1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 #include <map> 36 using namespace llvm; 37 38 /// See comments in Cloning.h. 39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 40 ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo) { 43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 45 46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 47 48 // Loop over all instructions, and copy them over. 49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 50 II != IE; ++II) { 51 Instruction *NewInst = II->clone(); 52 if (II->hasName()) 53 NewInst->setName(II->getName()+NameSuffix); 54 NewBB->getInstList().push_back(NewInst); 55 VMap[&*II] = NewInst; // Add instruction map to value. 56 57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 59 if (isa<ConstantInt>(AI->getArraySize())) 60 hasStaticAllocas = true; 61 else 62 hasDynamicAllocas = true; 63 } 64 } 65 66 if (CodeInfo) { 67 CodeInfo->ContainsCalls |= hasCalls; 68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 70 BB != &BB->getParent()->getEntryBlock(); 71 } 72 return NewBB; 73 } 74 75 // Clone OldFunc into NewFunc, transforming the old arguments into references to 76 // VMap values. 77 // 78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 79 ValueToValueMapTy &VMap, 80 bool ModuleLevelChanges, 81 SmallVectorImpl<ReturnInst*> &Returns, 82 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 83 ValueMapTypeRemapper *TypeMapper, 84 ValueMaterializer *Materializer) { 85 assert(NameSuffix && "NameSuffix cannot be null!"); 86 87 #ifndef NDEBUG 88 for (const Argument &I : OldFunc->args()) 89 assert(VMap.count(&I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 // Fix up the personality function that got copied over. 99 if (OldFunc->hasPersonalityFn()) 100 NewFunc->setPersonalityFn( 101 MapValue(OldFunc->getPersonalityFn(), VMap, 102 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 103 TypeMapper, Materializer)); 104 105 AttributeSet OldAttrs = OldFunc->getAttributes(); 106 // Clone any argument attributes that are present in the VMap. 107 for (const Argument &OldArg : OldFunc->args()) 108 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 109 AttributeSet attrs = 110 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 111 if (attrs.getNumSlots() > 0) 112 NewArg->addAttr(attrs); 113 } 114 115 NewFunc->setAttributes( 116 NewFunc->getAttributes() 117 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 118 OldAttrs.getRetAttributes()) 119 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 120 OldAttrs.getFnAttributes())); 121 122 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 123 OldFunc->getAllMetadata(MDs); 124 for (auto MD : MDs) 125 NewFunc->setMetadata( 126 MD.first, 127 MapMetadata(MD.second, VMap, 128 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 129 TypeMapper, Materializer)); 130 131 // Loop over all of the basic blocks in the function, cloning them as 132 // appropriate. Note that we save BE this way in order to handle cloning of 133 // recursive functions into themselves. 134 // 135 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 136 BI != BE; ++BI) { 137 const BasicBlock &BB = *BI; 138 139 // Create a new basic block and copy instructions into it! 140 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 141 142 // Add basic block mapping. 143 VMap[&BB] = CBB; 144 145 // It is only legal to clone a function if a block address within that 146 // function is never referenced outside of the function. Given that, we 147 // want to map block addresses from the old function to block addresses in 148 // the clone. (This is different from the generic ValueMapper 149 // implementation, which generates an invalid blockaddress when 150 // cloning a function.) 151 if (BB.hasAddressTaken()) { 152 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 153 const_cast<BasicBlock*>(&BB)); 154 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 155 } 156 157 // Note return instructions for the caller. 158 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 159 Returns.push_back(RI); 160 } 161 162 // Loop over all of the instructions in the function, fixing up operand 163 // references as we go. This uses VMap to do all the hard work. 164 for (Function::iterator BB = 165 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 166 BE = NewFunc->end(); 167 BB != BE; ++BB) 168 // Loop over all instructions, fixing each one as we find it... 169 for (Instruction &II : *BB) 170 RemapInstruction(&II, VMap, 171 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 172 TypeMapper, Materializer); 173 } 174 175 /// Return a copy of the specified function and add it to that function's 176 /// module. Also, any references specified in the VMap are changed to refer to 177 /// their mapped value instead of the original one. If any of the arguments to 178 /// the function are in the VMap, the arguments are deleted from the resultant 179 /// function. The VMap is updated to include mappings from all of the 180 /// instructions and basicblocks in the function from their old to new values. 