1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo, 43 DebugInfoFinder *DIFinder) { 44 DenseMap<const MDNode *, MDNode *> Cache; 45 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 46 if (BB->hasName()) 47 NewBB->setName(BB->getName() + NameSuffix); 48 49 bool hasCalls = false, hasDynamicAllocas = false; 50 Module *TheModule = F ? F->getParent() : nullptr; 51 52 // Loop over all instructions, and copy them over. 53 for (const Instruction &I : *BB) { 54 if (DIFinder && TheModule) 55 DIFinder->processInstruction(*TheModule, I); 56 57 Instruction *NewInst = I.clone(); 58 if (I.hasName()) 59 NewInst->setName(I.getName() + NameSuffix); 60 NewBB->getInstList().push_back(NewInst); 61 VMap[&I] = NewInst; // Add instruction map to value. 62 63 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); 64 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 65 if (!AI->isStaticAlloca()) { 66 hasDynamicAllocas = true; 67 } 68 } 69 } 70 71 if (CodeInfo) { 72 CodeInfo->ContainsCalls |= hasCalls; 73 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 74 } 75 return NewBB; 76 } 77 78 // Clone OldFunc into NewFunc, transforming the old arguments into references to 79 // VMap values. 80 // 81 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 82 ValueToValueMapTy &VMap, 83 bool ModuleLevelChanges, 84 SmallVectorImpl<ReturnInst*> &Returns, 85 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 86 ValueMapTypeRemapper *TypeMapper, 87 ValueMaterializer *Materializer) { 88 assert(NameSuffix && "NameSuffix cannot be null!"); 89 90 #ifndef NDEBUG 91 for (const Argument &I : OldFunc->args()) 92 assert(VMap.count(&I) && "No mapping from source argument specified!"); 93 #endif 94 95 // Copy all attributes other than those stored in the AttributeList. We need 96 // to remap the parameter indices of the AttributeList. 97 AttributeList NewAttrs = NewFunc->getAttributes(); 98 NewFunc->copyAttributesFrom(OldFunc); 99 NewFunc->setAttributes(NewAttrs); 100 101 // Fix up the personality function that got copied over. 102 if (OldFunc->hasPersonalityFn()) 103 NewFunc->setPersonalityFn( 104 MapValue(OldFunc->getPersonalityFn(), VMap, 105 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 106 TypeMapper, Materializer)); 107 108 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 109 AttributeList OldAttrs = OldFunc->getAttributes(); 110 111 // Clone any argument attributes that are present in the VMap. 112 for (const Argument &OldArg : OldFunc->args()) { 113 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 114 NewArgAttrs[NewArg->getArgNo()] = 115 OldAttrs.getParamAttributes(OldArg.getArgNo()); 116 } 117 } 118 119 NewFunc->setAttributes( 120 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 121 OldAttrs.getRetAttributes(), NewArgAttrs)); 122 123 bool MustCloneSP = 124 OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); 125 DISubprogram *SP = OldFunc->getSubprogram(); 126 if (SP) { 127 assert(!MustCloneSP || ModuleLevelChanges); 128 // Add mappings for some DebugInfo nodes that we don't want duplicated 129 // even if they're distinct. 130 auto &MD = VMap.MD(); 131 MD[SP->getUnit()].reset(SP->getUnit()); 132 MD[SP->getType()].reset(SP->getType()); 133 MD[SP->getFile()].reset(SP->getFile()); 134 // If we're not cloning into the same module, no need to clone the 135 // subprogram 136 if (!MustCloneSP) 137 MD[SP].reset(SP); 138 } 139 140 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 141 OldFunc->getAllMetadata(MDs); 142 for (auto MD : MDs) { 143 NewFunc->addMetadata( 144 MD.first, 145 *MapMetadata(MD.second, VMap, 146 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 147 TypeMapper, Materializer)); 148 } 149 150 // Everything else beyond this point deals with function instructions, 151 // so if we are dealing with a function declaration, we're done. 152 if (OldFunc->isDeclaration()) 153 return; 154 155 // When we remap instructions, we want to avoid duplicating inlined 156 // DISubprograms, so record all subprograms we find as we duplicate 157 // instructions and then freeze them in the MD map. 158 // We also record information about dbg.value and dbg.declare to avoid 159 // duplicating the types. 160 DebugInfoFinder DIFinder; 161 162 // Loop over all of the basic blocks in the function, cloning them as 163 // appropriate. Note that we save BE this way in order to handle cloning of 164 // recursive functions into themselves. 