1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 #include <map> 36 using namespace llvm; 37 38 /// See comments in Cloning.h. 39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 40 ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo) { 43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 45 46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 47 48 // Loop over all instructions, and copy them over. 49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 50 II != IE; ++II) { 51 Instruction *NewInst = II->clone(); 52 if (II->hasName()) 53 NewInst->setName(II->getName()+NameSuffix); 54 NewBB->getInstList().push_back(NewInst); 55 VMap[II] = NewInst; // Add instruction map to value. 56 57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 59 if (isa<ConstantInt>(AI->getArraySize())) 60 hasStaticAllocas = true; 61 else 62 hasDynamicAllocas = true; 63 } 64 } 65 66 if (CodeInfo) { 67 CodeInfo->ContainsCalls |= hasCalls; 68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 70 BB != &BB->getParent()->getEntryBlock(); 71 } 72 return NewBB; 73 } 74 75 // Clone OldFunc into NewFunc, transforming the old arguments into references to 76 // VMap values. 77 // 78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 79 ValueToValueMapTy &VMap, 80 bool ModuleLevelChanges, 81 SmallVectorImpl<ReturnInst*> &Returns, 82 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 83 ValueMapTypeRemapper *TypeMapper, 84 ValueMaterializer *Materializer) { 85 assert(NameSuffix && "NameSuffix cannot be null!"); 86 87 #ifndef NDEBUG 88 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 89 E = OldFunc->arg_end(); I != E; ++I) 90 assert(VMap.count(I) && "No mapping from source argument specified!"); 91 #endif 92 93 // Copy all attributes other than those stored in the AttributeSet. We need 94 // to remap the parameter indices of the AttributeSet. 95 AttributeSet NewAttrs = NewFunc->getAttributes(); 96 NewFunc->copyAttributesFrom(OldFunc); 97 NewFunc->setAttributes(NewAttrs); 98 99 AttributeSet OldAttrs = OldFunc->getAttributes(); 100 // Clone any argument attributes that are present in the VMap. 101 for (const Argument &OldArg : OldFunc->args()) 102 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 103 AttributeSet attrs = 104 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 105 if (attrs.getNumSlots() > 0) 106 NewArg->addAttr(attrs); 107 } 108 109 NewFunc->setAttributes( 110 NewFunc->getAttributes() 111 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 112 OldAttrs.getRetAttributes()) 113 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 114 OldAttrs.getFnAttributes())); 115 116 // Loop over all of the basic blocks in the function, cloning them as 117 // appropriate. Note that we save BE this way in order to handle cloning of 118 // recursive functions into themselves. 119 // 120 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 121 BI != BE; ++BI) { 122 const BasicBlock &BB = *BI; 123 124 // Create a new basic block and copy instructions into it! 125 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 126 127 // Add basic block mapping. 128 VMap[&BB] = CBB; 129 130 // It is only legal to clone a function if a block address within that 131 // function is never referenced outside of the function. Given that, we 132 // want to map block addresses from the old function to block addresses in 133 // the clone. (This is different from the generic ValueMapper 134 // implementation, which generates an invalid blockaddress when 135 // cloning a function.) 136 if (BB.hasAddressTaken()) { 137 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 138 const_cast<BasicBlock*>(&BB)); 139 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 140 } 141 142 // Note return instructions for the caller. 143 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 144 Returns.push_back(RI); 145 } 146 147 // Loop over all of the instructions in the function, fixing up operand 148 // references as we go. This uses VMap to do all the hard work. 149 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 150 BE = NewFunc->end(); BB != BE; ++BB) 151 // Loop over all instructions, fixing each one as we find it... 152 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 153 RemapInstruction(II, VMap, 154 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 155 TypeMapper, Materializer); 156 } 157 158 // Find the MDNode which corresponds to the subprogram data that described F. 159 static DISubprogram *FindSubprogram(const Function *F, 160 DebugInfoFinder &Finder) { 161 for (DISubprogram *Subprogram : Finder.subprograms()) { 162 if (Subprogram->describes(F)) 163 return Subprogram; 164 } 165 return nullptr; 166 } 167 168 // Add an operand to an existing MDNode. The new operand will be added at the 169 // back of the operand list. 170 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs, 171 Metadata *NewSP) { 172 SmallVector<Metadata *, 16> NewSPs; 173 NewSPs.reserve(SPs.size() + 1); 174 for (auto *SP : SPs) 175 NewSPs.push_back(SP); 176 NewSPs.push_back(NewSP); 177 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs)); 178 } 179 180 // Clone the module-level debug info associated with OldFunc. The cloned data 181 // will point to NewFunc instead. 