1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/ValueMapper.h" 37 #include <map> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "clone-function" 41 42 /// See comments in Cloning.h. 43 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 44 const Twine &NameSuffix, Function *F, 45 ClonedCodeInfo *CodeInfo, 46 DebugInfoFinder *DIFinder) { 47 DenseMap<const MDNode *, MDNode *> Cache; 48 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 49 if (BB->hasName()) 50 NewBB->setName(BB->getName() + NameSuffix); 51 52 bool hasCalls = false, hasDynamicAllocas = false; 53 Module *TheModule = F ? F->getParent() : nullptr; 54 55 // Loop over all instructions, and copy them over. 56 for (const Instruction &I : *BB) { 57 if (DIFinder && TheModule) 58 DIFinder->processInstruction(*TheModule, I); 59 60 Instruction *NewInst = I.clone(); 61 if (I.hasName()) 62 NewInst->setName(I.getName() + NameSuffix); 63 NewBB->getInstList().push_back(NewInst); 64 VMap[&I] = NewInst; // Add instruction map to value. 65 66 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); 67 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 68 if (!AI->isStaticAlloca()) { 69 hasDynamicAllocas = true; 70 } 71 } 72 } 73 74 if (CodeInfo) { 75 CodeInfo->ContainsCalls |= hasCalls; 76 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 77 } 78 return NewBB; 79 } 80 81 // Clone OldFunc into NewFunc, transforming the old arguments into references to 82 // VMap values. 83 // 84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 85 ValueToValueMapTy &VMap, 86 CloneFunctionChangeType Changes, 87 SmallVectorImpl<ReturnInst *> &Returns, 88 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 89 ValueMapTypeRemapper *TypeMapper, 90 ValueMaterializer *Materializer) { 91 assert(NameSuffix && "NameSuffix cannot be null!"); 92 93 #ifndef NDEBUG 94 for (const Argument &I : OldFunc->args()) 95 assert(VMap.count(&I) && "No mapping from source argument specified!"); 96 #endif 97 98 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; 99 100 // Copy all attributes other than those stored in the AttributeList. We need 101 // to remap the parameter indices of the AttributeList. 102 AttributeList NewAttrs = NewFunc->getAttributes(); 103 NewFunc->copyAttributesFrom(OldFunc); 104 NewFunc->setAttributes(NewAttrs); 105 106 // Fix up the personality function that got copied over. 107 if (OldFunc->hasPersonalityFn()) 108 NewFunc->setPersonalityFn( 109 MapValue(OldFunc->getPersonalityFn(), VMap, 110 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 111 TypeMapper, Materializer)); 112 113 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 114 AttributeList OldAttrs = OldFunc->getAttributes(); 115 116 // Clone any argument attributes that are present in the VMap. 117 for (const Argument &OldArg : OldFunc->args()) { 118 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 119 NewArgAttrs[NewArg->getArgNo()] = 120 OldAttrs.getParamAttributes(OldArg.getArgNo()); 121 } 122 } 123 124 NewFunc->setAttributes( 125 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 126 OldAttrs.getRetAttributes(), NewArgAttrs)); 127 128 // Everything else beyond this point deals with function instructions, 129 // so if we are dealing with a function declaration, we're done. 130 if (OldFunc->isDeclaration()) 131 return; 132 133 // When we remap instructions within the same module, we want to avoid 134 // duplicating inlined DISubprograms, so record all subprograms we find as we 135 // duplicate instructions and then freeze them in the MD map. We also record 136 // information about dbg.value and dbg.declare to avoid duplicating the 137 // types. 138 Optional<DebugInfoFinder> DIFinder; 139 140 // Track the subprogram attachment that needs to be cloned to fine-tune the 141 // mapping within the same module. 142 DISubprogram *SPClonedWithinModule = nullptr; 143 if (Changes < CloneFunctionChangeType::DifferentModule) { 144 assert((NewFunc->getParent() == nullptr || 145 NewFunc->getParent() == OldFunc->getParent()) && 146 "Expected NewFunc to have the same parent, or no parent"); 147 148 // Need to find subprograms, types, and compile units. 149 DIFinder.emplace(); 150 151 SPClonedWithinModule = OldFunc->getSubprogram(); 152 if (SPClonedWithinModule) 153 DIFinder->processSubprogram(SPClonedWithinModule); 154 } else { 155 assert((NewFunc->getParent() == nullptr || 156 NewFunc->getParent() != OldFunc->getParent()) && 157 "Expected NewFunc to have different parents, or no parent"); 158 159 if (Changes == CloneFunctionChangeType::DifferentModule) { 160 assert(NewFunc->getParent() && 161 "Need parent of new function to maintain debug info invariants"); 162 163 // Need to find all the compile units. 