165 // 166 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 167 BI != BE; ++BI) { 168 const BasicBlock &BB = *BI; 169 170 // Create a new basic block and copy instructions into it! 171 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 172 ModuleLevelChanges ? &DIFinder : nullptr); 173 174 // Add basic block mapping. 175 VMap[&BB] = CBB; 176 177 // It is only legal to clone a function if a block address within that 178 // function is never referenced outside of the function. Given that, we 179 // want to map block addresses from the old function to block addresses in 180 // the clone. (This is different from the generic ValueMapper 181 // implementation, which generates an invalid blockaddress when 182 // cloning a function.) 183 if (BB.hasAddressTaken()) { 184 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 185 const_cast<BasicBlock*>(&BB)); 186 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 187 } 188 189 // Note return instructions for the caller. 190 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 191 Returns.push_back(RI); 192 } 193 194 for (DISubprogram *ISP : DIFinder.subprograms()) 195 if (ISP != SP) 196 VMap.MD()[ISP].reset(ISP); 197 198 for (DICompileUnit *CU : DIFinder.compile_units()) 199 VMap.MD()[CU].reset(CU); 200 201 for (DIType *Type : DIFinder.types()) 202 VMap.MD()[Type].reset(Type); 203 204 // Loop over all of the instructions in the function, fixing up operand 205 // references as we go. This uses VMap to do all the hard work. 206 for (Function::iterator BB = 207 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 208 BE = NewFunc->end(); 209 BB != BE; ++BB) 210 // Loop over all instructions, fixing each one as we find it... 211 for (Instruction &II : *BB) 212 RemapInstruction(&II, VMap, 213 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 214 TypeMapper, Materializer); 215 216 // Register all DICompileUnits of the old parent module in the new parent module 217 auto* OldModule = OldFunc->getParent(); 218 auto* NewModule = NewFunc->getParent(); 219 if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) { 220 auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 221 // Avoid multiple insertions of the same DICompileUnit to NMD. 222 SmallPtrSet<const void*, 8> Visited; 223 for (auto* Operand : NMD->operands()) 224 Visited.insert(Operand); 225 for (auto* Unit : DIFinder.compile_units()) 226 // VMap.MD()[Unit] == Unit 227 if (Visited.insert(Unit).second) 228 NMD->addOperand(Unit); 229 } 230 } 231 232 /// Return a copy of the specified function and add it to that function's 233 /// module. Also, any references specified in the VMap are changed to refer to 234 /// their mapped value instead of the original one. If any of the arguments to 235 /// the function are in the VMap, the arguments are deleted from the resultant 236 /// function. The VMap is updated to include mappings from all of the 237 /// instructions and basicblocks in the function from their old to new values. 238 /// 239 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 240 ClonedCodeInfo *CodeInfo) { 241 std::vector<Type*> ArgTypes; 242 243 // The user might be deleting arguments to the function by specifying them in 244 // the VMap. If so, we need to not add the arguments to the arg ty vector 245 // 246 for (const Argument &I : F->args()) 247 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 248 ArgTypes.push_back(I.getType()); 249 250 // Create a new function type... 251 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 252 ArgTypes, F->getFunctionType()->isVarArg()); 253 254 // Create the new function... 255 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 256 F->getName(), F->getParent()); 257 258 // Loop over the arguments, copying the names of the mapped arguments over... 259 Function::arg_iterator DestI = NewF->arg_begin(); 260 for (const Argument & I : F->args()) 261 if (VMap.count(&I) == 0) { // Is this argument preserved? 262 DestI->setName(I.getName()); // Copy the name over... 263 VMap[&I] = &*DestI++; // Add mapping to VMap 264 } 265 266 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 267 CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", 268 CodeInfo); 269 270 return NewF; 271 } 272 273 274 275 namespace { 276 /// This is a private class used to implement CloneAndPruneFunctionInto. 