182 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 183 ValueToValueMapTy &VMap) { 184 DebugInfoFinder Finder; 185 Finder.processModule(*OldFunc->getParent()); 186 187 const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 188 if (!OldSubprogramMDNode) return; 189 190 // Ensure that OldFunc appears in the map. 191 // (if it's already there it must point to NewFunc anyway) 192 VMap[OldFunc] = NewFunc; 193 auto *NewSubprogram = 194 cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap)); 195 196 for (auto *CU : Finder.compile_units()) { 197 auto Subprograms = CU->getSubprograms(); 198 // If the compile unit's function list contains the old function, it should 199 // also contain the new one. 200 for (auto *SP : Subprograms) { 201 if (SP == OldSubprogramMDNode) { 202 AddOperand(CU, Subprograms, NewSubprogram); 203 break; 204 } 205 } 206 } 207 } 208 209 /// Return a copy of the specified function, but without 210 /// embedding the function into another module. Also, any references specified 211 /// in the VMap are changed to refer to their mapped value instead of the 212 /// original one. If any of the arguments to the function are in the VMap, 213 /// the arguments are deleted from the resultant function. The VMap is 214 /// updated to include mappings from all of the instructions and basicblocks in 215 /// the function from their old to new values. 216 /// 217 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 218 bool ModuleLevelChanges, 219 ClonedCodeInfo *CodeInfo) { 220 std::vector<Type*> ArgTypes; 221 222 // The user might be deleting arguments to the function by specifying them in 223 // the VMap. If so, we need to not add the arguments to the arg ty vector 224 // 225 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 226 I != E; ++I) 227 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 228 ArgTypes.push_back(I->getType()); 229 230 // Create a new function type... 231 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 232 ArgTypes, F->getFunctionType()->isVarArg()); 233 234 // Create the new function... 235 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 236 237 // Loop over the arguments, copying the names of the mapped arguments over... 238 Function::arg_iterator DestI = NewF->arg_begin(); 239 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 240 I != E; ++I) 241 if (VMap.count(I) == 0) { // Is this argument preserved? 242 DestI->setName(I->getName()); // Copy the name over... 243 VMap[I] = DestI++; // Add mapping to VMap 244 } 245 246 if (ModuleLevelChanges) 247 CloneDebugInfoMetadata(NewF, F, VMap); 248 249 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 250 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 251 return NewF; 252 } 253 254 255 256 namespace { 257 /// This is a private class used to implement CloneAndPruneFunctionInto. 258 struct PruningFunctionCloner { 259 Function *NewFunc; 260 const Function *OldFunc; 261 ValueToValueMapTy &VMap; 262 bool ModuleLevelChanges; 263 const char *NameSuffix; 264 ClonedCodeInfo *CodeInfo; 265 CloningDirector *Director; 266 ValueMapTypeRemapper *TypeMapper; 267 ValueMaterializer *Materializer; 268 269 public: 270 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 271 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 272 const char *nameSuffix, ClonedCodeInfo *codeInfo, 273 CloningDirector *Director) 274 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 275 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 276 CodeInfo(codeInfo), Director(Director) { 277 // These are optional components. The Director may return null. 278 if (Director) { 279 TypeMapper = Director->getTypeRemapper(); 280 Materializer = Director->getValueMaterializer(); 281 } else { 282 TypeMapper = nullptr; 283 Materializer = nullptr; 284 } 285 } 286 287 /// The specified block is found to be reachable, clone it and 288 /// anything that it can reach. 289 void CloneBlock(const BasicBlock *BB, 290 BasicBlock::const_iterator StartingInst, 291 std::vector<const BasicBlock*> &ToClone); 292 }; 293 } 294 295 /// The specified block is found to be reachable, clone it and 296 /// anything that it can reach. 