1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Transforms/Utils/ValueMapper.h" 34 #include <map> 35 using namespace llvm; 36 37 /// See comments in Cloning.h. 38 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 39 ValueToValueMapTy &VMap, 40 const Twine &NameSuffix, Function *F, 41 ClonedCodeInfo *CodeInfo) { 42 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 43 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 44 45 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 46 47 // Loop over all instructions, and copy them over. 48 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 49 II != IE; ++II) { 50 Instruction *NewInst = II->clone(); 51 if (II->hasName()) 52 NewInst->setName(II->getName()+NameSuffix); 53 NewBB->getInstList().push_back(NewInst); 54 VMap[II] = NewInst; // Add instruction map to value. 55 56 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 57 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 58 if (isa<ConstantInt>(AI->getArraySize())) 59 hasStaticAllocas = true; 60 else 61 hasDynamicAllocas = true; 62 } 63 } 64 65 if (CodeInfo) { 66 CodeInfo->ContainsCalls |= hasCalls; 67 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 68 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 69 BB != &BB->getParent()->getEntryBlock(); 70 } 71 return NewBB; 72 } 73 74 // Clone OldFunc into NewFunc, transforming the old arguments into references to 75 // VMap values. 76 // 77 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 78 ValueToValueMapTy &VMap, 79 bool ModuleLevelChanges, 80 SmallVectorImpl<ReturnInst*> &Returns, 81 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 82 ValueMapTypeRemapper *TypeMapper, 83 ValueMaterializer *Materializer) { 84 assert(NameSuffix && "NameSuffix cannot be null!"); 85 86 #ifndef NDEBUG 87 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 88 E = OldFunc->arg_end(); I != E; ++I) 89 assert(VMap.count(I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 AttributeSet OldAttrs = OldFunc->getAttributes(); 99 // Clone any argument attributes that are present in the VMap. 100 for (const Argument &OldArg : OldFunc->args()) 101 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 102 AttributeSet attrs = 103 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 104 if (attrs.getNumSlots() > 0) 105 NewArg->addAttr(attrs); 106 } 107 108 NewFunc->setAttributes( 109 NewFunc->getAttributes() 110 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 111 OldAttrs.getRetAttributes()) 112 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 113 OldAttrs.getFnAttributes())); 114 115 // Loop over all of the basic blocks in the function, cloning them as 116 // appropriate. Note that we save BE this way in order to handle cloning of 117 // recursive functions into themselves. 118 // 119 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 120 BI != BE; ++BI) { 121 const BasicBlock &BB = *BI; 122 123 // Create a new basic block and copy instructions into it! 124 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 125 126 // Add basic block mapping. 127 VMap[&BB] = CBB; 128 129 // It is only legal to clone a function if a block address within that 130 // function is never referenced outside of the function. Given that, we 131 // want to map block addresses from the old function to block addresses in 132 // the clone. (This is different from the generic ValueMapper 133 // implementation, which generates an invalid blockaddress when 134 // cloning a function.) 135 if (BB.hasAddressTaken()) { 136 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 137 const_cast<BasicBlock*>(&BB)); 138 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 139 } 140 141 // Note return instructions for the caller. 142 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 143 Returns.push_back(RI); 144 } 145 146 // Loop over all of the instructions in the function, fixing up operand 147 // references as we go. This uses VMap to do all the hard work. 148 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 149 BE = NewFunc->end(); BB != BE; ++BB) 150 // Loop over all instructions, fixing each one as we find it... 151 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 152 RemapInstruction(II, VMap, 153 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 154 TypeMapper, Materializer); 155 } 156 157 // Find the MDNode which corresponds to the DISubprogram data that described F. 158 