164 DIFinder.emplace(); 165 } 166 } 167 168 // Loop over all of the basic blocks in the function, cloning them as 169 // appropriate. Note that we save BE this way in order to handle cloning of 170 // recursive functions into themselves. 171 for (const BasicBlock &BB : *OldFunc) { 172 173 // Create a new basic block and copy instructions into it! 174 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 175 DIFinder ? &*DIFinder : nullptr); 176 177 // Add basic block mapping. 178 VMap[&BB] = CBB; 179 180 // It is only legal to clone a function if a block address within that 181 // function is never referenced outside of the function. Given that, we 182 // want to map block addresses from the old function to block addresses in 183 // the clone. (This is different from the generic ValueMapper 184 // implementation, which generates an invalid blockaddress when 185 // cloning a function.) 186 if (BB.hasAddressTaken()) { 187 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 188 const_cast<BasicBlock*>(&BB)); 189 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 190 } 191 192 // Note return instructions for the caller. 193 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 194 Returns.push_back(RI); 195 } 196 197 if (Changes < CloneFunctionChangeType::DifferentModule && 198 DIFinder->subprogram_count() > 0) { 199 // Turn on module-level changes, since we need to clone (some of) the 200 // debug info metadata. 201 // 202 // FIXME: Metadata effectively owned by a function should be made 203 // local, and only that local metadata should be cloned. 204 ModuleLevelChanges = true; 205 206 auto mapToSelfIfNew = [&VMap](MDNode *N) { 207 // Avoid clobbering an existing mapping. 208 (void)VMap.MD().try_emplace(N, N); 209 }; 210 211 // Avoid cloning types, compile units, and (other) subprograms. 212 for (DISubprogram *ISP : DIFinder->subprograms()) 213 if (ISP != SPClonedWithinModule) 214 mapToSelfIfNew(ISP); 215 216 for (DICompileUnit *CU : DIFinder->compile_units()) 217 mapToSelfIfNew(CU); 218 219 for (DIType *Type : DIFinder->types()) 220 mapToSelfIfNew(Type); 221 } else { 222 assert(!SPClonedWithinModule && 223 "Subprogram should be in DIFinder->subprogram_count()..."); 224 } 225 226 const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; 227 // Duplicate the metadata that is attached to the cloned function. 228 // Subprograms/CUs/types that were already mapped to themselves won't be 229 // duplicated. 230 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 231 OldFunc->getAllMetadata(MDs); 232 for (auto MD : MDs) { 233 NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag, 234 TypeMapper, Materializer)); 235 } 236 237 // Loop over all of the instructions in the function, fixing up operand 238 // references as we go. This uses VMap to do all the hard work. 239 for (Function::iterator BB = 240 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 241 BE = NewFunc->end(); 242 BB != BE; ++BB) 243 // Loop over all instructions, fixing each one as we find it... 244 for (Instruction &II : *BB) 245 RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer); 246 247 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the 248 // same module, the compile unit will already be listed (or not). When 249 // cloning a module, CloneModule() will handle creating the named metadata. 250 if (Changes != CloneFunctionChangeType::DifferentModule) 251 return; 252 253 // Update !llvm.dbg.cu with compile units added to the new module if this 254 // function is being cloned in isolation. 255 // 256 // FIXME: This is making global / module-level changes, which doesn't seem 257 // like the right encapsulation Consider dropping the requirement to update 258 // !llvm.dbg.cu (either obsoleting the node, or restricting it to 259 // non-discardable compile units) instead of discovering compile units by 260 // visiting the metadata attached to global values, which would allow this 261 // code to be deleted. Alternatively, perhaps give responsibility for this 262 // update to CloneFunctionInto's callers. 263 auto* NewModule = NewFunc->getParent(); 264 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 265 // Avoid multiple insertions of the same DICompileUnit to NMD. 266 SmallPtrSet<const void *, 8> Visited; 267 for (auto *Operand : NMD->operands()) 268 Visited.insert(Operand); 269 for (auto *Unit : DIFinder->compile_units()) { 270 MDNode *MappedUnit = 271 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer); 272 if (Visited.insert(MappedUnit).second) 273 NMD->addOperand(MappedUnit); 274 } 275 } 276 277 /// Return a copy of the specified function and add it to that function's 278 /// module. Also, any references specified in the VMap are changed to refer to 279 /// their mapped value instead of the original one. If any of the arguments to 280 /// the function are in the VMap, the arguments are deleted from the resultant 281 /// function. The VMap is updated to include mappings from all of the 282 /// instructions and basicblocks in the function from their old to new values. 