1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 #include <map> 36 using namespace llvm; 37 38 /// See comments in Cloning.h. 39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 40 ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo) { 43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 45 46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 47 48 // Loop over all instructions, and copy them over. 49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 50 II != IE; ++II) { 51 Instruction *NewInst = II->clone(); 52 if (II->hasName()) 53 NewInst->setName(II->getName()+NameSuffix); 54 NewBB->getInstList().push_back(NewInst); 55 VMap[&*II] = NewInst; // Add instruction map to value. 56 57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 59 if (isa<ConstantInt>(AI->getArraySize())) 60 hasStaticAllocas = true; 61 else 62 hasDynamicAllocas = true; 63 } 64 } 65 66 if (CodeInfo) { 67 CodeInfo->ContainsCalls |= hasCalls; 68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 70 BB != &BB->getParent()->getEntryBlock(); 71 } 72 return NewBB; 73 } 74 75 // Clone OldFunc into NewFunc, transforming the old arguments into references to 76 // VMap values. 77 // 78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 79 ValueToValueMapTy &VMap, 80 bool ModuleLevelChanges, 81 SmallVectorImpl<ReturnInst*> &Returns, 82 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 83 ValueMapTypeRemapper *TypeMapper, 84 ValueMaterializer *Materializer) { 85 assert(NameSuffix && "NameSuffix cannot be null!"); 86 87 #ifndef NDEBUG 88 for (const Argument &I : OldFunc->args()) 89 assert(VMap.count(&I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 AttributeSet OldAttrs = OldFunc->getAttributes(); 99 // Clone any argument attributes that are present in the VMap. 100 for (const Argument &OldArg : OldFunc->args()) 101 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 102 AttributeSet attrs = 103 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 104 if (attrs.getNumSlots() > 0) 105 NewArg->addAttr(attrs); 106 } 107 108 NewFunc->setAttributes( 109 NewFunc->getAttributes() 110 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 111 OldAttrs.getRetAttributes()) 112 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 113 OldAttrs.getFnAttributes())); 114 115 // Loop over all of the basic blocks in the function, cloning them as 116 // appropriate. Note that we save BE this way in order to handle cloning of 117 // recursive functions into themselves. 118 // 119 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 120 BI != BE; ++BI) { 121 const BasicBlock &BB = *BI; 122 123 // Create a new basic block and copy instructions into it! 124 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 125 126 // Add basic block mapping. 127 VMap[&BB] = CBB; 128 129 // It is only legal to clone a function if a block address within that 130 // function is never referenced outside of the function. Given that, we 131 // want to map block addresses from the old function to block addresses in 132 // the clone. (This is different from the generic ValueMapper 133 // implementation, which generates an invalid blockaddress when 134 // cloning a function.) 135 if (BB.hasAddressTaken()) { 136 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 137 const_cast<BasicBlock*>(&BB)); 138 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 139 } 140 141 // Note return instructions for the caller. 142 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 143 Returns.push_back(RI); 144 } 145 146 // Loop over all of the instructions in the function, fixing up operand 147 // references as we go. This uses VMap to do all the hard work. 148 for (Function::iterator BB = 149 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 150 BE = NewFunc->end(); 151 BB != BE; ++BB) 152 // Loop over all instructions, fixing each one as we find it... 153 for (Instruction &II : *BB) 154 RemapInstruction(&II, VMap, 155 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 156 TypeMapper, Materializer); 157 } 158 159 // Find the MDNode which corresponds to the subprogram data that described F. 160 static DISubprogram *FindSubprogram(const Function *F, 161 DebugInfoFinder &Finder) { 162 for (DISubprogram *Subprogram : Finder.subprograms()) { 163 if (Subprogram->describes(F)) 164 return Subprogram; 165 } 166 return nullptr; 167 } 168 169 // Add an operand to an existing MDNode. The new operand will be added at the 170 // back of the operand list. 171 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs, 172 Metadata *NewSP) { 173 SmallVector<Metadata *, 16> NewSPs; 174 NewSPs.reserve(SPs.size() + 1); 175 for (auto *SP : SPs) 176 NewSPs.push_back(SP); 177 NewSPs.push_back(NewSP); 178 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs)); 179 } 180 181 // Clone the module-level debug info associated with OldFunc. The cloned data 182 // will point to NewFunc instead. 