffix, 713 ClonedCodeInfo *CodeInfo, 714 Instruction *TheCall) { 715 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 716 ModuleLevelChanges, Returns, NameSuffix, CodeInfo, 717 nullptr); 718 } 719 720 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 721 void llvm::remapInstructionsInBlocks( 722 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 723 // Rewrite the code to refer to itself. 724 for (auto *BB : Blocks) 725 for (auto &Inst : *BB) 726 RemapInstruction(&Inst, VMap, 727 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 728 } 729 730 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 731 /// Blocks. 732 /// 733 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 734 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 735 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 736 Loop *OrigLoop, ValueToValueMapTy &VMap, 737 const Twine &NameSuffix, LoopInfo *LI, 738 DominatorTree *DT, 739 SmallVectorImpl<BasicBlock *> &Blocks) { 740 Function *F = OrigLoop->getHeader()->getParent(); 741 Loop *ParentLoop = OrigLoop->getParentLoop(); 742 743 Loop *NewLoop = new Loop(); 744 if (ParentLoop) 745 ParentLoop->addChildLoop(NewLoop); 746 else 747 LI->addTopLevelLoop(NewLoop); 748 749 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 750 assert(OrigPH && "No preheader"); 751 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 752 // To rename the loop PHIs. 753 VMap[OrigPH] = NewPH; 754 Blocks.push_back(NewPH); 755 756 // Update LoopInfo. 757 if (ParentLoop) 758 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 759 760 // Update DominatorTree. 761 DT->addNewBlock(NewPH, LoopDomBB); 762 763 for (BasicBlock *BB : OrigLoop->getBlocks()) { 764 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 765 VMap[BB] = NewBB; 766 767 // Update LoopInfo. 768 NewLoop->addBasicBlockToLoop(NewBB, *LI); 769 770 // Update DominatorTree. 771 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 772 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 773 774 Blocks.push_back(NewBB); 775 } 776 777 // Move them physically from the end of the block list. 778 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 779 NewPH); 780 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 781 NewLoop->getHeader()->getIterator(), F->end()); 782 783 return NewLoop; 784 } 785