283 /// 284 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 285 ClonedCodeInfo *CodeInfo) { 286 std::vector<Type*> ArgTypes; 287 288 // The user might be deleting arguments to the function by specifying them in 289 // the VMap. If so, we need to not add the arguments to the arg ty vector 290 // 291 for (const Argument &I : F->args()) 292 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 293 ArgTypes.push_back(I.getType()); 294 295 // Create a new function type... 296 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 297 ArgTypes, F->getFunctionType()->isVarArg()); 298 299 // Create the new function... 300 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 301 F->getName(), F->getParent()); 302 303 // Loop over the arguments, copying the names of the mapped arguments over... 304 Function::arg_iterator DestI = NewF->arg_begin(); 305 for (const Argument & I : F->args()) 306 if (VMap.count(&I) == 0) { // Is this argument preserved? 307 DestI->setName(I.getName()); // Copy the name over... 308 VMap[&I] = &*DestI++; // Add mapping to VMap 309 } 310 311 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 312 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, 313 Returns, "", CodeInfo); 314 315 return NewF; 316 } 317 318 319 320 namespace { 321 /// This is a private class used to implement CloneAndPruneFunctionInto. 322 struct PruningFunctionCloner { 323 Function *NewFunc; 324 const Function *OldFunc; 325 ValueToValueMapTy &VMap; 326 bool ModuleLevelChanges; 327 const char *NameSuffix; 328 ClonedCodeInfo *CodeInfo; 329 330 public: 331 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 332 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 333 const char *nameSuffix, ClonedCodeInfo *codeInfo) 334 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 335 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 336 CodeInfo(codeInfo) {} 337 338 /// The specified block is found to be reachable, clone it and 339 /// anything that it can reach. 340 void CloneBlock(const BasicBlock *BB, 341 BasicBlock::const_iterator StartingInst, 342 std::vector<const BasicBlock*> &ToClone); 343 }; 344 } 345 346 /// The specified block is found to be reachable, clone it and 347 /// anything that it can reach. 348 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 349 BasicBlock::const_iterator StartingInst, 350 std::vector<const BasicBlock*> &ToClone){ 351 WeakTrackingVH &BBEntry = VMap[BB]; 352 353 // Have we already cloned this block? 354 if (BBEntry) return; 355 356 // Nope, clone it now. 357 BasicBlock *NewBB; 358 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 359 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 360 361 // It is only legal to clone a function if a block address within that 362 // function is never referenced outside of the function. Given that, we 363 // want to map block addresses from the old function to block addresses in 364 // the clone. (This is different from the generic ValueMapper 365 // implementation, which generates an invalid blockaddress when 366 // cloning a function.) 367 // 368 // Note that we don't need to fix the mapping for unreachable blocks; 369 // the default mapping there is safe. 370 if (BB->hasAddressTaken()) { 371 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 372 const_cast<BasicBlock*>(BB)); 373 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 374 } 375 376 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 377 378 // Loop over all instructions, and copy them over, DCE'ing as we go. This 379 // loop doesn't include the terminator. 380 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 381 II != IE; ++II) { 382 383 Instruction *NewInst = II->clone(); 384 385 // Eagerly remap operands to the newly cloned instruction, except for PHI 386 // nodes for which we defer processing until we update the CFG. 387 if (!isa<PHINode>(NewInst)) { 388 RemapInstruction(NewInst, VMap, 389 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 390 391 // If we can simplify this instruction to some other value, simply add 392 // a mapping to that value rather than inserting a new instruction into 393 // the basic block. 394 if (Value *V = 395 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 396 // On the off-chance that this simplifies to an instruction in the old 397 // function, map it back into the new function. 