277 struct PruningFunctionCloner { 278 Function *NewFunc; 279 const Function *OldFunc; 280 ValueToValueMapTy &VMap; 281 bool ModuleLevelChanges; 282 const char *NameSuffix; 283 ClonedCodeInfo *CodeInfo; 284 285 public: 286 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 287 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 288 const char *nameSuffix, ClonedCodeInfo *codeInfo) 289 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 290 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 291 CodeInfo(codeInfo) {} 292 293 /// The specified block is found to be reachable, clone it and 294 /// anything that it can reach. 295 void CloneBlock(const BasicBlock *BB, 296 BasicBlock::const_iterator StartingInst, 297 std::vector<const BasicBlock*> &ToClone); 298 }; 299 } 300 301 /// The specified block is found to be reachable, clone it and 302 /// anything that it can reach. 303 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 304 BasicBlock::const_iterator StartingInst, 305 std::vector<const BasicBlock*> &ToClone){ 306 WeakTrackingVH &BBEntry = VMap[BB]; 307 308 // Have we already cloned this block? 309 if (BBEntry) return; 310 311 // Nope, clone it now. 312 BasicBlock *NewBB; 313 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 314 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 315 316 // It is only legal to clone a function if a block address within that 317 // function is never referenced outside of the function. Given that, we 318 // want to map block addresses from the old function to block addresses in 319 // the clone. (This is different from the generic ValueMapper 320 // implementation, which generates an invalid blockaddress when 321 // cloning a function.) 322 // 323 // Note that we don't need to fix the mapping for unreachable blocks; 324 // the default mapping there is safe. 325 if (BB->hasAddressTaken()) { 326 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 327 const_cast<BasicBlock*>(BB)); 328 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 329 } 330 331 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 332 333 // Loop over all instructions, and copy them over, DCE'ing as we go. This 334 // loop doesn't include the terminator. 335 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 336 II != IE; ++II) { 337 338 Instruction *NewInst = II->clone(); 339 340 // Eagerly remap operands to the newly cloned instruction, except for PHI 341 // nodes for which we defer processing until we update the CFG. 342 if (!isa<PHINode>(NewInst)) { 343 RemapInstruction(NewInst, VMap, 344 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 345 346 // If we can simplify this instruction to some other value, simply add 347 // a mapping to that value rather than inserting a new instruction into 348 // the basic block. 349 if (Value *V = 350 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 351 // On the off-chance that this simplifies to an instruction in the old 352 // function, map it back into the new function. 353 if (NewFunc != OldFunc) 354 if (Value *MappedV = VMap.lookup(V)) 355 V = MappedV; 356 357 if (!NewInst->mayHaveSideEffects()) { 358 VMap[&*II] = V; 359 NewInst->deleteValue(); 360 continue; 361 } 362 } 363 } 364 365 if (II->hasName()) 366 NewInst->setName(II->getName()+NameSuffix); 367 VMap[&*II] = NewInst; // Add instruction map to value. 368 NewBB->getInstList().push_back(NewInst); 369 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 370 371 if (CodeInfo) 372 if (auto *CB = dyn_cast<CallBase>(&*II)) 373 if (CB->hasOperandBundles()) 374 CodeInfo->OperandBundleCallSites.push_back(NewInst); 375 376 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 377 if (isa<ConstantInt>(AI->getArraySize())) 378 hasStaticAllocas = true; 379 else 380 hasDynamicAllocas = true; 381 } 382 } 383 384 // Finally, clone over the terminator. 385 const Instruction *OldTI = BB->getTerminator(); 386 bool TerminatorDone = false; 387 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 388 if (BI->isConditional()) { 389 // If the condition was a known constant in the callee... 390 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 391 // Or is a known constant in the caller... 392 if (!Cond) { 393 Value *V = VMap.lookup(BI->getCondition()); 394 Cond = dyn_cast_or_null<ConstantInt>(V); 395 } 396 397 // Constant fold to uncond branch! 398 if (Cond) { 399 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 400 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 401 ToClone.push_back(Dest); 402 TerminatorDone = true; 403 } 404 } 405 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 406 // If switching on a value known constant in the caller. 407 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 408 if (!Cond) { // Or known constant after constant prop in the callee... 