static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) { 159 for (DISubprogram Subprogram : Finder.subprograms()) { 160 if (Subprogram.describes(F)) return Subprogram; 161 } 162 return nullptr; 163 } 164 165 // Add an operand to an existing MDNode. The new operand will be added at the 166 // back of the operand list. 167 static void AddOperand(DICompileUnit CU, DIArray SPs, Metadata *NewSP) { 168 SmallVector<Metadata *, 16> NewSPs; 169 NewSPs.reserve(SPs->getNumOperands() + 1); 170 for (unsigned I = 0, E = SPs->getNumOperands(); I != E; ++I) 171 NewSPs.push_back(SPs->getOperand(I)); 172 NewSPs.push_back(NewSP); 173 CU.replaceSubprograms(DIArray(MDNode::get(CU->getContext(), NewSPs))); 174 } 175 176 // Clone the module-level debug info associated with OldFunc. The cloned data 177 // will point to NewFunc instead. 178 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 179 ValueToValueMapTy &VMap) { 180 DebugInfoFinder Finder; 181 Finder.processModule(*OldFunc->getParent()); 182 183 const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 184 if (!OldSubprogramMDNode) return; 185 186 // Ensure that OldFunc appears in the map. 187 // (if it's already there it must point to NewFunc anyway) 188 VMap[OldFunc] = NewFunc; 189 DISubprogram NewSubprogram(MapMetadata(OldSubprogramMDNode, VMap)); 190 191 for (DICompileUnit CU : Finder.compile_units()) { 192 DIArray Subprograms(CU.getSubprograms()); 193 194 // If the compile unit's function list contains the old function, it should 195 // also contain the new one. 196 for (unsigned i = 0; i < Subprograms.getNumElements(); i++) { 197 if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) { 198 AddOperand(CU, Subprograms, NewSubprogram); 199 break; 200 } 201 } 202 } 203 } 204 205 /// Return a copy of the specified function, but without 206 /// embedding the function into another module. Also, any references specified 207 /// in the VMap are changed to refer to their mapped value instead of the 208 /// original one. If any of the arguments to the function are in the VMap, 209 /// the arguments are deleted from the resultant function. The VMap is 210 /// updated to include mappings from all of the instructions and basicblocks in 211 /// the function from their old to new values. 212 /// 213 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 214 bool ModuleLevelChanges, 215 ClonedCodeInfo *CodeInfo) { 216 std::vector<Type*> ArgTypes; 217 218 // The user might be deleting arguments to the function by specifying them in 219 // the VMap. If so, we need to not add the arguments to the arg ty vector 220 // 221 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 222 I != E; ++I) 223 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 224 ArgTypes.push_back(I->getType()); 225 226 // Create a new function type... 227 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 228 ArgTypes, F->getFunctionType()->isVarArg()); 229 230 // Create the new function... 231 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 232 233 // Loop over the arguments, copying the names of the mapped arguments over... 234 Function::arg_iterator DestI = NewF->arg_begin(); 235 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 236 I != E; ++I) 237 if (VMap.count(I) == 0) { // Is this argument preserved? 238 DestI->setName(I->getName()); // Copy the name over... 239 VMap[I] = DestI++; // Add mapping to VMap 240 } 241 242 if (ModuleLevelChanges) 243 CloneDebugInfoMetadata(NewF, F, VMap); 244 245 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 246 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 247 return NewF; 248 } 249 250 251 252 namespace { 253 /// This is a private class used to implement CloneAndPruneFunctionInto. 254 struct PruningFunctionCloner { 255 Function *NewFunc; 256 const Function *OldFunc; 257 ValueToValueMapTy &VMap; 258 bool ModuleLevelChanges; 259 const char *NameSuffix; 260 ClonedCodeInfo *CodeInfo; 261 CloningDirector *Director; 262 ValueMapTypeRemapper *TypeMapper; 263 ValueMaterializer *Materializer; 264 265 public: 266 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 267 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 268 const char *nameSuffix, ClonedCodeInfo *codeInfo, 269 CloningDirector *Director) 270 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 271 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 272 CodeInfo(codeInfo), Director(Director) { 273 // These are optional components. The Director may return null. 274 if (Director) { 275 TypeMapper = Director->getTypeRemapper(); 276 Materializer = Director->getValueMaterializer(); 277 } else { 278 TypeMapper = nullptr; 279 Materializer = nullptr; 280 } 281 } 282 283 /// The specified block is found to be reachable, clone it and 284 /// anything that it can reach. 