398 if (NewFunc != OldFunc) 399 if (Value *MappedV = VMap.lookup(V)) 400 V = MappedV; 401 402 if (!NewInst->mayHaveSideEffects()) { 403 VMap[&*II] = V; 404 NewInst->deleteValue(); 405 continue; 406 } 407 } 408 } 409 410 if (II->hasName()) 411 NewInst->setName(II->getName()+NameSuffix); 412 VMap[&*II] = NewInst; // Add instruction map to value. 413 NewBB->getInstList().push_back(NewInst); 414 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 415 416 if (CodeInfo) 417 if (auto *CB = dyn_cast<CallBase>(&*II)) 418 if (CB->hasOperandBundles()) 419 CodeInfo->OperandBundleCallSites.push_back(NewInst); 420 421 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 422 if (isa<ConstantInt>(AI->getArraySize())) 423 hasStaticAllocas = true; 424 else 425 hasDynamicAllocas = true; 426 } 427 } 428 429 // Finally, clone over the terminator. 430 const Instruction *OldTI = BB->getTerminator(); 431 bool TerminatorDone = false; 432 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 433 if (BI->isConditional()) { 434 // If the condition was a known constant in the callee... 435 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 436 // Or is a known constant in the caller... 437 if (!Cond) { 438 Value *V = VMap.lookup(BI->getCondition()); 439 Cond = dyn_cast_or_null<ConstantInt>(V); 440 } 441 442 // Constant fold to uncond branch! 443 if (Cond) { 444 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 445 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 446 ToClone.push_back(Dest); 447 TerminatorDone = true; 448 } 449 } 450 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 451 // If switching on a value known constant in the caller. 452 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 453 if (!Cond) { // Or known constant after constant prop in the callee... 454 Value *V = VMap.lookup(SI->getCondition()); 455 Cond = dyn_cast_or_null<ConstantInt>(V); 456 } 457 if (Cond) { // Constant fold to uncond branch! 458 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 459 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 460 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 461 ToClone.push_back(Dest); 462 TerminatorDone = true; 463 } 464 } 465 466 if (!TerminatorDone) { 467 Instruction *NewInst = OldTI->clone(); 468 if (OldTI->hasName()) 469 NewInst->setName(OldTI->getName()+NameSuffix); 470 NewBB->getInstList().push_back(NewInst); 471 VMap[OldTI] = NewInst; // Add instruction map to value. 472 473 if (CodeInfo) 474 if (auto *CB = dyn_cast<CallBase>(OldTI)) 475 if (CB->hasOperandBundles()) 476 CodeInfo->OperandBundleCallSites.push_back(NewInst); 477 478 // Recursively clone any reachable successor blocks. 479 append_range(ToClone, successors(BB->getTerminator())); 480 } 481 482 if (CodeInfo) { 483 CodeInfo->ContainsCalls |= hasCalls; 484 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 485 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 486 BB != &BB->getParent()->front(); 487 } 488 } 489 490 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 491 /// entire function. Instead it starts at an instruction provided by the caller 492 /// and copies (and prunes) only the code reachable from that instruction. 493 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 494 const Instruction *StartingInst, 495 ValueToValueMapTy &VMap, 496 bool ModuleLevelChanges, 497 SmallVectorImpl<ReturnInst *> &Returns, 498 const char *NameSuffix, 499 ClonedCodeInfo *CodeInfo) { 500 assert(NameSuffix && "NameSuffix cannot be null!"); 501 502 ValueMapTypeRemapper *TypeMapper = nullptr; 503 ValueMaterializer *Materializer = nullptr; 504 505 #ifndef NDEBUG 506 // If the cloning starts at the beginning of the function, verify that 507 // the function arguments are mapped. 508 if (!StartingInst) 509 for (const Argument &II : OldFunc->args()) 510 assert(VMap.count(&II) && "No mapping from source argument specified!"); 511 #endif 512 513 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 514 NameSuffix, CodeInfo); 515 const BasicBlock *StartingBB; 516 if (StartingInst) 517 StartingBB = StartingInst->getParent(); 518 else { 519 StartingBB = &OldFunc->getEntryBlock(); 520 StartingInst = &StartingBB->front(); 521 } 522 523 // Clone the entry block, and anything recursively reachable from it. 524 std::vector<const BasicBlock*> CloneWorklist; 525 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 526 while (!CloneWorklist.empty()) { 527 const BasicBlock *BB = CloneWorklist.back(); 528 CloneWorklist.pop_back(); 529 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 530 } 531 532 // Loop over all of the basic blocks in the old function. If the block was 533 // reachable, we have cloned it and the old block is now in the value map: 534 // insert it into the new function in the right order. If not, ignore it. 535 // 536 // Defer PHI resolution until rest of function is resolved. 