409 Value *V = VMap.lookup(SI->getCondition()); 410 Cond = dyn_cast_or_null<ConstantInt>(V); 411 } 412 if (Cond) { // Constant fold to uncond branch! 413 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 414 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 415 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 416 ToClone.push_back(Dest); 417 TerminatorDone = true; 418 } 419 } 420 421 if (!TerminatorDone) { 422 Instruction *NewInst = OldTI->clone(); 423 if (OldTI->hasName()) 424 NewInst->setName(OldTI->getName()+NameSuffix); 425 NewBB->getInstList().push_back(NewInst); 426 VMap[OldTI] = NewInst; // Add instruction map to value. 427 428 if (CodeInfo) 429 if (auto *CB = dyn_cast<CallBase>(OldTI)) 430 if (CB->hasOperandBundles()) 431 CodeInfo->OperandBundleCallSites.push_back(NewInst); 432 433 // Recursively clone any reachable successor blocks. 434 const Instruction *TI = BB->getTerminator(); 435 for (const BasicBlock *Succ : successors(TI)) 436 ToClone.push_back(Succ); 437 } 438 439 if (CodeInfo) { 440 CodeInfo->ContainsCalls |= hasCalls; 441 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 442 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 443 BB != &BB->getParent()->front(); 444 } 445 } 446 447 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 448 /// entire function. Instead it starts at an instruction provided by the caller 449 /// and copies (and prunes) only the code reachable from that instruction. 450 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 451 const Instruction *StartingInst, 452 ValueToValueMapTy &VMap, 453 bool ModuleLevelChanges, 454 SmallVectorImpl<ReturnInst *> &Returns, 455 const char *NameSuffix, 456 ClonedCodeInfo *CodeInfo) { 457 assert(NameSuffix && "NameSuffix cannot be null!"); 458 459 ValueMapTypeRemapper *TypeMapper = nullptr; 460 ValueMaterializer *Materializer = nullptr; 461 462 #ifndef NDEBUG 463 // If the cloning starts at the beginning of the function, verify that 464 // the function arguments are mapped. 465 if (!StartingInst) 466 for (const Argument &II : OldFunc->args()) 467 assert(VMap.count(&II) && "No mapping from source argument specified!"); 468 #endif 469 470 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 471 NameSuffix, CodeInfo); 472 const BasicBlock *StartingBB; 473 if (StartingInst) 474 StartingBB = StartingInst->getParent(); 475 else { 476 StartingBB = &OldFunc->getEntryBlock(); 477 StartingInst = &StartingBB->front(); 478 } 479 480 // Clone the entry block, and anything recursively reachable from it. 481 std::vector<const BasicBlock*> CloneWorklist; 482 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 483 while (!CloneWorklist.empty()) { 484 const BasicBlock *BB = CloneWorklist.back(); 485 CloneWorklist.pop_back(); 486 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 487 } 488 489 // Loop over all of the basic blocks in the old function. If the block was 490 // reachable, we have cloned it and the old block is now in the value map: 491 // insert it into the new function in the right order. If not, ignore it. 492 // 493 // Defer PHI resolution until rest of function is resolved. 494 SmallVector<const PHINode*, 16> PHIToResolve; 495 for (const BasicBlock &BI : *OldFunc) { 496 Value *V = VMap.lookup(&BI); 497 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 498 if (!NewBB) continue; // Dead block. 499 500 // Add the new block to the new function. 501 NewFunc->getBasicBlockList().push_back(NewBB); 502 503 // Handle PHI nodes specially, as we have to remove references to dead 504 // blocks. 505 for (const PHINode &PN : BI.phis()) { 506 // PHI nodes may have been remapped to non-PHI nodes by the caller or 507 // during the cloning process. 508 if (isa<PHINode>(VMap[&PN])) 509 PHIToResolve.push_back(&PN); 510 else 511 break; 512 } 513 514 // Finally, remap the terminator instructions, as those can't be remapped 515 // until all BBs are mapped. 