183 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 184 ValueToValueMapTy &VMap) { 185 DebugInfoFinder Finder; 186 Finder.processModule(*OldFunc->getParent()); 187 188 const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 189 if (!OldSubprogramMDNode) return; 190 191 // Ensure that OldFunc appears in the map. 192 // (if it's already there it must point to NewFunc anyway) 193 VMap[OldFunc] = NewFunc; 194 auto *NewSubprogram = 195 cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap)); 196 197 for (auto *CU : Finder.compile_units()) { 198 auto Subprograms = CU->getSubprograms(); 199 // If the compile unit's function list contains the old function, it should 200 // also contain the new one. 201 for (auto *SP : Subprograms) { 202 if (SP == OldSubprogramMDNode) { 203 AddOperand(CU, Subprograms, NewSubprogram); 204 break; 205 } 206 } 207 } 208 } 209 210 /// Return a copy of the specified function, but without 211 /// embedding the function into another module. Also, any references specified 212 /// in the VMap are changed to refer to their mapped value instead of the 213 /// original one. If any of the arguments to the function are in the VMap, 214 /// the arguments are deleted from the resultant function. The VMap is 215 /// updated to include mappings from all of the instructions and basicblocks in 216 /// the function from their old to new values. 217 /// 218 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 219 bool ModuleLevelChanges, 220 ClonedCodeInfo *CodeInfo) { 221 std::vector<Type*> ArgTypes; 222 223 // The user might be deleting arguments to the function by specifying them in 224 // the VMap. If so, we need to not add the arguments to the arg ty vector 225 // 226 for (const Argument &I : F->args()) 227 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 228 ArgTypes.push_back(I.getType()); 229 230 // Create a new function type... 231 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 232 ArgTypes, F->getFunctionType()->isVarArg()); 233 234 // Create the new function... 235 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 236 237 // Loop over the arguments, copying the names of the mapped arguments over... 238 Function::arg_iterator DestI = NewF->arg_begin(); 239 for (const Argument & I : F->args()) 240 if (VMap.count(&I) == 0) { // Is this argument preserved? 241 DestI->setName(I.getName()); // Copy the name over... 242 VMap[&I] = &*DestI++; // Add mapping to VMap 243 } 244 245 if (ModuleLevelChanges) 246 CloneDebugInfoMetadata(NewF, F, VMap); 247 248 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 249 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 250 return NewF; 251 } 252 253 254 255 namespace { 256 /// This is a private class used to implement CloneAndPruneFunctionInto. 257 struct PruningFunctionCloner { 258 Function *NewFunc; 259 const Function *OldFunc; 260 ValueToValueMapTy &VMap; 261 bool ModuleLevelChanges; 262 const char *NameSuffix; 263 ClonedCodeInfo *CodeInfo; 264 CloningDirector *Director; 265 ValueMapTypeRemapper *TypeMapper; 266 ValueMaterializer *Materializer; 267 268 public: 269 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 270 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 271 const char *nameSuffix, ClonedCodeInfo *codeInfo, 272 CloningDirector *Director) 273 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 274 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 275 CodeInfo(codeInfo), Director(Director) { 276 // These are optional components. The Director may return null. 277 if (Director) { 278 TypeMapper = Director->getTypeRemapper(); 279 Materializer = Director->getValueMaterializer(); 280 } else { 281 TypeMapper = nullptr; 282 Materializer = nullptr; 283 } 284 } 285 286 /// The specified block is found to be reachable, clone it and 287 /// anything that it can reach. 288 void CloneBlock(const BasicBlock *BB, 289 BasicBlock::const_iterator StartingInst, 290 std::vector<const BasicBlock*> &ToClone); 291 }; 292 } 293 294 /// The specified block is found to be reachable, clone it and 295 /// anything that it can reach. 296 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 297 BasicBlock::const_iterator StartingInst, 298 std::vector<const BasicBlock*> &ToClone){ 299 WeakVH &BBEntry = VMap[BB]; 300 301 // Have we already cloned this block? 