537 SmallVector<const PHINode*, 16> PHIToResolve; 538 for (const BasicBlock &BI : *OldFunc) { 539 Value *V = VMap.lookup(&BI); 540 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 541 if (!NewBB) continue; // Dead block. 542 543 // Add the new block to the new function. 544 NewFunc->getBasicBlockList().push_back(NewBB); 545 546 // Handle PHI nodes specially, as we have to remove references to dead 547 // blocks. 548 for (const PHINode &PN : BI.phis()) { 549 // PHI nodes may have been remapped to non-PHI nodes by the caller or 550 // during the cloning process. 551 if (isa<PHINode>(VMap[&PN])) 552 PHIToResolve.push_back(&PN); 553 else 554 break; 555 } 556 557 // Finally, remap the terminator instructions, as those can't be remapped 558 // until all BBs are mapped. 559 RemapInstruction(NewBB->getTerminator(), VMap, 560 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 561 TypeMapper, Materializer); 562 } 563 564 // Defer PHI resolution until rest of function is resolved, PHI resolution 565 // requires the CFG to be up-to-date. 566 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 567 const PHINode *OPN = PHIToResolve[phino]; 568 unsigned NumPreds = OPN->getNumIncomingValues(); 569 const BasicBlock *OldBB = OPN->getParent(); 570 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 571 572 // Map operands for blocks that are live and remove operands for blocks 573 // that are dead. 574 for (; phino != PHIToResolve.size() && 575 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 576 OPN = PHIToResolve[phino]; 577 PHINode *PN = cast<PHINode>(VMap[OPN]); 578 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 579 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 580 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 581 Value *InVal = MapValue(PN->getIncomingValue(pred), 582 VMap, 583 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 584 assert(InVal && "Unknown input value?"); 585 PN->setIncomingValue(pred, InVal); 586 PN->setIncomingBlock(pred, MappedBlock); 587 } else { 588 PN->removeIncomingValue(pred, false); 589 --pred; // Revisit the next entry. 590 --e; 591 } 592 } 593 } 594 595 // The loop above has removed PHI entries for those blocks that are dead 596 // and has updated others. However, if a block is live (i.e. copied over) 597 // but its terminator has been changed to not go to this block, then our 598 // phi nodes will have invalid entries. Update the PHI nodes in this 599 // case. 600 PHINode *PN = cast<PHINode>(NewBB->begin()); 601 NumPreds = pred_size(NewBB); 602 if (NumPreds != PN->getNumIncomingValues()) { 603 assert(NumPreds < PN->getNumIncomingValues()); 604 // Count how many times each predecessor comes to this block. 605 std::map<BasicBlock*, unsigned> PredCount; 606 for (BasicBlock *Pred : predecessors(NewBB)) 607 --PredCount[Pred]; 608 609 // Figure out how many entries to remove from each PHI. 610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 611 ++PredCount[PN->getIncomingBlock(i)]; 612 613 // At this point, the excess predecessor entries are positive in the 614 // map. Loop over all of the PHIs and remove excess predecessor 615 // entries. 616 BasicBlock::iterator I = NewBB->begin(); 617 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 618 for (const auto &PCI : PredCount) { 619 BasicBlock *Pred = PCI.first; 620 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 621 PN->removeIncomingValue(Pred, false); 622 } 623 } 624 } 625 626 // If the loops above have made these phi nodes have 0 or 1 operand, 627 // replace them with undef or the input value. We must do this for 628 // correctness, because 0-operand phis are not valid. 629 PN = cast<PHINode>(NewBB->begin()); 630 if (PN->getNumIncomingValues() == 0) { 631 BasicBlock::iterator I = NewBB->begin(); 632 BasicBlock::const_iterator OldI = OldBB->begin(); 633 while ((PN = dyn_cast<PHINode>(I++))) { 634 Value *NV = UndefValue::get(PN->getType()); 635 PN->replaceAllUsesWith(NV); 636 assert(VMap[&*OldI] == PN && "VMap mismatch"); 637 VMap[&*OldI] = NV; 638 PN->eraseFromParent(); 639 ++OldI; 640 } 641 } 642 } 643 644 // Make a second pass over the PHINodes now that all of them have been 645 // remapped into the new function, simplifying the PHINode and performing any 646 // recursive simplifications exposed. This will transparently update the 647 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 648 // two PHINodes, the iteration over the old PHIs remains valid, and the 649 // mapping will just map us to the new node (which may not even be a PHI 650 // node). 