297 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 298 BasicBlock::const_iterator StartingInst, 299 std::vector<const BasicBlock*> &ToClone){ 300 WeakVH &BBEntry = VMap[BB]; 301 302 // Have we already cloned this block? 303 if (BBEntry) return; 304 305 // Nope, clone it now. 306 BasicBlock *NewBB; 307 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 308 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 309 310 // It is only legal to clone a function if a block address within that 311 // function is never referenced outside of the function. Given that, we 312 // want to map block addresses from the old function to block addresses in 313 // the clone. (This is different from the generic ValueMapper 314 // implementation, which generates an invalid blockaddress when 315 // cloning a function.) 316 // 317 // Note that we don't need to fix the mapping for unreachable blocks; 318 // the default mapping there is safe. 319 if (BB->hasAddressTaken()) { 320 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 321 const_cast<BasicBlock*>(BB)); 322 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 323 } 324 325 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 326 327 // Loop over all instructions, and copy them over, DCE'ing as we go. This 328 // loop doesn't include the terminator. 329 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 330 II != IE; ++II) { 331 // If the "Director" remaps the instruction, don't clone it. 332 if (Director) { 333 CloningDirector::CloningAction Action 334 = Director->handleInstruction(VMap, II, NewBB); 335 // If the cloning director says stop, we want to stop everything, not 336 // just break out of the loop (which would cause the terminator to be 337 // cloned). The cloning director is responsible for inserting a proper 338 // terminator into the new basic block in this case. 339 if (Action == CloningDirector::StopCloningBB) 340 return; 341 // If the cloning director says skip, continue to the next instruction. 342 // In this case, the cloning director is responsible for mapping the 343 // skipped instruction to some value that is defined in the new 344 // basic block. 345 if (Action == CloningDirector::SkipInstruction) 346 continue; 347 } 348 349 Instruction *NewInst = II->clone(); 350 351 // Eagerly remap operands to the newly cloned instruction, except for PHI 352 // nodes for which we defer processing until we update the CFG. 353 if (!isa<PHINode>(NewInst)) { 354 RemapInstruction(NewInst, VMap, 355 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 356 TypeMapper, Materializer); 357 358 // If we can simplify this instruction to some other value, simply add 359 // a mapping to that value rather than inserting a new instruction into 360 // the basic block. 361 if (Value *V = 362 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 363 // On the off-chance that this simplifies to an instruction in the old 364 // function, map it back into the new function. 365 if (Value *MappedV = VMap.lookup(V)) 366 V = MappedV; 367 368 VMap[II] = V; 369 delete NewInst; 370 continue; 371 } 372 } 373 374 if (II->hasName()) 375 NewInst->setName(II->getName()+NameSuffix); 376 VMap[II] = NewInst; // Add instruction map to value. 377 NewBB->getInstList().push_back(NewInst); 378 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 379 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 380 if (isa<ConstantInt>(AI->getArraySize())) 381 hasStaticAllocas = true; 382 else 383 hasDynamicAllocas = true; 384 } 385 } 386 387 // Finally, clone over the terminator. 388 const TerminatorInst *OldTI = BB->getTerminator(); 389 bool TerminatorDone = false; 390 if (Director) { 391 CloningDirector::CloningAction Action 392 = Director->handleInstruction(VMap, OldTI, NewBB); 393 // If the cloning director says stop, we want to stop everything, not 394 // just break out of the loop (which would cause the terminator to be 395 // cloned). The cloning director is responsible for inserting a proper 396 // terminator into the new basic block in this case. 397 if (Action == CloningDirector::StopCloningBB) 398 return; 399 if (Action == CloningDirector::CloneSuccessors) { 400 // If the director says to skip with a terminate instruction, we still 401 // need to clone this block's successors. 402 const TerminatorInst *TI = NewBB->getTerminator(); 403 for (const BasicBlock *Succ : TI->successors()) 404 ToClone.push_back(Succ); 405 return; 406 } 407 assert(Action != CloningDirector::SkipInstruction && 408 "SkipInstruction is not valid for terminators."); 409 } 410 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 411 if (BI->isConditional()) { 412 // If the condition was a known constant in the callee... 413 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 414 // Or is a known constant in the caller... 