516 RemapInstruction(NewBB->getTerminator(), VMap, 517 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 518 TypeMapper, Materializer); 519 } 520 521 // Defer PHI resolution until rest of function is resolved, PHI resolution 522 // requires the CFG to be up-to-date. 523 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 524 const PHINode *OPN = PHIToResolve[phino]; 525 unsigned NumPreds = OPN->getNumIncomingValues(); 526 const BasicBlock *OldBB = OPN->getParent(); 527 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 528 529 // Map operands for blocks that are live and remove operands for blocks 530 // that are dead. 531 for (; phino != PHIToResolve.size() && 532 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 533 OPN = PHIToResolve[phino]; 534 PHINode *PN = cast<PHINode>(VMap[OPN]); 535 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 536 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 537 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 538 Value *InVal = MapValue(PN->getIncomingValue(pred), 539 VMap, 540 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 541 assert(InVal && "Unknown input value?"); 542 PN->setIncomingValue(pred, InVal); 543 PN->setIncomingBlock(pred, MappedBlock); 544 } else { 545 PN->removeIncomingValue(pred, false); 546 --pred; // Revisit the next entry. 547 --e; 548 } 549 } 550 } 551 552 // The loop above has removed PHI entries for those blocks that are dead 553 // and has updated others. However, if a block is live (i.e. copied over) 554 // but its terminator has been changed to not go to this block, then our 555 // phi nodes will have invalid entries. Update the PHI nodes in this 556 // case. 557 PHINode *PN = cast<PHINode>(NewBB->begin()); 558 NumPreds = pred_size(NewBB); 559 if (NumPreds != PN->getNumIncomingValues()) { 560 assert(NumPreds < PN->getNumIncomingValues()); 561 // Count how many times each predecessor comes to this block. 562 std::map<BasicBlock*, unsigned> PredCount; 563 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 564 PI != E; ++PI) 565 --PredCount[*PI]; 566 567 // Figure out how many entries to remove from each PHI. 568 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 569 ++PredCount[PN->getIncomingBlock(i)]; 570 571 // At this point, the excess predecessor entries are positive in the 572 // map. Loop over all of the PHIs and remove excess predecessor 573 // entries. 574 BasicBlock::iterator I = NewBB->begin(); 575 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 576 for (const auto &PCI : PredCount) { 577 BasicBlock *Pred = PCI.first; 578 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 579 PN->removeIncomingValue(Pred, false); 580 } 581 } 582 } 583 584 // If the loops above have made these phi nodes have 0 or 1 operand, 585 // replace them with undef or the input value. We must do this for 586 // correctness, because 0-operand phis are not valid. 587 PN = cast<PHINode>(NewBB->begin()); 588 if (PN->getNumIncomingValues() == 0) { 589 BasicBlock::iterator I = NewBB->begin(); 590 BasicBlock::const_iterator OldI = OldBB->begin(); 591 while ((PN = dyn_cast<PHINode>(I++))) { 592 Value *NV = UndefValue::get(PN->getType()); 593 PN->replaceAllUsesWith(NV); 594 assert(VMap[&*OldI] == PN && "VMap mismatch"); 595 VMap[&*OldI] = NV; 596 PN->eraseFromParent(); 597 ++OldI; 598 } 599 } 600 } 601 602 // Make a second pass over the PHINodes now that all of them have been 603 // remapped into the new function, simplifying the PHINode and performing any 604 // recursive simplifications exposed. This will transparently update the 605 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 606 // two PHINodes, the iteration over the old PHIs remains valid, and the 607 // mapping will just map us to the new node (which may not even be a PHI 608 // node). 609 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 610 SmallSetVector<const Value *, 8> Worklist; 611 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 612 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 613 Worklist.insert(PHIToResolve[Idx]); 614 615 // Note that we must test the size on each iteration, the worklist can grow. 616 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 617 const Value *OrigV = Worklist[Idx]; 618 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 619 if (!I) 620 continue; 621 622 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 623 // the CGSCC. 624 CallBase *CB = dyn_cast<CallBase>(I); 625 if (CB && CB->getCalledFunction() && 626 !CB->getCalledFunction()->isIntrinsic()) 627 continue; 628 629 // See if this instruction simplifies. 630 Value *SimpleV = SimplifyInstruction(I, DL); 631 if (!SimpleV) 632 continue; 633 634 // Stash away all the uses of the old instruction so we can check them for 635 // recursive simplifications after a RAUW. This is cheaper than checking all 636 // uses of To on the recursive step in most cases. 637 for (const User *U : OrigV->users()) 638 Worklist.insert(cast<Instruction>(U)); 639 640 // Replace the instruction with its simplified value. 