651 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 652 SmallSetVector<const Value *, 8> Worklist; 653 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 654 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 655 Worklist.insert(PHIToResolve[Idx]); 656 657 // Note that we must test the size on each iteration, the worklist can grow. 658 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 659 const Value *OrigV = Worklist[Idx]; 660 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 661 if (!I) 662 continue; 663 664 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 665 // the CGSCC. 666 CallBase *CB = dyn_cast<CallBase>(I); 667 if (CB && CB->getCalledFunction() && 668 !CB->getCalledFunction()->isIntrinsic()) 669 continue; 670 671 // See if this instruction simplifies. 672 Value *SimpleV = SimplifyInstruction(I, DL); 673 if (!SimpleV) 674 continue; 675 676 // Stash away all the uses of the old instruction so we can check them for 677 // recursive simplifications after a RAUW. This is cheaper than checking all 678 // uses of To on the recursive step in most cases. 679 for (const User *U : OrigV->users()) 680 Worklist.insert(cast<Instruction>(U)); 681 682 // Replace the instruction with its simplified value. 683 I->replaceAllUsesWith(SimpleV); 684 685 // If the original instruction had no side effects, remove it. 686 if (isInstructionTriviallyDead(I)) 687 I->eraseFromParent(); 688 else 689 VMap[OrigV] = I; 690 } 691 692 // Now that the inlined function body has been fully constructed, go through 693 // and zap unconditional fall-through branches. This happens all the time when 694 // specializing code: code specialization turns conditional branches into 695 // uncond branches, and this code folds them. 696 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 697 Function::iterator I = Begin; 698 while (I != NewFunc->end()) { 699 // We need to simplify conditional branches and switches with a constant 700 // operand. We try to prune these out when cloning, but if the 701 // simplification required looking through PHI nodes, those are only 702 // available after forming the full basic block. That may leave some here, 703 // and we still want to prune the dead code as early as possible. 704 // 705 // Do the folding before we check if the block is dead since we want code 706 // like 707 // bb: 708 // br i1 undef, label %bb, label %bb 709 // to be simplified to 710 // bb: 711 // br label %bb 712 // before we call I->getSinglePredecessor(). 713 ConstantFoldTerminator(&*I); 714 715 // Check if this block has become dead during inlining or other 716 // simplifications. Note that the first block will appear dead, as it has 717 // not yet been wired up properly. 718 if (I != Begin && (pred_empty(&*I) || I->getSinglePredecessor() == &*I)) { 719 BasicBlock *DeadBB = &*I++; 720 DeleteDeadBlock(DeadBB); 721 continue; 722 } 723 724 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 725 if (!BI || BI->isConditional()) { ++I; continue; } 726 727 BasicBlock *Dest = BI->getSuccessor(0); 728 if (!Dest->getSinglePredecessor()) { 729 ++I; continue; 730 } 731 732 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 733 // above should have zapped all of them.. 734 assert(!isa<PHINode>(Dest->begin())); 735 736 // We know all single-entry PHI nodes in the inlined function have been 737 // removed, so we just need to splice the blocks. 738 BI->eraseFromParent(); 739 740 // Make all PHI nodes that referred to Dest now refer to I as their source. 741 Dest->replaceAllUsesWith(&*I); 742 743 // Move all the instructions in the succ to the pred. 744 I->getInstList().splice(I->end(), Dest->getInstList()); 745 746 // Remove the dest block. 747 Dest->eraseFromParent(); 748 749 // Do not increment I, iteratively merge all things this block branches to. 750 } 751 752 // Make a final pass over the basic blocks from the old function to gather 753 // any return instructions which survived folding. We have to do this here 754 // because we can iteratively remove and merge returns above. 755 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 756 E = NewFunc->end(); 757 I != E; ++I) 758 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 759 Returns.push_back(RI); 760 } 761 762 763 /// This works exactly like CloneFunctionInto, 764 /// except that it does some simple constant prop and DCE on the fly. The 765 /// effect of this is to copy significantly less code in cases where (for 766 /// example) a function call with constant arguments is inlined, and those 767 /// constant arguments cause a significant amount of code in the callee to be 768 /// dead. Since this doesn't produce an exact copy of the input, it can't be 769 /// used for things like CloneFunction or CloneModule. 