415 if (!Cond) { 416 Value *V = VMap[BI->getCondition()]; 417 Cond = dyn_cast_or_null<ConstantInt>(V); 418 } 419 420 // Constant fold to uncond branch! 421 if (Cond) { 422 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 423 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 424 ToClone.push_back(Dest); 425 TerminatorDone = true; 426 } 427 } 428 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 429 // If switching on a value known constant in the caller. 430 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 431 if (!Cond) { // Or known constant after constant prop in the callee... 432 Value *V = VMap[SI->getCondition()]; 433 Cond = dyn_cast_or_null<ConstantInt>(V); 434 } 435 if (Cond) { // Constant fold to uncond branch! 436 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 437 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 438 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 439 ToClone.push_back(Dest); 440 TerminatorDone = true; 441 } 442 } 443 444 if (!TerminatorDone) { 445 Instruction *NewInst = OldTI->clone(); 446 if (OldTI->hasName()) 447 NewInst->setName(OldTI->getName()+NameSuffix); 448 NewBB->getInstList().push_back(NewInst); 449 VMap[OldTI] = NewInst; // Add instruction map to value. 450 451 // Recursively clone any reachable successor blocks. 452 const TerminatorInst *TI = BB->getTerminator(); 453 for (const BasicBlock *Succ : TI->successors()) 454 ToClone.push_back(Succ); 455 } 456 457 if (CodeInfo) { 458 CodeInfo->ContainsCalls |= hasCalls; 459 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 460 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 461 BB != &BB->getParent()->front(); 462 } 463 } 464 465 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 466 /// entire function. Instead it starts at an instruction provided by the caller 467 /// and copies (and prunes) only the code reachable from that instruction. 468 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 469 const Instruction *StartingInst, 470 ValueToValueMapTy &VMap, 471 bool ModuleLevelChanges, 472 SmallVectorImpl<ReturnInst *> &Returns, 473 const char *NameSuffix, 474 ClonedCodeInfo *CodeInfo, 475 CloningDirector *Director) { 476 assert(NameSuffix && "NameSuffix cannot be null!"); 477 478 ValueMapTypeRemapper *TypeMapper = nullptr; 479 ValueMaterializer *Materializer = nullptr; 480 481 if (Director) { 482 TypeMapper = Director->getTypeRemapper(); 483 Materializer = Director->getValueMaterializer(); 484 } 485 486 #ifndef NDEBUG 487 // If the cloning starts at the beginning of the function, verify that 488 // the function arguments are mapped. 489 if (!StartingInst) 490 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 491 E = OldFunc->arg_end(); II != E; ++II) 492 assert(VMap.count(II) && "No mapping from source argument specified!"); 493 #endif 494 495 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 496 NameSuffix, CodeInfo, Director); 497 const BasicBlock *StartingBB; 498 if (StartingInst) 499 StartingBB = StartingInst->getParent(); 500 else { 501 StartingBB = &OldFunc->getEntryBlock(); 502 StartingInst = StartingBB->begin(); 503 } 504 505 // Clone the entry block, and anything recursively reachable from it. 506 std::vector<const BasicBlock*> CloneWorklist; 507 PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist); 508 while (!CloneWorklist.empty()) { 509 const BasicBlock *BB = CloneWorklist.back(); 510 CloneWorklist.pop_back(); 511 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 512 } 513 514 // Loop over all of the basic blocks in the old function. If the block was 515 // reachable, we have cloned it and the old block is now in the value map: 516 // insert it into the new function in the right order. If not, ignore it. 517 // 518 // Defer PHI resolution until rest of function is resolved. 519 SmallVector<const PHINode*, 16> PHIToResolve; 520 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 521 BI != BE; ++BI) { 522 Value *V = VMap[BI]; 523 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 524 if (!NewBB) continue; // Dead block. 525 526 // Add the new block to the new function. 527 NewFunc->getBasicBlockList().push_back(NewBB); 528 529 // Handle PHI nodes specially, as we have to remove references to dead 530 // blocks. 531 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { 532 // PHI nodes may have been remapped to non-PHI nodes by the caller or 533 // during the cloning process. 534 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 535 if (isa<PHINode>(VMap[PN])) 536 PHIToResolve.push_back(PN); 537 else 538 break; 539 } else { 540 break; 541 } 542 } 543 544 // Finally, remap the terminator instructions, as those can't be remapped 545 // until all BBs are mapped. 