285 void CloneBlock(const BasicBlock *BB, 286 BasicBlock::const_iterator StartingInst, 287 std::vector<const BasicBlock*> &ToClone); 288 }; 289 } 290 291 /// The specified block is found to be reachable, clone it and 292 /// anything that it can reach. 293 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 294 BasicBlock::const_iterator StartingInst, 295 std::vector<const BasicBlock*> &ToClone){ 296 WeakVH &BBEntry = VMap[BB]; 297 298 // Have we already cloned this block? 299 if (BBEntry) return; 300 301 // Nope, clone it now. 302 BasicBlock *NewBB; 303 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 304 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 305 306 // It is only legal to clone a function if a block address within that 307 // function is never referenced outside of the function. Given that, we 308 // want to map block addresses from the old function to block addresses in 309 // the clone. (This is different from the generic ValueMapper 310 // implementation, which generates an invalid blockaddress when 311 // cloning a function.) 312 // 313 // Note that we don't need to fix the mapping for unreachable blocks; 314 // the default mapping there is safe. 315 if (BB->hasAddressTaken()) { 316 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 317 const_cast<BasicBlock*>(BB)); 318 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 319 } 320 321 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 322 323 // Loop over all instructions, and copy them over, DCE'ing as we go. This 324 // loop doesn't include the terminator. 325 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 326 II != IE; ++II) { 327 // If the "Director" remaps the instruction, don't clone it. 328 if (Director) { 329 CloningDirector::CloningAction Action 330 = Director->handleInstruction(VMap, II, NewBB); 331 // If the cloning director says stop, we want to stop everything, not 332 // just break out of the loop (which would cause the terminator to be 333 // cloned). The cloning director is responsible for inserting a proper 334 // terminator into the new basic block in this case. 335 if (Action == CloningDirector::StopCloningBB) 336 return; 337 // If the cloning director says skip, continue to the next instruction. 338 // In this case, the cloning director is responsible for mapping the 339 // skipped instruction to some value that is defined in the new 340 // basic block. 341 if (Action == CloningDirector::SkipInstruction) 342 continue; 343 } 344 345 Instruction *NewInst = II->clone(); 346 347 // Eagerly remap operands to the newly cloned instruction, except for PHI 348 // nodes for which we defer processing until we update the CFG. 349 if (!isa<PHINode>(NewInst)) { 350 RemapInstruction(NewInst, VMap, 351 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 352 TypeMapper, Materializer); 353 354 // If we can simplify this instruction to some other value, simply add 355 // a mapping to that value rather than inserting a new instruction into 356 // the basic block. 357 if (Value *V = 358 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 359 // On the off-chance that this simplifies to an instruction in the old 360 // function, map it back into the new function. 361 if (Value *MappedV = VMap.lookup(V)) 362 V = MappedV; 363 364 VMap[II] = V; 365 delete NewInst; 366 continue; 367 } 368 } 369 370 if (II->hasName()) 371 NewInst->setName(II->getName()+NameSuffix); 372 VMap[II] = NewInst; // Add instruction map to value. 373 NewBB->getInstList().push_back(NewInst); 374 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 375 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 376 if (isa<ConstantInt>(AI->getArraySize())) 377 hasStaticAllocas = true; 378 else 379 hasDynamicAllocas = true; 380 } 381 } 382 383 // Finally, clone over the terminator. 