302 if (BBEntry) return; 303 304 // Nope, clone it now. 305 BasicBlock *NewBB; 306 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 307 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 308 309 // It is only legal to clone a function if a block address within that 310 // function is never referenced outside of the function. Given that, we 311 // want to map block addresses from the old function to block addresses in 312 // the clone. (This is different from the generic ValueMapper 313 // implementation, which generates an invalid blockaddress when 314 // cloning a function.) 315 // 316 // Note that we don't need to fix the mapping for unreachable blocks; 317 // the default mapping there is safe. 318 if (BB->hasAddressTaken()) { 319 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 320 const_cast<BasicBlock*>(BB)); 321 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 322 } 323 324 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 325 326 // Loop over all instructions, and copy them over, DCE'ing as we go. This 327 // loop doesn't include the terminator. 328 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 329 II != IE; ++II) { 330 // If the "Director" remaps the instruction, don't clone it. 331 if (Director) { 332 CloningDirector::CloningAction Action = 333 Director->handleInstruction(VMap, &*II, NewBB); 334 // If the cloning director says stop, we want to stop everything, not 335 // just break out of the loop (which would cause the terminator to be 336 // cloned). The cloning director is responsible for inserting a proper 337 // terminator into the new basic block in this case. 338 if (Action == CloningDirector::StopCloningBB) 339 return; 340 // If the cloning director says skip, continue to the next instruction. 341 // In this case, the cloning director is responsible for mapping the 342 // skipped instruction to some value that is defined in the new 343 // basic block. 344 if (Action == CloningDirector::SkipInstruction) 345 continue; 346 } 347 348 Instruction *NewInst = II->clone(); 349 350 // Eagerly remap operands to the newly cloned instruction, except for PHI 351 // nodes for which we defer processing until we update the CFG. 352 if (!isa<PHINode>(NewInst)) { 353 RemapInstruction(NewInst, VMap, 354 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 355 TypeMapper, Materializer); 356 357 // If we can simplify this instruction to some other value, simply add 358 // a mapping to that value rather than inserting a new instruction into 359 // the basic block. 360 if (Value *V = 361 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 362 // On the off-chance that this simplifies to an instruction in the old 363 // function, map it back into the new function. 364 if (Value *MappedV = VMap.lookup(V)) 365 V = MappedV; 366 367 VMap[&*II] = V; 368 delete NewInst; 369 continue; 370 } 371 } 372 373 if (II->hasName()) 374 NewInst->setName(II->getName()+NameSuffix); 375 VMap[&*II] = NewInst; // Add instruction map to value. 376 NewBB->getInstList().push_back(NewInst); 377 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 378 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 379 if (isa<ConstantInt>(AI->getArraySize())) 380 hasStaticAllocas = true; 381 else 382 hasDynamicAllocas = true; 383 } 384 } 385 386 // Finally, clone over the terminator. 387 const TerminatorInst *OldTI = BB->getTerminator(); 388 bool TerminatorDone = false; 389 if (Director) { 390 CloningDirector::CloningAction Action 391 = Director->handleInstruction(VMap, OldTI, NewBB); 392 // If the cloning director says stop, we want to stop everything, not 393 // just break out of the loop (which would cause the terminator to be 394 // cloned). The cloning director is responsible for inserting a proper 395 // terminator into the new basic block in this case. 396 if (Action == CloningDirector::StopCloningBB) 397 return; 398 if (Action == CloningDirector::CloneSuccessors) { 399 // If the director says to skip with a terminate instruction, we still 400 // need to clone this block's successors. 401 const TerminatorInst *TI = NewBB->getTerminator(); 402 for (const BasicBlock *Succ : TI->successors()) 403 ToClone.push_back(Succ); 404 return; 405 } 406 assert(Action != CloningDirector::SkipInstruction && 407 "SkipInstruction is not valid for terminators."); 408 } 409 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 410 if (BI->isConditional()) { 411 // If the condition was a known constant in the callee... 412 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 413 // Or is a known constant in the caller... 414 if (!Cond) { 415 Value *V = VMap[BI->getCondition()]; 416 Cond = dyn_cast_or_null<ConstantInt>(V); 417 } 418 419 // Constant fold to uncond branch! 