1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 #include <map> 36 using namespace llvm; 37 38 /// See comments in Cloning.h. 39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 40 ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo) { 43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 45 46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 47 48 // Loop over all instructions, and copy them over. 49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 50 II != IE; ++II) { 51 Instruction *NewInst = II->clone(); 52 if (II->hasName()) 53 NewInst->setName(II->getName()+NameSuffix); 54 NewBB->getInstList().push_back(NewInst); 55 VMap[&*II] = NewInst; // Add instruction map to value. 56 57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 59 if (isa<ConstantInt>(AI->getArraySize())) 60 hasStaticAllocas = true; 61 else 62 hasDynamicAllocas = true; 63 } 64 } 65 66 if (CodeInfo) { 67 CodeInfo->ContainsCalls |= hasCalls; 68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 70 BB != &BB->getParent()->getEntryBlock(); 71 } 72 return NewBB; 73 } 74 75 // Clone OldFunc into NewFunc, transforming the old arguments into references to 76 // VMap values. 77 // 78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 79 ValueToValueMapTy &VMap, 80 bool ModuleLevelChanges, 81 SmallVectorImpl<ReturnInst*> &Returns, 82 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 83 ValueMapTypeRemapper *TypeMapper, 84 ValueMaterializer *Materializer) { 85 assert(NameSuffix && "NameSuffix cannot be null!"); 86 87 #ifndef NDEBUG 88 for (const Argument &I : OldFunc->args()) 89 assert(VMap.count(&I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 // Fix up the personality function that got copied over. 99 if (OldFunc->hasPersonalityFn()) 100 NewFunc->setPersonalityFn( 101 MapValue(OldFunc->getPersonalityFn(), VMap, 102 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 103 TypeMapper, Materializer)); 104 105 AttributeSet OldAttrs = OldFunc->getAttributes(); 106 // Clone any argument attributes that are present in the VMap. 107 for (const Argument &OldArg : OldFunc->args()) 108 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 109 AttributeSet attrs = 110 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 111 if (attrs.getNumSlots() > 0) 112 NewArg->addAttr(attrs); 113 } 114 115 NewFunc->setAttributes( 116 NewFunc->getAttributes() 117 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 118 OldAttrs.getRetAttributes()) 119 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 120 OldAttrs.getFnAttributes())); 121 122 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 123 OldFunc->getAllMetadata(MDs); 124 for (auto MD : MDs) 125 NewFunc->setMetadata( 126 MD.first, 127 MapMetadata(MD.second, VMap, 128 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 129 TypeMapper, Materializer)); 130 131 // Loop over all of the basic blocks in the function, cloning them as 132 // appropriate. Note that we save BE this way in order to handle cloning of 133 // recursive functions into themselves. 134 // 135 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 136 BI != BE; ++BI) { 137 const BasicBlock &BB = *BI; 138 139 // Create a new basic block and copy instructions into it! 140 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 141 142 // Add basic block mapping. 143 VMap[&BB] = CBB; 144 145 // It is only legal to clone a function if a block address within that 146 // function is never referenced outside of the function. Given that, we 147 // want to map block addresses from the old function to block addresses in 148 // the clone. (This is different from the generic ValueMapper 149 // implementation, which generates an invalid blockaddress when 150 // cloning a function.) 151 if (BB.hasAddressTaken()) { 152 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 153 const_cast<BasicBlock*>(&BB)); 154 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 155 } 156 157 // Note return instructions for the caller. 