546 RemapInstruction(NewBB->getTerminator(), VMap, 547 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 548 TypeMapper, Materializer); 549 } 550 551 // Defer PHI resolution until rest of function is resolved, PHI resolution 552 // requires the CFG to be up-to-date. 553 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 554 const PHINode *OPN = PHIToResolve[phino]; 555 unsigned NumPreds = OPN->getNumIncomingValues(); 556 const BasicBlock *OldBB = OPN->getParent(); 557 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 558 559 // Map operands for blocks that are live and remove operands for blocks 560 // that are dead. 561 for (; phino != PHIToResolve.size() && 562 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 563 OPN = PHIToResolve[phino]; 564 PHINode *PN = cast<PHINode>(VMap[OPN]); 565 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 566 Value *V = VMap[PN->getIncomingBlock(pred)]; 567 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 568 Value *InVal = MapValue(PN->getIncomingValue(pred), 569 VMap, 570 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 571 assert(InVal && "Unknown input value?"); 572 PN->setIncomingValue(pred, InVal); 573 PN->setIncomingBlock(pred, MappedBlock); 574 } else { 575 PN->removeIncomingValue(pred, false); 576 --pred, --e; // Revisit the next entry. 577 } 578 } 579 } 580 581 // The loop above has removed PHI entries for those blocks that are dead 582 // and has updated others. However, if a block is live (i.e. copied over) 583 // but its terminator has been changed to not go to this block, then our 584 // phi nodes will have invalid entries. Update the PHI nodes in this 585 // case. 586 PHINode *PN = cast<PHINode>(NewBB->begin()); 587 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 588 if (NumPreds != PN->getNumIncomingValues()) { 589 assert(NumPreds < PN->getNumIncomingValues()); 590 // Count how many times each predecessor comes to this block. 591 std::map<BasicBlock*, unsigned> PredCount; 592 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 593 PI != E; ++PI) 594 --PredCount[*PI]; 595 596 // Figure out how many entries to remove from each PHI. 597 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 598 ++PredCount[PN->getIncomingBlock(i)]; 599 600 // At this point, the excess predecessor entries are positive in the 601 // map. Loop over all of the PHIs and remove excess predecessor 602 // entries. 603 BasicBlock::iterator I = NewBB->begin(); 604 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 605 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 606 E = PredCount.end(); PCI != E; ++PCI) { 607 BasicBlock *Pred = PCI->first; 608 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 609 PN->removeIncomingValue(Pred, false); 610 } 611 } 612 } 613 614 // If the loops above have made these phi nodes have 0 or 1 operand, 615 // replace them with undef or the input value. We must do this for 616 // correctness, because 0-operand phis are not valid. 617 PN = cast<PHINode>(NewBB->begin()); 618 if (PN->getNumIncomingValues() == 0) { 619 BasicBlock::iterator I = NewBB->begin(); 620 BasicBlock::const_iterator OldI = OldBB->begin(); 621 while ((PN = dyn_cast<PHINode>(I++))) { 622 Value *NV = UndefValue::get(PN->getType()); 623 PN->replaceAllUsesWith(NV); 624 assert(VMap[OldI] == PN && "VMap mismatch"); 625 VMap[OldI] = NV; 626 PN->eraseFromParent(); 627 ++OldI; 628 } 629 } 630 } 631 632 // Make a second pass over the PHINodes now that all of them have been 633 // remapped into the new function, simplifying the PHINode and performing any 634 // recursive simplifications exposed. This will transparently update the 635 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 636 // two PHINodes, the iteration over the old PHIs remains valid, and the 637 // mapping will just map us to the new node (which may not even be a PHI 638 // node). 639 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 640 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 641 recursivelySimplifyInstruction(PN); 642 643 // Now that the inlined function body has been fully constructed, go through 644 // and zap unconditional fall-through branches. This happens all the time when 645 // specializing code: code specialization turns conditional branches into 646 // uncond branches, and this code folds them. 647 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]); 648 Function::iterator I = Begin; 649 while (I != NewFunc->end()) { 650 // Check if this block has become dead during inlining or other 651 // simplifications. Note that the first block will appear dead, as it has 652 // not yet been wired up properly. 