420 if (Cond) { 421 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 422 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 423 ToClone.push_back(Dest); 424 TerminatorDone = true; 425 } 426 } 427 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 428 // If switching on a value known constant in the caller. 429 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 430 if (!Cond) { // Or known constant after constant prop in the callee... 431 Value *V = VMap[SI->getCondition()]; 432 Cond = dyn_cast_or_null<ConstantInt>(V); 433 } 434 if (Cond) { // Constant fold to uncond branch! 435 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 436 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 437 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 438 ToClone.push_back(Dest); 439 TerminatorDone = true; 440 } 441 } 442 443 if (!TerminatorDone) { 444 Instruction *NewInst = OldTI->clone(); 445 if (OldTI->hasName()) 446 NewInst->setName(OldTI->getName()+NameSuffix); 447 NewBB->getInstList().push_back(NewInst); 448 VMap[OldTI] = NewInst; // Add instruction map to value. 449 450 // Recursively clone any reachable successor blocks. 451 const TerminatorInst *TI = BB->getTerminator(); 452 for (const BasicBlock *Succ : TI->successors()) 453 ToClone.push_back(Succ); 454 } 455 456 if (CodeInfo) { 457 CodeInfo->ContainsCalls |= hasCalls; 458 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 459 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 460 BB != &BB->getParent()->front(); 461 } 462 } 463 464 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 465 /// entire function. Instead it starts at an instruction provided by the caller 466 /// and copies (and prunes) only the code reachable from that instruction. 467 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 468 const Instruction *StartingInst, 469 ValueToValueMapTy &VMap, 470 bool ModuleLevelChanges, 471 SmallVectorImpl<ReturnInst *> &Returns, 472 const char *NameSuffix, 473 ClonedCodeInfo *CodeInfo, 474 CloningDirector *Director) { 475 assert(NameSuffix && "NameSuffix cannot be null!"); 476 477 ValueMapTypeRemapper *TypeMapper = nullptr; 478 ValueMaterializer *Materializer = nullptr; 479 480 if (Director) { 481 TypeMapper = Director->getTypeRemapper(); 482 Materializer = Director->getValueMaterializer(); 483 } 484 485 #ifndef NDEBUG 486 // If the cloning starts at the beginning of the function, verify that 487 // the function arguments are mapped. 488 if (!StartingInst) 489 for (const Argument &II : OldFunc->args()) 490 assert(VMap.count(&II) && "No mapping from source argument specified!"); 491 #endif 492 493 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 494 NameSuffix, CodeInfo, Director); 495 const BasicBlock *StartingBB; 496 if (StartingInst) 497 StartingBB = StartingInst->getParent(); 498 else { 499 StartingBB = &OldFunc->getEntryBlock(); 500 StartingInst = &StartingBB->front(); 501 } 502 503 // Clone the entry block, and anything recursively reachable from it. 504 std::vector<const BasicBlock*> CloneWorklist; 505 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 506 while (!CloneWorklist.empty()) { 507 const BasicBlock *BB = CloneWorklist.back(); 508 CloneWorklist.pop_back(); 509 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 510 } 511 512 // Loop over all of the basic blocks in the old function. If the block was 513 // reachable, we have cloned it and the old block is now in the value map: 514 // insert it into the new function in the right order. If not, ignore it. 515 // 516 // Defer PHI resolution until rest of function is resolved. 517 SmallVector<const PHINode*, 16> PHIToResolve; 518 for (const BasicBlock &BI : *OldFunc) { 519 Value *V = VMap[&BI]; 520 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 521 if (!NewBB) continue; // Dead block. 522 523 // Add the new block to the new function. 524 NewFunc->getBasicBlockList().push_back(NewBB); 525 526 // Handle PHI nodes specially, as we have to remove references to dead 527 // blocks. 528 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 529 // PHI nodes may have been remapped to non-PHI nodes by the caller or 530 // during the cloning process. 531 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 532 if (isa<PHINode>(VMap[PN])) 533 PHIToResolve.push_back(PN); 534 else 535 break; 536 } else { 537 break; 538 } 539 } 540 541 // Finally, remap the terminator instructions, as those can't be remapped 542 // until all BBs are mapped. 