158 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 159 Returns.push_back(RI); 160 } 161 162 // Loop over all of the instructions in the function, fixing up operand 163 // references as we go. This uses VMap to do all the hard work. 164 for (Function::iterator BB = 165 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 166 BE = NewFunc->end(); 167 BB != BE; ++BB) 168 // Loop over all instructions, fixing each one as we find it... 169 for (Instruction &II : *BB) 170 RemapInstruction(&II, VMap, 171 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 172 TypeMapper, Materializer); 173 } 174 175 // Find the MDNode which corresponds to the subprogram data that described F. 176 static DISubprogram *FindSubprogram(const Function *F, 177 DebugInfoFinder &Finder) { 178 for (DISubprogram *Subprogram : Finder.subprograms()) { 179 if (Subprogram->describes(F)) 180 return Subprogram; 181 } 182 return nullptr; 183 } 184 185 // Add an operand to an existing MDNode. The new operand will be added at the 186 // back of the operand list. 187 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs, 188 Metadata *NewSP) { 189 SmallVector<Metadata *, 16> NewSPs; 190 NewSPs.reserve(SPs.size() + 1); 191 for (auto *SP : SPs) 192 NewSPs.push_back(SP); 193 NewSPs.push_back(NewSP); 194 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs)); 195 } 196 197 // Clone the module-level debug info associated with OldFunc. The cloned data 198 // will point to NewFunc instead. 199 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 200 ValueToValueMapTy &VMap) { 201 DebugInfoFinder Finder; 202 Finder.processModule(*OldFunc->getParent()); 203 204 const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 205 if (!OldSubprogramMDNode) return; 206 207 auto *NewSubprogram = 208 cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap)); 209 NewFunc->setSubprogram(NewSubprogram); 210 211 for (auto *CU : Finder.compile_units()) { 212 auto Subprograms = CU->getSubprograms(); 213 // If the compile unit's function list contains the old function, it should 214 // also contain the new one. 215 for (auto *SP : Subprograms) { 216 if (SP == OldSubprogramMDNode) { 217 AddOperand(CU, Subprograms, NewSubprogram); 218 break; 219 } 220 } 221 } 222 } 223 224 /// Return a copy of the specified function, but without 225 /// embedding the function into another module. Also, any references specified 226 /// in the VMap are changed to refer to their mapped value instead of the 227 /// original one. If any of the arguments to the function are in the VMap, 228 /// the arguments are deleted from the resultant function. The VMap is 229 /// updated to include mappings from all of the instructions and basicblocks in 230 /// the function from their old to new values. 231 /// 232 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 233 bool ModuleLevelChanges, 234 ClonedCodeInfo *CodeInfo) { 235 std::vector<Type*> ArgTypes; 236 237 // The user might be deleting arguments to the function by specifying them in 238 // the VMap. If so, we need to not add the arguments to the arg ty vector 239 // 240 for (const Argument &I : F->args()) 241 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 242 ArgTypes.push_back(I.getType()); 243 244 // Create a new function type... 245 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 246 ArgTypes, F->getFunctionType()->isVarArg()); 247 248 // Create the new function... 249 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 250 251 // Loop over the arguments, copying the names of the mapped arguments over... 252 Function::arg_iterator DestI = NewF->arg_begin(); 253 for (const Argument & I : F->args()) 254 if (VMap.count(&I) == 0) { // Is this argument preserved? 255 DestI->setName(I.getName()); // Copy the name over... 256 VMap[&I] = &*DestI++; // Add mapping to VMap 257 } 258 259 if (ModuleLevelChanges) 260 CloneDebugInfoMetadata(NewF, F, VMap); 261 262 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 263 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 264 return NewF; 265 } 266 267 268 269 namespace { 270 /// This is a private class used to implement CloneAndPruneFunctionInto. 271 struct PruningFunctionCloner { 272 Function *NewFunc; 273 const Function *OldFunc; 274 ValueToValueMapTy &VMap; 275 bool ModuleLevelChanges; 276 const char *NameSuffix; 277 ClonedCodeInfo *CodeInfo; 278 279 public: 280 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 281 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 282 const char *nameSuffix, ClonedCodeInfo *codeInfo) 283 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 284 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 285 CodeInfo(codeInfo) {} 286 287 /// The specified block is found to be reachable, clone it and 288 /// anything that it can reach. 