384 const TerminatorInst *OldTI = BB->getTerminator(); 385 bool TerminatorDone = false; 386 if (Director) { 387 CloningDirector::CloningAction Action 388 = Director->handleInstruction(VMap, OldTI, NewBB); 389 // If the cloning director says stop, we want to stop everything, not 390 // just break out of the loop (which would cause the terminator to be 391 // cloned). The cloning director is responsible for inserting a proper 392 // terminator into the new basic block in this case. 393 if (Action == CloningDirector::StopCloningBB) 394 return; 395 if (Action == CloningDirector::CloneSuccessors) { 396 // If the director says to skip with a terminate instruction, we still 397 // need to clone this block's successors. 398 const TerminatorInst *TI = BB->getTerminator(); 399 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 400 ToClone.push_back(TI->getSuccessor(i)); 401 return; 402 } 403 assert(Action != CloningDirector::SkipInstruction && 404 "SkipInstruction is not valid for terminators."); 405 } 406 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 407 if (BI->isConditional()) { 408 // If the condition was a known constant in the callee... 409 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 410 // Or is a known constant in the caller... 411 if (!Cond) { 412 Value *V = VMap[BI->getCondition()]; 413 Cond = dyn_cast_or_null<ConstantInt>(V); 414 } 415 416 // Constant fold to uncond branch! 417 if (Cond) { 418 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 419 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 420 ToClone.push_back(Dest); 421 TerminatorDone = true; 422 } 423 } 424 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 425 // If switching on a value known constant in the caller. 426 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 427 if (!Cond) { // Or known constant after constant prop in the callee... 428 Value *V = VMap[SI->getCondition()]; 429 Cond = dyn_cast_or_null<ConstantInt>(V); 430 } 431 if (Cond) { // Constant fold to uncond branch! 432 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 433 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 434 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 435 ToClone.push_back(Dest); 436 TerminatorDone = true; 437 } 438 } 439 440 if (!TerminatorDone) { 441 Instruction *NewInst = OldTI->clone(); 442 if (OldTI->hasName()) 443 NewInst->setName(OldTI->getName()+NameSuffix); 444 NewBB->getInstList().push_back(NewInst); 445 VMap[OldTI] = NewInst; // Add instruction map to value. 446 447 // Recursively clone any reachable successor blocks. 448 const TerminatorInst *TI = BB->getTerminator(); 449 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 450 ToClone.push_back(TI->getSuccessor(i)); 451 } 452 453 if (CodeInfo) { 454 CodeInfo->ContainsCalls |= hasCalls; 455 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 456 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 457 BB != &BB->getParent()->front(); 458 } 459 } 460 461 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 462 /// entire function. Instead it starts at an instruction provided by the caller 463 /// and copies (and prunes) only the code reachable from that instruction. 464 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 465 const Instruction *StartingInst, 466 ValueToValueMapTy &VMap, 467 bool ModuleLevelChanges, 468 SmallVectorImpl<ReturnInst *> &Returns, 469 const char *NameSuffix, 470 ClonedCodeInfo *CodeInfo, 471 CloningDirector *Director) { 472 assert(NameSuffix && "NameSuffix cannot be null!"); 473 474 ValueMapTypeRemapper *TypeMapper = nullptr; 475 ValueMaterializer *Materializer = nullptr; 476 477 if (Director) { 478 TypeMapper = Director->getTypeRemapper(); 479 Materializer = Director->getValueMaterializer(); 480 } 481 482 #ifndef NDEBUG 483 // If the cloning starts at the begining of the function, verify that 484 // the function arguments are mapped. 485 if (!StartingInst) 486 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 487 E = OldFunc->arg_end(); II != E; ++II) 488 assert(VMap.count(II) && "No mapping from source argument specified!"); 489 #endif 490 491 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 492 NameSuffix, CodeInfo, Director); 493 const BasicBlock *StartingBB; 494 if (StartingInst) 495 StartingBB = StartingInst->getParent(); 496 else { 497 StartingBB = &OldFunc->getEntryBlock(); 498 StartingInst = StartingBB->begin(); 499 } 500 501 // Clone the entry block, and anything recursively reachable from it. 502 std::vector<const BasicBlock*> CloneWorklist; 503 PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist); 504 while (!CloneWorklist.empty()) { 505 const BasicBlock *BB = CloneWorklist.back(); 506 CloneWorklist.pop_back(); 507 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 508 } 509 510 // Loop over all of the basic blocks in the old function. If the block was 511 // reachable, we have cloned it and the old block is now in the value map: 512 // insert it into the new function in the right order. If not, ignore it. 513 // 514 // Defer PHI resolution until rest of function is resolved. 