543 RemapInstruction(NewBB->getTerminator(), VMap, 544 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 545 TypeMapper, Materializer); 546 } 547 548 // Defer PHI resolution until rest of function is resolved, PHI resolution 549 // requires the CFG to be up-to-date. 550 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 551 const PHINode *OPN = PHIToResolve[phino]; 552 unsigned NumPreds = OPN->getNumIncomingValues(); 553 const BasicBlock *OldBB = OPN->getParent(); 554 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 555 556 // Map operands for blocks that are live and remove operands for blocks 557 // that are dead. 558 for (; phino != PHIToResolve.size() && 559 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 560 OPN = PHIToResolve[phino]; 561 PHINode *PN = cast<PHINode>(VMap[OPN]); 562 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 563 Value *V = VMap[PN->getIncomingBlock(pred)]; 564 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 565 Value *InVal = MapValue(PN->getIncomingValue(pred), 566 VMap, 567 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 568 assert(InVal && "Unknown input value?"); 569 PN->setIncomingValue(pred, InVal); 570 PN->setIncomingBlock(pred, MappedBlock); 571 } else { 572 PN->removeIncomingValue(pred, false); 573 --pred, --e; // Revisit the next entry. 574 } 575 } 576 } 577 578 // The loop above has removed PHI entries for those blocks that are dead 579 // and has updated others. However, if a block is live (i.e. copied over) 580 // but its terminator has been changed to not go to this block, then our 581 // phi nodes will have invalid entries. Update the PHI nodes in this 582 // case. 583 PHINode *PN = cast<PHINode>(NewBB->begin()); 584 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 585 if (NumPreds != PN->getNumIncomingValues()) { 586 assert(NumPreds < PN->getNumIncomingValues()); 587 // Count how many times each predecessor comes to this block. 588 std::map<BasicBlock*, unsigned> PredCount; 589 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 590 PI != E; ++PI) 591 --PredCount[*PI]; 592 593 // Figure out how many entries to remove from each PHI. 594 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 595 ++PredCount[PN->getIncomingBlock(i)]; 596 597 // At this point, the excess predecessor entries are positive in the 598 // map. Loop over all of the PHIs and remove excess predecessor 599 // entries. 600 BasicBlock::iterator I = NewBB->begin(); 601 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 602 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 603 E = PredCount.end(); PCI != E; ++PCI) { 604 BasicBlock *Pred = PCI->first; 605 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 606 PN->removeIncomingValue(Pred, false); 607 } 608 } 609 } 610 611 // If the loops above have made these phi nodes have 0 or 1 operand, 612 // replace them with undef or the input value. We must do this for 613 // correctness, because 0-operand phis are not valid. 614 PN = cast<PHINode>(NewBB->begin()); 615 if (PN->getNumIncomingValues() == 0) { 616 BasicBlock::iterator I = NewBB->begin(); 617 BasicBlock::const_iterator OldI = OldBB->begin(); 618 while ((PN = dyn_cast<PHINode>(I++))) { 619 Value *NV = UndefValue::get(PN->getType()); 620 PN->replaceAllUsesWith(NV); 621 assert(VMap[&*OldI] == PN && "VMap mismatch"); 622 VMap[&*OldI] = NV; 623 PN->eraseFromParent(); 624 ++OldI; 625 } 626 } 627 } 628 629 // Make a second pass over the PHINodes now that all of them have been 630 // remapped into the new function, simplifying the PHINode and performing any 631 // recursive simplifications exposed. This will transparently update the 632 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 633 // two PHINodes, the iteration over the old PHIs remains valid, and the 634 // mapping will just map us to the new node (which may not even be a PHI 635 // node). 636 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 637 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 638 recursivelySimplifyInstruction(PN); 639 640 // Now that the inlined function body has been fully constructed, go through 641 // and zap unconditional fall-through branches. This happens all the time when 642 // specializing code: code specialization turns conditional branches into 643 // uncond branches, and this code folds them. 644 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 645 Function::iterator I = Begin; 646 while (I != NewFunc->end()) { 647 // Check if this block has become dead during inlining or other 648 // simplifications. Note that the first block will appear dead, as it has 649 // not yet been wired up properly. 650 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 651 I->getSinglePredecessor() == &*I)) { 652 BasicBlock *DeadBB = &*I++; 653 DeleteDeadBlock(DeadBB); 654 continue; 655 } 656 657 // We need to simplify conditional branches and switches with a constant 658 // operand. We try to prune these out when cloning, but if the 659 // simplification required looking through PHI nodes, those are only 660 // available after forming the full basic block. That may leave some here, 661 // and we still want to prune the dead code as early as possible. 