289 void CloneBlock(const BasicBlock *BB, 290 BasicBlock::const_iterator StartingInst, 291 std::vector<const BasicBlock*> &ToClone); 292 }; 293 } 294 295 /// The specified block is found to be reachable, clone it and 296 /// anything that it can reach. 297 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 298 BasicBlock::const_iterator StartingInst, 299 std::vector<const BasicBlock*> &ToClone){ 300 WeakVH &BBEntry = VMap[BB]; 301 302 // Have we already cloned this block? 303 if (BBEntry) return; 304 305 // Nope, clone it now. 306 BasicBlock *NewBB; 307 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 308 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 309 310 // It is only legal to clone a function if a block address within that 311 // function is never referenced outside of the function. Given that, we 312 // want to map block addresses from the old function to block addresses in 313 // the clone. (This is different from the generic ValueMapper 314 // implementation, which generates an invalid blockaddress when 315 // cloning a function.) 316 // 317 // Note that we don't need to fix the mapping for unreachable blocks; 318 // the default mapping there is safe. 319 if (BB->hasAddressTaken()) { 320 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 321 const_cast<BasicBlock*>(BB)); 322 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 323 } 324 325 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 326 327 // Loop over all instructions, and copy them over, DCE'ing as we go. This 328 // loop doesn't include the terminator. 329 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 330 II != IE; ++II) { 331 332 Instruction *NewInst = II->clone(); 333 334 // Eagerly remap operands to the newly cloned instruction, except for PHI 335 // nodes for which we defer processing until we update the CFG. 336 if (!isa<PHINode>(NewInst)) { 337 RemapInstruction(NewInst, VMap, 338 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 339 340 // If we can simplify this instruction to some other value, simply add 341 // a mapping to that value rather than inserting a new instruction into 342 // the basic block. 343 if (Value *V = 344 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 345 // On the off-chance that this simplifies to an instruction in the old 346 // function, map it back into the new function. 347 if (Value *MappedV = VMap.lookup(V)) 348 V = MappedV; 349 350 VMap[&*II] = V; 351 delete NewInst; 352 continue; 353 } 354 } 355 356 if (II->hasName()) 357 NewInst->setName(II->getName()+NameSuffix); 358 VMap[&*II] = NewInst; // Add instruction map to value. 359 NewBB->getInstList().push_back(NewInst); 360 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 361 362 if (CodeInfo) 363 if (auto CS = ImmutableCallSite(&*II)) 364 if (CS.hasOperandBundles()) 365 CodeInfo->OperandBundleCallSites.push_back(NewInst); 366 367 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 368 if (isa<ConstantInt>(AI->getArraySize())) 369 hasStaticAllocas = true; 370 else 371 hasDynamicAllocas = true; 372 } 373 } 374 375 // Finally, clone over the terminator. 376 const TerminatorInst *OldTI = BB->getTerminator(); 377 bool TerminatorDone = false; 378 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 379 if (BI->isConditional()) { 380 // If the condition was a known constant in the callee... 381 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 382 // Or is a known constant in the caller... 383 if (!Cond) { 384 Value *V = VMap[BI->getCondition()]; 385 Cond = dyn_cast_or_null<ConstantInt>(V); 386 } 387 388 // Constant fold to uncond branch! 389 if (Cond) { 390 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 391 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 392 ToClone.push_back(Dest); 393 TerminatorDone = true; 394 } 395 } 396 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 397 // If switching on a value known constant in the caller. 398 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 399 if (!Cond) { // Or known constant after constant prop in the callee... 400 Value *V = VMap[SI->getCondition()]; 401 Cond = dyn_cast_or_null<ConstantInt>(V); 402 } 403 if (Cond) { // Constant fold to uncond branch! 