641 I->replaceAllUsesWith(SimpleV); 642 643 // If the original instruction had no side effects, remove it. 644 if (isInstructionTriviallyDead(I)) 645 I->eraseFromParent(); 646 else 647 VMap[OrigV] = I; 648 } 649 650 // Now that the inlined function body has been fully constructed, go through 651 // and zap unconditional fall-through branches. This happens all the time when 652 // specializing code: code specialization turns conditional branches into 653 // uncond branches, and this code folds them. 654 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 655 Function::iterator I = Begin; 656 while (I != NewFunc->end()) { 657 // We need to simplify conditional branches and switches with a constant 658 // operand. We try to prune these out when cloning, but if the 659 // simplification required looking through PHI nodes, those are only 660 // available after forming the full basic block. That may leave some here, 661 // and we still want to prune the dead code as early as possible. 662 // 663 // Do the folding before we check if the block is dead since we want code 664 // like 665 // bb: 666 // br i1 undef, label %bb, label %bb 667 // to be simplified to 668 // bb: 669 // br label %bb 670 // before we call I->getSinglePredecessor(). 671 ConstantFoldTerminator(&*I); 672 673 // Check if this block has become dead during inlining or other 674 // simplifications. Note that the first block will appear dead, as it has 675 // not yet been wired up properly. 676 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 677 I->getSinglePredecessor() == &*I)) { 678 BasicBlock *DeadBB = &*I++; 679 DeleteDeadBlock(DeadBB); 680 continue; 681 } 682 683 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 684 if (!BI || BI->isConditional()) { ++I; continue; } 685 686 BasicBlock *Dest = BI->getSuccessor(0); 687 if (!Dest->getSinglePredecessor()) { 688 ++I; continue; 689 } 690 691 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 692 // above should have zapped all of them.. 693 assert(!isa<PHINode>(Dest->begin())); 694 695 // We know all single-entry PHI nodes in the inlined function have been 696 // removed, so we just need to splice the blocks. 697 BI->eraseFromParent(); 698 699 // Make all PHI nodes that referred to Dest now refer to I as their source. 700 Dest->replaceAllUsesWith(&*I); 701 702 // Move all the instructions in the succ to the pred. 703 I->getInstList().splice(I->end(), Dest->getInstList()); 704 705 // Remove the dest block. 706 Dest->eraseFromParent(); 707 708 // Do not increment I, iteratively merge all things this block branches to. 709 } 710 711 // Make a final pass over the basic blocks from the old function to gather 712 // any return instructions which survived folding. We have to do this here 713 // because we can iteratively remove and merge returns above. 714 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 715 E = NewFunc->end(); 716 I != E; ++I) 717 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 718 Returns.push_back(RI); 719 } 720 721 722 /// This works exactly like CloneFunctionInto, 723 /// except that it does some simple constant prop and DCE on the fly. The 724 /// effect of this is to copy significantly less code in cases where (for 725 /// example) a function call with constant arguments is inlined, and those 726 /// constant arguments cause a significant amount of code in the callee to be 727 /// dead. Since this doesn't produce an exact copy of the input, it can't be 728 /// used for things like CloneFunction or CloneModule. 729 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 730 ValueToValueMapTy &VMap, 731 bool ModuleLevelChanges, 732 SmallVectorImpl<ReturnInst*> &Returns, 733 const char *NameSuffix, 734 ClonedCodeInfo *CodeInfo, 735 Instruction *TheCall) { 736 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 737 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 738 } 739 740 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 741 void llvm::remapInstructionsInBlocks( 742 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 743 // Rewrite the code to refer to itself. 744 for (auto *BB : Blocks) 745 for (auto &Inst : *BB) 746 RemapInstruction(&Inst, VMap, 747 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 748 } 749 750 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 751 /// Blocks. 