515 SmallVector<const PHINode*, 16> PHIToResolve; 516 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 517 BI != BE; ++BI) { 518 Value *V = VMap[BI]; 519 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 520 if (!NewBB) continue; // Dead block. 521 522 // Add the new block to the new function. 523 NewFunc->getBasicBlockList().push_back(NewBB); 524 525 // Handle PHI nodes specially, as we have to remove references to dead 526 // blocks. 527 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { 528 // PHI nodes may have been remapped to non-PHI nodes by the caller or 529 // during the cloning process. 530 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 531 if (isa<PHINode>(VMap[PN])) 532 PHIToResolve.push_back(PN); 533 else 534 break; 535 } else { 536 break; 537 } 538 } 539 540 // Finally, remap the terminator instructions, as those can't be remapped 541 // until all BBs are mapped. 542 RemapInstruction(NewBB->getTerminator(), VMap, 543 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 544 TypeMapper, Materializer); 545 } 546 547 // Defer PHI resolution until rest of function is resolved, PHI resolution 548 // requires the CFG to be up-to-date. 549 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 550 const PHINode *OPN = PHIToResolve[phino]; 551 unsigned NumPreds = OPN->getNumIncomingValues(); 552 const BasicBlock *OldBB = OPN->getParent(); 553 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 554 555 // Map operands for blocks that are live and remove operands for blocks 556 // that are dead. 557 for (; phino != PHIToResolve.size() && 558 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 559 OPN = PHIToResolve[phino]; 560 PHINode *PN = cast<PHINode>(VMap[OPN]); 561 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 562 Value *V = VMap[PN->getIncomingBlock(pred)]; 563 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 564 Value *InVal = MapValue(PN->getIncomingValue(pred), 565 VMap, 566 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 567 assert(InVal && "Unknown input value?"); 568 PN->setIncomingValue(pred, InVal); 569 PN->setIncomingBlock(pred, MappedBlock); 570 } else { 571 PN->removeIncomingValue(pred, false); 572 --pred, --e; // Revisit the next entry. 573 } 574 } 575 } 576 577 // The loop above has removed PHI entries for those blocks that are dead 578 // and has updated others. However, if a block is live (i.e. copied over) 579 // but its terminator has been changed to not go to this block, then our 580 // phi nodes will have invalid entries. Update the PHI nodes in this 581 // case. 582 PHINode *PN = cast<PHINode>(NewBB->begin()); 583 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 584 if (NumPreds != PN->getNumIncomingValues()) { 585 assert(NumPreds < PN->getNumIncomingValues()); 586 // Count how many times each predecessor comes to this block. 587 std::map<BasicBlock*, unsigned> PredCount; 588 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 589 PI != E; ++PI) 590 --PredCount[*PI]; 591 592 // Figure out how many entries to remove from each PHI. 593 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 594 ++PredCount[PN->getIncomingBlock(i)]; 595 596 // At this point, the excess predecessor entries are positive in the 597 // map. Loop over all of the PHIs and remove excess predecessor 598 // entries. 599 BasicBlock::iterator I = NewBB->begin(); 600 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 601 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 602 E = PredCount.end(); PCI != E; ++PCI) { 603 BasicBlock *Pred = PCI->first; 604 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 605 PN->removeIncomingValue(Pred, false); 606 } 607 } 608 } 609 610 // If the loops above have made these phi nodes have 0 or 1 operand, 611 // replace them with undef or the input value. We must do this for 612 // correctness, because 0-operand phis are not valid. 