404 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 405 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 406 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 407 ToClone.push_back(Dest); 408 TerminatorDone = true; 409 } 410 } 411 412 if (!TerminatorDone) { 413 Instruction *NewInst = OldTI->clone(); 414 if (OldTI->hasName()) 415 NewInst->setName(OldTI->getName()+NameSuffix); 416 NewBB->getInstList().push_back(NewInst); 417 VMap[OldTI] = NewInst; // Add instruction map to value. 418 419 if (CodeInfo) 420 if (auto CS = ImmutableCallSite(OldTI)) 421 if (CS.hasOperandBundles()) 422 CodeInfo->OperandBundleCallSites.push_back(NewInst); 423 424 // Recursively clone any reachable successor blocks. 425 const TerminatorInst *TI = BB->getTerminator(); 426 for (const BasicBlock *Succ : TI->successors()) 427 ToClone.push_back(Succ); 428 } 429 430 if (CodeInfo) { 431 CodeInfo->ContainsCalls |= hasCalls; 432 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 433 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 434 BB != &BB->getParent()->front(); 435 } 436 } 437 438 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 439 /// entire function. Instead it starts at an instruction provided by the caller 440 /// and copies (and prunes) only the code reachable from that instruction. 441 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 442 const Instruction *StartingInst, 443 ValueToValueMapTy &VMap, 444 bool ModuleLevelChanges, 445 SmallVectorImpl<ReturnInst *> &Returns, 446 const char *NameSuffix, 447 ClonedCodeInfo *CodeInfo) { 448 assert(NameSuffix && "NameSuffix cannot be null!"); 449 450 ValueMapTypeRemapper *TypeMapper = nullptr; 451 ValueMaterializer *Materializer = nullptr; 452 453 #ifndef NDEBUG 454 // If the cloning starts at the beginning of the function, verify that 455 // the function arguments are mapped. 456 if (!StartingInst) 457 for (const Argument &II : OldFunc->args()) 458 assert(VMap.count(&II) && "No mapping from source argument specified!"); 459 #endif 460 461 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 462 NameSuffix, CodeInfo); 463 const BasicBlock *StartingBB; 464 if (StartingInst) 465 StartingBB = StartingInst->getParent(); 466 else { 467 StartingBB = &OldFunc->getEntryBlock(); 468 StartingInst = &StartingBB->front(); 469 } 470 471 // Clone the entry block, and anything recursively reachable from it. 472 std::vector<const BasicBlock*> CloneWorklist; 473 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 474 while (!CloneWorklist.empty()) { 475 const BasicBlock *BB = CloneWorklist.back(); 476 CloneWorklist.pop_back(); 477 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 478 } 479 480 // Loop over all of the basic blocks in the old function. If the block was 481 // reachable, we have cloned it and the old block is now in the value map: 482 // insert it into the new function in the right order. If not, ignore it. 483 // 484 // Defer PHI resolution until rest of function is resolved. 485 SmallVector<const PHINode*, 16> PHIToResolve; 486 for (const BasicBlock &BI : *OldFunc) { 487 Value *V = VMap[&BI]; 488 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 489 if (!NewBB) continue; // Dead block. 490 491 // Add the new block to the new function. 492 NewFunc->getBasicBlockList().push_back(NewBB); 493 494 // Handle PHI nodes specially, as we have to remove references to dead 495 // blocks. 496 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 497 // PHI nodes may have been remapped to non-PHI nodes by the caller or 498 // during the cloning process. 499 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 500 if (isa<PHINode>(VMap[PN])) 501 PHIToResolve.push_back(PN); 502 else 503 break; 504 } else { 505 break; 506 } 507 } 508 509 // Finally, remap the terminator instructions, as those can't be remapped 510 // until all BBs are mapped. 511 RemapInstruction(NewBB->getTerminator(), VMap, 512 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 513 TypeMapper, Materializer); 514 } 515 516 // Defer PHI resolution until rest of function is resolved, PHI resolution 517 // requires the CFG to be up-to-date. 518 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 519 const PHINode *OPN = PHIToResolve[phino]; 520 unsigned NumPreds = OPN->getNumIncomingValues(); 521 const BasicBlock *OldBB = OPN->getParent(); 522 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 523 524 // Map operands for blocks that are live and remove operands for blocks 525 // that are dead. 526 for (; phino != PHIToResolve.size() && 527 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 528 OPN = PHIToResolve[phino]; 529 PHINode *PN = cast<PHINode>(VMap[OPN]); 530 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 531 Value *V = VMap[PN->getIncomingBlock(pred)]; 532 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 533 Value *InVal = MapValue(PN->getIncomingValue(pred), 534 VMap, 535 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 536 assert(InVal && "Unknown input value?"); 537 PN->setIncomingValue(pred, InVal); 538 PN->setIncomingBlock(pred, MappedBlock); 539 } else { 540 PN->removeIncomingValue(pred, false); 541 --pred; // Revisit the next entry. 