770 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 771 ValueToValueMapTy &VMap, 772 bool ModuleLevelChanges, 773 SmallVectorImpl<ReturnInst*> &Returns, 774 const char *NameSuffix, 775 ClonedCodeInfo *CodeInfo, 776 Instruction *TheCall) { 777 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 778 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 779 } 780 781 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 782 void llvm::remapInstructionsInBlocks( 783 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 784 // Rewrite the code to refer to itself. 785 for (auto *BB : Blocks) 786 for (auto &Inst : *BB) 787 RemapInstruction(&Inst, VMap, 788 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 789 } 790 791 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 792 /// Blocks. 793 /// 794 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 795 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 796 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 797 Loop *OrigLoop, ValueToValueMapTy &VMap, 798 const Twine &NameSuffix, LoopInfo *LI, 799 DominatorTree *DT, 800 SmallVectorImpl<BasicBlock *> &Blocks) { 801 Function *F = OrigLoop->getHeader()->getParent(); 802 Loop *ParentLoop = OrigLoop->getParentLoop(); 803 DenseMap<Loop *, Loop *> LMap; 804 805 Loop *NewLoop = LI->AllocateLoop(); 806 LMap[OrigLoop] = NewLoop; 807 if (ParentLoop) 808 ParentLoop->addChildLoop(NewLoop); 809 else 810 LI->addTopLevelLoop(NewLoop); 811 812 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 813 assert(OrigPH && "No preheader"); 814 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 815 // To rename the loop PHIs. 816 VMap[OrigPH] = NewPH; 817 Blocks.push_back(NewPH); 818 819 // Update LoopInfo. 820 if (ParentLoop) 821 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 822 823 // Update DominatorTree. 824 DT->addNewBlock(NewPH, LoopDomBB); 825 826 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 827 Loop *&NewLoop = LMap[CurLoop]; 828 if (!NewLoop) { 829 NewLoop = LI->AllocateLoop(); 830 831 // Establish the parent/child relationship. 832 Loop *OrigParent = CurLoop->getParentLoop(); 833 assert(OrigParent && "Could not find the original parent loop"); 834 Loop *NewParentLoop = LMap[OrigParent]; 835 assert(NewParentLoop && "Could not find the new parent loop"); 836 837 NewParentLoop->addChildLoop(NewLoop); 838 } 839 } 840 841 for (BasicBlock *BB : OrigLoop->getBlocks()) { 842 Loop *CurLoop = LI->getLoopFor(BB); 843 Loop *&NewLoop = LMap[CurLoop]; 844 assert(NewLoop && "Expecting new loop to be allocated"); 845 846 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 847 VMap[BB] = NewBB; 848 849 // Update LoopInfo. 850 NewLoop->addBasicBlockToLoop(NewBB, *LI); 851 852 // Add DominatorTree node. After seeing all blocks, update to correct 853 // IDom. 854 DT->addNewBlock(NewBB, NewPH); 855 856 Blocks.push_back(NewBB); 857 } 858 859 for (BasicBlock *BB : OrigLoop->getBlocks()) { 860 // Update loop headers. 861 Loop *CurLoop = LI->getLoopFor(BB); 862 if (BB == CurLoop->getHeader()) 863 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); 864 865 // Update DominatorTree. 866 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 867 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 868 cast<BasicBlock>(VMap[IDomBB])); 869 } 870 871 // Move them physically from the end of the block list. 872 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 873 NewPH); 874 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 875 NewLoop->getHeader()->getIterator(), F->end()); 876 877 return NewLoop; 878 } 879 880 /// Duplicate non-Phi instructions from the beginning of block up to 881 /// StopAt instruction into a split block between BB and its predecessor. 882 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 883 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 884 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 885 886 assert(count(successors(PredBB), BB) == 1 && 887 "There must be a single edge between PredBB and BB!"); 888 // We are going to have to map operands from the original BB block to the new 889 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 890 // account for entry from PredBB. 891 BasicBlock::iterator BI = BB->begin(); 892 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 893 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 894 895 BasicBlock *NewBB = SplitEdge(PredBB, BB); 896 NewBB->setName(PredBB->getName() + ".split"); 897 Instruction *NewTerm = NewBB->getTerminator(); 898 899 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 900 // in the update set here. 901 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 902 {DominatorTree::Insert, PredBB, NewBB}, 903 {DominatorTree::Insert, NewBB, BB}}); 904 905 // Clone the non-phi instructions of BB into NewBB, keeping track of the 906 // mapping and using it to remap operands in the cloned instructions. 