662 ConstantFoldTerminator(&*I); 663 664 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 665 if (!BI || BI->isConditional()) { ++I; continue; } 666 667 BasicBlock *Dest = BI->getSuccessor(0); 668 if (!Dest->getSinglePredecessor()) { 669 ++I; continue; 670 } 671 672 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 673 // above should have zapped all of them.. 674 assert(!isa<PHINode>(Dest->begin())); 675 676 // We know all single-entry PHI nodes in the inlined function have been 677 // removed, so we just need to splice the blocks. 678 BI->eraseFromParent(); 679 680 // Make all PHI nodes that referred to Dest now refer to I as their source. 681 Dest->replaceAllUsesWith(&*I); 682 683 // Move all the instructions in the succ to the pred. 684 I->getInstList().splice(I->end(), Dest->getInstList()); 685 686 // Remove the dest block. 687 Dest->eraseFromParent(); 688 689 // Do not increment I, iteratively merge all things this block branches to. 690 } 691 692 // Make a final pass over the basic blocks from the old function to gather 693 // any return instructions which survived folding. We have to do this here 694 // because we can iteratively remove and merge returns above. 695 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 696 E = NewFunc->end(); 697 I != E; ++I) 698 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 699 Returns.push_back(RI); 700 } 701 702 703 /// This works exactly like CloneFunctionInto, 704 /// except that it does some simple constant prop and DCE on the fly. The 705 /// effect of this is to copy significantly less code in cases where (for 706 /// example) a function call with constant arguments is inlined, and those 707 /// constant arguments cause a significant amount of code in the callee to be 708 /// dead. Since this doesn't produce an exact copy of the input, it can't be 709 /// used for things like CloneFunction or CloneModule. 710 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 711 ValueToValueMapTy &VMap, 712 bool ModuleLevelChanges, 713 SmallVectorImpl<ReturnInst*> &Returns, 714 const char *NameSuffix, 715 ClonedCodeInfo *CodeInfo, 716 Instruction *TheCall) { 717 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 718 ModuleLevelChanges, Returns, NameSuffix, CodeInfo, 719 nullptr); 720 } 721 722 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 723 void llvm::remapInstructionsInBlocks( 724 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 725 // Rewrite the code to refer to itself. 726 for (auto *BB : Blocks) 727 for (auto &Inst : *BB) 728 RemapInstruction(&Inst, VMap, 729 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 730 } 731 732 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 733 /// Blocks. 734 /// 735 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 736 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 737 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 738 Loop *OrigLoop, ValueToValueMapTy &VMap, 739 const Twine &NameSuffix, LoopInfo *LI, 740 DominatorTree *DT, 741 SmallVectorImpl<BasicBlock *> &Blocks) { 742 Function *F = OrigLoop->getHeader()->getParent(); 743 Loop *ParentLoop = OrigLoop->getParentLoop(); 744 745 Loop *NewLoop = new Loop(); 746 if (ParentLoop) 747 ParentLoop->addChildLoop(NewLoop); 748 else 749 LI->addTopLevelLoop(NewLoop); 750 751 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 752 assert(OrigPH && "No preheader"); 753 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 754 // To rename the loop PHIs. 755 VMap[OrigPH] = NewPH; 756 Blocks.push_back(NewPH); 757 758 // Update LoopInfo. 759 if (ParentLoop) 760 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 761 762 // Update DominatorTree. 763 DT->addNewBlock(NewPH, LoopDomBB); 764 765 for (BasicBlock *BB : OrigLoop->getBlocks()) { 766 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 767 VMap[BB] = NewBB; 768 769 // Update LoopInfo. 770 NewLoop->addBasicBlockToLoop(NewBB, *LI); 771 772 // Update DominatorTree. 773 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 774 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 775 776 Blocks.push_back(NewBB); 777 } 778 779 // Move them physically from the end of the block list. 780 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 781 NewPH); 782 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 783 NewLoop->getHeader()->getIterator(), F->end()); 784 785 return NewLoop; 786 } 787