542 --e; 543 } 544 } 545 } 546 547 // The loop above has removed PHI entries for those blocks that are dead 548 // and has updated others. However, if a block is live (i.e. copied over) 549 // but its terminator has been changed to not go to this block, then our 550 // phi nodes will have invalid entries. Update the PHI nodes in this 551 // case. 552 PHINode *PN = cast<PHINode>(NewBB->begin()); 553 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 554 if (NumPreds != PN->getNumIncomingValues()) { 555 assert(NumPreds < PN->getNumIncomingValues()); 556 // Count how many times each predecessor comes to this block. 557 std::map<BasicBlock*, unsigned> PredCount; 558 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 559 PI != E; ++PI) 560 --PredCount[*PI]; 561 562 // Figure out how many entries to remove from each PHI. 563 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 564 ++PredCount[PN->getIncomingBlock(i)]; 565 566 // At this point, the excess predecessor entries are positive in the 567 // map. Loop over all of the PHIs and remove excess predecessor 568 // entries. 569 BasicBlock::iterator I = NewBB->begin(); 570 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 571 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 572 E = PredCount.end(); PCI != E; ++PCI) { 573 BasicBlock *Pred = PCI->first; 574 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 575 PN->removeIncomingValue(Pred, false); 576 } 577 } 578 } 579 580 // If the loops above have made these phi nodes have 0 or 1 operand, 581 // replace them with undef or the input value. We must do this for 582 // correctness, because 0-operand phis are not valid. 583 PN = cast<PHINode>(NewBB->begin()); 584 if (PN->getNumIncomingValues() == 0) { 585 BasicBlock::iterator I = NewBB->begin(); 586 BasicBlock::const_iterator OldI = OldBB->begin(); 587 while ((PN = dyn_cast<PHINode>(I++))) { 588 Value *NV = UndefValue::get(PN->getType()); 589 PN->replaceAllUsesWith(NV); 590 assert(VMap[&*OldI] == PN && "VMap mismatch"); 591 VMap[&*OldI] = NV; 592 PN->eraseFromParent(); 593 ++OldI; 594 } 595 } 596 } 597 598 // Make a second pass over the PHINodes now that all of them have been 599 // remapped into the new function, simplifying the PHINode and performing any 600 // recursive simplifications exposed. This will transparently update the 601 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 602 // two PHINodes, the iteration over the old PHIs remains valid, and the 603 // mapping will just map us to the new node (which may not even be a PHI 604 // node). 605 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 606 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 607 recursivelySimplifyInstruction(PN); 608 609 // Now that the inlined function body has been fully constructed, go through 610 // and zap unconditional fall-through branches. This happens all the time when 611 // specializing code: code specialization turns conditional branches into 612 // uncond branches, and this code folds them. 613 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 614 Function::iterator I = Begin; 615 while (I != NewFunc->end()) { 616 // Check if this block has become dead during inlining or other 617 // simplifications. Note that the first block will appear dead, as it has 618 // not yet been wired up properly. 619 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 620 I->getSinglePredecessor() == &*I)) { 621 BasicBlock *DeadBB = &*I++; 622 DeleteDeadBlock(DeadBB); 623 continue; 624 } 625 626 // We need to simplify conditional branches and switches with a constant 627 // operand. We try to prune these out when cloning, but if the 628 // simplification required looking through PHI nodes, those are only 629 // available after forming the full basic block. That may leave some here, 630 // and we still want to prune the dead code as early as possible. 