907 // Stop once we see the terminator too. This covers the case where BB's 908 // terminator gets replaced and StopAt == BB's terminator. 909 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 910 Instruction *New = BI->clone(); 911 New->setName(BI->getName()); 912 New->insertBefore(NewTerm); 913 ValueMapping[&*BI] = New; 914 915 // Remap operands to patch up intra-block references. 916 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 917 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 918 auto I = ValueMapping.find(Inst); 919 if (I != ValueMapping.end()) 920 New->setOperand(i, I->second); 921 } 922 } 923 924 return NewBB; 925 } 926 927 void llvm::cloneNoAliasScopes( 928 ArrayRef<MDNode *> NoAliasDeclScopes, 929 DenseMap<MDNode *, MDNode *> &ClonedScopes, 930 StringRef Ext, LLVMContext &Context) { 931 MDBuilder MDB(Context); 932 933 for (auto *ScopeList : NoAliasDeclScopes) { 934 for (auto &MDOperand : ScopeList->operands()) { 935 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) { 936 AliasScopeNode SNANode(MD); 937 938 std::string Name; 939 auto ScopeName = SNANode.getName(); 940 if (!ScopeName.empty()) 941 Name = (Twine(ScopeName) + ":" + Ext).str(); 942 else 943 Name = std::string(Ext); 944 945 MDNode *NewScope = MDB.createAnonymousAliasScope( 946 const_cast<MDNode *>(SNANode.getDomain()), Name); 947 ClonedScopes.insert(std::make_pair(MD, NewScope)); 948 } 949 } 950 } 951 } 952 953 void llvm::adaptNoAliasScopes( 954 Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes, 955 LLVMContext &Context) { 956 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { 957 bool NeedsReplacement = false; 958 SmallVector<Metadata *, 8> NewScopeList; 959 for (auto &MDOp : ScopeList->operands()) { 960 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) { 961 if (auto *NewMD = ClonedScopes.lookup(MD)) { 962 NewScopeList.push_back(NewMD); 963 NeedsReplacement = true; 964 continue; 965 } 966 NewScopeList.push_back(MD); 967 } 968 } 969 if (NeedsReplacement) 970 return MDNode::get(Context, NewScopeList); 971 return nullptr; 972 }; 973 974 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) 975 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) 976 Decl->setScopeList(NewScopeList); 977 978 auto replaceWhenNeeded = [&](unsigned MD_ID) { 979 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID)) 980 if (auto *NewScopeList = CloneScopeList(CSNoAlias)) 981 I->setMetadata(MD_ID, NewScopeList); 982 }; 983 replaceWhenNeeded(LLVMContext::MD_noalias); 984 replaceWhenNeeded(LLVMContext::MD_alias_scope); 985 } 986 987 void llvm::cloneAndAdaptNoAliasScopes( 988 ArrayRef<MDNode *> NoAliasDeclScopes, 989 ArrayRef<BasicBlock *> NewBlocks, LLVMContext &Context, StringRef Ext) { 990 if (NoAliasDeclScopes.empty()) 991 return; 992 993 DenseMap<MDNode *, MDNode *> ClonedScopes; 994 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 995 << NoAliasDeclScopes.size() << " node(s)\n"); 996 997 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 998 // Identify instructions using metadata that needs adaptation 999 for (BasicBlock *NewBlock : NewBlocks) 1000 for (Instruction &I : *NewBlock) 1001 adaptNoAliasScopes(&I, ClonedScopes, Context); 1002 } 1003 1004 void llvm::cloneAndAdaptNoAliasScopes( 1005 ArrayRef<MDNode *> NoAliasDeclScopes, Instruction *IStart, 1006 Instruction *IEnd, LLVMContext &Context, StringRef Ext) { 1007 if (NoAliasDeclScopes.empty()) 1008 return; 1009 1010 DenseMap<MDNode *, MDNode *> ClonedScopes; 1011 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1012 << NoAliasDeclScopes.size() << " node(s)\n"); 1013 1014 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1015 // Identify instructions using metadata that needs adaptation 1016 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?"); 1017 auto ItStart = IStart->getIterator(); 1018 auto ItEnd = IEnd->getIterator(); 1019 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range 1020 for (auto &I : llvm::make_range(ItStart, ItEnd)) 1021 adaptNoAliasScopes(&I, ClonedScopes, Context); 1022 } 1023 1024 void llvm::identifyNoAliasScopesToClone( 1025 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1026 for (BasicBlock *BB : BBs) 1027 for (Instruction &I : *BB) 1028 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1029 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1030 } 1031 1032 void llvm::identifyNoAliasScopesToClone( 1033 BasicBlock::iterator Start, BasicBlock::iterator End, 1034 SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1035 for (Instruction &I : make_range(Start, End)) 1036 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1037 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1038 } 1039