613 PN = cast<PHINode>(NewBB->begin()); 614 if (PN->getNumIncomingValues() == 0) { 615 BasicBlock::iterator I = NewBB->begin(); 616 BasicBlock::const_iterator OldI = OldBB->begin(); 617 while ((PN = dyn_cast<PHINode>(I++))) { 618 Value *NV = UndefValue::get(PN->getType()); 619 PN->replaceAllUsesWith(NV); 620 assert(VMap[OldI] == PN && "VMap mismatch"); 621 VMap[OldI] = NV; 622 PN->eraseFromParent(); 623 ++OldI; 624 } 625 } 626 } 627 628 // Make a second pass over the PHINodes now that all of them have been 629 // remapped into the new function, simplifying the PHINode and performing any 630 // recursive simplifications exposed. This will transparently update the 631 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 632 // two PHINodes, the iteration over the old PHIs remains valid, and the 633 // mapping will just map us to the new node (which may not even be a PHI 634 // node). 635 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 636 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 637 recursivelySimplifyInstruction(PN); 638 639 // Now that the inlined function body has been fully constructed, go through 640 // and zap unconditional fall-through branches. This happens all the time when 641 // specializing code: code specialization turns conditional branches into 642 // uncond branches, and this code folds them. 643 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]); 644 Function::iterator I = Begin; 645 while (I != NewFunc->end()) { 646 // Check if this block has become dead during inlining or other 647 // simplifications. Note that the first block will appear dead, as it has 648 // not yet been wired up properly. 649 if (I != Begin && (pred_begin(I) == pred_end(I) || 650 I->getSinglePredecessor() == I)) { 651 BasicBlock *DeadBB = I++; 652 DeleteDeadBlock(DeadBB); 653 continue; 654 } 655 656 // We need to simplify conditional branches and switches with a constant 657 // operand. We try to prune these out when cloning, but if the 658 // simplification required looking through PHI nodes, those are only 659 // available after forming the full basic block. That may leave some here, 660 // and we still want to prune the dead code as early as possible. 661 ConstantFoldTerminator(I); 662 663 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 664 if (!BI || BI->isConditional()) { ++I; continue; } 665 666 BasicBlock *Dest = BI->getSuccessor(0); 667 if (!Dest->getSinglePredecessor()) { 668 ++I; continue; 669 } 670 671 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 672 // above should have zapped all of them.. 673 assert(!isa<PHINode>(Dest->begin())); 674 675 // We know all single-entry PHI nodes in the inlined function have been 676 // removed, so we just need to splice the blocks. 677 BI->eraseFromParent(); 678 679 // Make all PHI nodes that referred to Dest now refer to I as their source. 680 Dest->replaceAllUsesWith(I); 681 682 // Move all the instructions in the succ to the pred. 683 I->getInstList().splice(I->end(), Dest->getInstList()); 684 685 // Remove the dest block. 686 Dest->eraseFromParent(); 687 688 // Do not increment I, iteratively merge all things this block branches to. 689 } 690 691 // Make a final pass over the basic blocks from the old function to gather 692 // any return instructions which survived folding. We have to do this here 693 // because we can iteratively remove and merge returns above. 694 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]), 695 E = NewFunc->end(); 696 I != E; ++I) 697 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 698 Returns.push_back(RI); 699 } 700 701 702 /// This works exactly like CloneFunctionInto, 703 /// except that it does some simple constant prop and DCE on the fly. The 704 /// effect of this is to copy significantly less code in cases where (for 705 /// example) a function call with constant arguments is inlined, and those 706 /// constant arguments cause a significant amount of code in the callee to be 707 /// dead. Since this doesn't produce an exact copy of the input, it can't be 708 /// used for things like CloneFunction or CloneModule. 709 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 710 ValueToValueMapTy &VMap, 711 bool ModuleLevelChanges, 712 SmallVectorImpl<ReturnInst*> &Returns, 713 const char *NameSuffix, 714 ClonedCodeInfo *CodeInfo, 715 Instruction *TheCall) { 716 CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap, 717 ModuleLevelChanges, Returns, NameSuffix, CodeInfo, 718 nullptr); 719 } 720