752 /// 753 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 754 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 755 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 756 Loop *OrigLoop, ValueToValueMapTy &VMap, 757 const Twine &NameSuffix, LoopInfo *LI, 758 DominatorTree *DT, 759 SmallVectorImpl<BasicBlock *> &Blocks) { 760 Function *F = OrigLoop->getHeader()->getParent(); 761 Loop *ParentLoop = OrigLoop->getParentLoop(); 762 DenseMap<Loop *, Loop *> LMap; 763 764 Loop *NewLoop = LI->AllocateLoop(); 765 LMap[OrigLoop] = NewLoop; 766 if (ParentLoop) 767 ParentLoop->addChildLoop(NewLoop); 768 else 769 LI->addTopLevelLoop(NewLoop); 770 771 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 772 assert(OrigPH && "No preheader"); 773 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 774 // To rename the loop PHIs. 775 VMap[OrigPH] = NewPH; 776 Blocks.push_back(NewPH); 777 778 // Update LoopInfo. 779 if (ParentLoop) 780 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 781 782 // Update DominatorTree. 783 DT->addNewBlock(NewPH, LoopDomBB); 784 785 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 786 Loop *&NewLoop = LMap[CurLoop]; 787 if (!NewLoop) { 788 NewLoop = LI->AllocateLoop(); 789 790 // Establish the parent/child relationship. 791 Loop *OrigParent = CurLoop->getParentLoop(); 792 assert(OrigParent && "Could not find the original parent loop"); 793 Loop *NewParentLoop = LMap[OrigParent]; 794 assert(NewParentLoop && "Could not find the new parent loop"); 795 796 NewParentLoop->addChildLoop(NewLoop); 797 } 798 } 799 800 for (BasicBlock *BB : OrigLoop->getBlocks()) { 801 Loop *CurLoop = LI->getLoopFor(BB); 802 Loop *&NewLoop = LMap[CurLoop]; 803 assert(NewLoop && "Expecting new loop to be allocated"); 804 805 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 806 VMap[BB] = NewBB; 807 808 // Update LoopInfo. 809 NewLoop->addBasicBlockToLoop(NewBB, *LI); 810 811 // Add DominatorTree node. After seeing all blocks, update to correct 812 // IDom. 813 DT->addNewBlock(NewBB, NewPH); 814 815 Blocks.push_back(NewBB); 816 } 817 818 for (BasicBlock *BB : OrigLoop->getBlocks()) { 819 // Update loop headers. 820 Loop *CurLoop = LI->getLoopFor(BB); 821 if (BB == CurLoop->getHeader()) 822 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); 823 824 // Update DominatorTree. 825 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 826 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 827 cast<BasicBlock>(VMap[IDomBB])); 828 } 829 830 // Move them physically from the end of the block list. 831 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 832 NewPH); 833 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 834 NewLoop->getHeader()->getIterator(), F->end()); 835 836 return NewLoop; 837 } 838 839 /// Duplicate non-Phi instructions from the beginning of block up to 840 /// StopAt instruction into a split block between BB and its predecessor. 841 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 842 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 843 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 844 845 assert(count(successors(PredBB), BB) == 1 && 846 "There must be a single edge between PredBB and BB!"); 847 // We are going to have to map operands from the original BB block to the new 848 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 849 // account for entry from PredBB. 850 BasicBlock::iterator BI = BB->begin(); 851 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 852 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 853 854 BasicBlock *NewBB = SplitEdge(PredBB, BB); 855 NewBB->setName(PredBB->getName() + ".split"); 856 Instruction *NewTerm = NewBB->getTerminator(); 857 858 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 859 // in the update set here. 860 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 861 {DominatorTree::Insert, PredBB, NewBB}, 862 {DominatorTree::Insert, NewBB, BB}}); 863 864 // Clone the non-phi instructions of BB into NewBB, keeping track of the 865 // mapping and using it to remap operands in the cloned instructions. 866 // Stop once we see the terminator too. This covers the case where BB's 867 // terminator gets replaced and StopAt == BB's terminator. 868 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 869 Instruction *New = BI->clone(); 870 New->setName(BI->getName()); 871 New->insertBefore(NewTerm); 872 ValueMapping[&*BI] = New; 873 874 // Remap operands to patch up intra-block references. 875 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 876 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 877 auto I = ValueMapping.find(Inst); 878 if (I != ValueMapping.end()) 879 New->setOperand(i, I->second); 880 } 881 } 882 883 return NewBB; 884 } 885