653 if (I != Begin && (pred_begin(I) == pred_end(I) || 654 I->getSinglePredecessor() == I)) { 655 BasicBlock *DeadBB = I++; 656 DeleteDeadBlock(DeadBB); 657 continue; 658 } 659 660 // We need to simplify conditional branches and switches with a constant 661 // operand. We try to prune these out when cloning, but if the 662 // simplification required looking through PHI nodes, those are only 663 // available after forming the full basic block. That may leave some here, 664 // and we still want to prune the dead code as early as possible. 665 ConstantFoldTerminator(I); 666 667 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 668 if (!BI || BI->isConditional()) { ++I; continue; } 669 670 BasicBlock *Dest = BI->getSuccessor(0); 671 if (!Dest->getSinglePredecessor()) { 672 ++I; continue; 673 } 674 675 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 676 // above should have zapped all of them.. 677 assert(!isa<PHINode>(Dest->begin())); 678 679 // We know all single-entry PHI nodes in the inlined function have been 680 // removed, so we just need to splice the blocks. 681 BI->eraseFromParent(); 682 683 // Make all PHI nodes that referred to Dest now refer to I as their source. 684 Dest->replaceAllUsesWith(I); 685 686 // Move all the instructions in the succ to the pred. 687 I->getInstList().splice(I->end(), Dest->getInstList()); 688 689 // Remove the dest block. 690 Dest->eraseFromParent(); 691 692 // Do not increment I, iteratively merge all things this block branches to. 693 } 694 695 // Make a final pass over the basic blocks from the old function to gather 696 // any return instructions which survived folding. We have to do this here 697 // because we can iteratively remove and merge returns above. 698 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]), 699 E = NewFunc->end(); 700 I != E; ++I) 701 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 702 Returns.push_back(RI); 703 } 704 705 706 /// This works exactly like CloneFunctionInto, 707 /// except that it does some simple constant prop and DCE on the fly. The 708 /// effect of this is to copy significantly less code in cases where (for 709 /// example) a function call with constant arguments is inlined, and those 710 /// constant arguments cause a significant amount of code in the callee to be 711 /// dead. Since this doesn't produce an exact copy of the input, it can't be 712 /// used for things like CloneFunction or CloneModule. 713 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 714 ValueToValueMapTy &VMap, 715 bool ModuleLevelChanges, 716 SmallVectorImpl<ReturnInst*> &Returns, 717 const char *NameSuffix, 718 ClonedCodeInfo *CodeInfo, 719 Instruction *TheCall) { 720 CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap, 721 ModuleLevelChanges, Returns, NameSuffix, CodeInfo, 722 nullptr); 723 } 724 725 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 726 void llvm::remapInstructionsInBlocks( 727 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 728 // Rewrite the code to refer to itself. 729 for (auto *BB : Blocks) 730 for (auto &Inst : *BB) 731 RemapInstruction(&Inst, VMap, 732 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 733 } 734 735 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 736 /// Blocks. 737 /// 738 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 739 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 740 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 741 Loop *OrigLoop, ValueToValueMapTy &VMap, 742 const Twine &NameSuffix, LoopInfo *LI, 743 DominatorTree *DT, 744 SmallVectorImpl<BasicBlock *> &Blocks) { 745 Function *F = OrigLoop->getHeader()->getParent(); 746 Loop *ParentLoop = OrigLoop->getParentLoop(); 747 748 Loop *NewLoop = new Loop(); 749 if (ParentLoop) 750 ParentLoop->addChildLoop(NewLoop); 751 else 752 LI->addTopLevelLoop(NewLoop); 753 754 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 755 assert(OrigPH && "No preheader"); 756 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 757 // To rename the loop PHIs. 758 VMap[OrigPH] = NewPH; 759 Blocks.push_back(NewPH); 760 761 // Update LoopInfo. 762 if (ParentLoop) 763 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 764 765 // Update DominatorTree. 766 DT->addNewBlock(NewPH, LoopDomBB); 767 768 for (BasicBlock *BB : OrigLoop->getBlocks()) { 769 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 770 VMap[BB] = NewBB; 771 772 // Update LoopInfo. 773 NewLoop->addBasicBlockToLoop(NewBB, *LI); 774 775 // Update DominatorTree. 776 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 777 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 778 779 Blocks.push_back(NewBB); 780 } 781 782 // Move them physically from the end of the block list. 783 F->getBasicBlockList().splice(Before, F->getBasicBlockList(), NewPH); 784 F->getBasicBlockList().splice(Before, F->getBasicBlockList(), 785 NewLoop->getHeader(), F->end()); 786 787 return NewLoop; 788 } 789