631 ConstantFoldTerminator(&*I); 632 633 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 634 if (!BI || BI->isConditional()) { ++I; continue; } 635 636 BasicBlock *Dest = BI->getSuccessor(0); 637 if (!Dest->getSinglePredecessor()) { 638 ++I; continue; 639 } 640 641 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 642 // above should have zapped all of them.. 643 assert(!isa<PHINode>(Dest->begin())); 644 645 // We know all single-entry PHI nodes in the inlined function have been 646 // removed, so we just need to splice the blocks. 647 BI->eraseFromParent(); 648 649 // Make all PHI nodes that referred to Dest now refer to I as their source. 650 Dest->replaceAllUsesWith(&*I); 651 652 // Move all the instructions in the succ to the pred. 653 I->getInstList().splice(I->end(), Dest->getInstList()); 654 655 // Remove the dest block. 656 Dest->eraseFromParent(); 657 658 // Do not increment I, iteratively merge all things this block branches to. 659 } 660 661 // Make a final pass over the basic blocks from the old function to gather 662 // any return instructions which survived folding. We have to do this here 663 // because we can iteratively remove and merge returns above. 664 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 665 E = NewFunc->end(); 666 I != E; ++I) 667 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 668 Returns.push_back(RI); 669 } 670 671 672 /// This works exactly like CloneFunctionInto, 673 /// except that it does some simple constant prop and DCE on the fly. The 674 /// effect of this is to copy significantly less code in cases where (for 675 /// example) a function call with constant arguments is inlined, and those 676 /// constant arguments cause a significant amount of code in the callee to be 677 /// dead. Since this doesn't produce an exact copy of the input, it can't be 678 /// used for things like CloneFunction or CloneModule. 679 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 680 ValueToValueMapTy &VMap, 681 bool ModuleLevelChanges, 682 SmallVectorImpl<ReturnInst*> &Returns, 683 const char *NameSuffix, 684 ClonedCodeInfo *CodeInfo, 685 Instruction *TheCall) { 686 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 687 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 688 } 689 690 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 691 void llvm::remapInstructionsInBlocks( 692 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 693 // Rewrite the code to refer to itself. 694 for (auto *BB : Blocks) 695 for (auto &Inst : *BB) 696 RemapInstruction(&Inst, VMap, 697 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 698 } 699 700 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 701 /// Blocks. 702 /// 703 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 704 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 705 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 706 Loop *OrigLoop, ValueToValueMapTy &VMap, 707 const Twine &NameSuffix, LoopInfo *LI, 708 DominatorTree *DT, 709 SmallVectorImpl<BasicBlock *> &Blocks) { 710 Function *F = OrigLoop->getHeader()->getParent(); 711 Loop *ParentLoop = OrigLoop->getParentLoop(); 712 713 Loop *NewLoop = new Loop(); 714 if (ParentLoop) 715 ParentLoop->addChildLoop(NewLoop); 716 else 717 LI->addTopLevelLoop(NewLoop); 718 719 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 720 assert(OrigPH && "No preheader"); 721 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 722 // To rename the loop PHIs. 723 VMap[OrigPH] = NewPH; 724 Blocks.push_back(NewPH); 725 726 // Update LoopInfo. 727 if (ParentLoop) 728 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 729 730 // Update DominatorTree. 731 DT->addNewBlock(NewPH, LoopDomBB); 732 733 for (BasicBlock *BB : OrigLoop->getBlocks()) { 734 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 735 VMap[BB] = NewBB; 736 737 // Update LoopInfo. 738 NewLoop->addBasicBlockToLoop(NewBB, *LI); 739 740 // Update DominatorTree. 741 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 742 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 743 744 Blocks.push_back(NewBB); 745 } 746 747 // Move them physically from the end of the block list. 748 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 749 NewPH); 750 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 751 NewLoop->getHeader()->getIterator(), F->end()); 752 753 return NewLoop; 754 } 755