181 /// 182 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 183 ClonedCodeInfo *CodeInfo) { 184 std::vector<Type*> ArgTypes; 185 186 // The user might be deleting arguments to the function by specifying them in 187 // the VMap. If so, we need to not add the arguments to the arg ty vector 188 // 189 for (const Argument &I : F->args()) 190 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 191 ArgTypes.push_back(I.getType()); 192 193 // Create a new function type... 194 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 195 ArgTypes, F->getFunctionType()->isVarArg()); 196 197 // Create the new function... 198 Function *NewF = 199 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent()); 200 201 // Loop over the arguments, copying the names of the mapped arguments over... 202 Function::arg_iterator DestI = NewF->arg_begin(); 203 for (const Argument & I : F->args()) 204 if (VMap.count(&I) == 0) { // Is this argument preserved? 205 DestI->setName(I.getName()); // Copy the name over... 206 VMap[&I] = &*DestI++; // Add mapping to VMap 207 } 208 209 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 210 CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "", 211 CodeInfo); 212 213 return NewF; 214 } 215 216 217 218 namespace { 219 /// This is a private class used to implement CloneAndPruneFunctionInto. 220 struct PruningFunctionCloner { 221 Function *NewFunc; 222 const Function *OldFunc; 223 ValueToValueMapTy &VMap; 224 bool ModuleLevelChanges; 225 const char *NameSuffix; 226 ClonedCodeInfo *CodeInfo; 227 228 public: 229 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 230 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 231 const char *nameSuffix, ClonedCodeInfo *codeInfo) 232 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 233 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 234 CodeInfo(codeInfo) {} 235 236 /// The specified block is found to be reachable, clone it and 237 /// anything that it can reach. 238 void CloneBlock(const BasicBlock *BB, 239 BasicBlock::const_iterator StartingInst, 240 std::vector<const BasicBlock*> &ToClone); 241 }; 242 } 243 244 /// The specified block is found to be reachable, clone it and 245 /// anything that it can reach. 246 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 247 BasicBlock::const_iterator StartingInst, 248 std::vector<const BasicBlock*> &ToClone){ 249 WeakVH &BBEntry = VMap[BB]; 250 251 // Have we already cloned this block? 252 if (BBEntry) return; 253 254 // Nope, clone it now. 255 BasicBlock *NewBB; 256 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 257 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 258 259 // It is only legal to clone a function if a block address within that 260 // function is never referenced outside of the function. Given that, we 261 // want to map block addresses from the old function to block addresses in 262 // the clone. (This is different from the generic ValueMapper 263 // implementation, which generates an invalid blockaddress when 264 // cloning a function.) 265 // 266 // Note that we don't need to fix the mapping for unreachable blocks; 267 // the default mapping there is safe. 268 if (BB->hasAddressTaken()) { 269 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 270 const_cast<BasicBlock*>(BB)); 271 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 272 } 273 274 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 275 276 // Loop over all instructions, and copy them over, DCE'ing as we go. This 277 // loop doesn't include the terminator. 278 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 279 II != IE; ++II) { 280 281 Instruction *NewInst = II->clone(); 282 283 // Eagerly remap operands to the newly cloned instruction, except for PHI 284 // nodes for which we defer processing until we update the CFG. 285 if (!isa<PHINode>(NewInst)) { 286 RemapInstruction(NewInst, VMap, 287 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 288 289 // If we can simplify this instruction to some other value, simply add 290 // a mapping to that value rather than inserting a new instruction into 291 // the basic block. 292 if (Value *V = 293 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 294 // On the off-chance that this simplifies to an instruction in the old 295 // function, map it back into the new function. 296 if (Value *MappedV = VMap.lookup(V)) 297 V = MappedV; 298 299 VMap[&*II] = V; 300 delete NewInst; 301 continue; 302 } 303 } 304 305 if (II->hasName()) 306 NewInst->setName(II->getName()+NameSuffix); 307 VMap[&*II] = NewInst; // Add instruction map to value. 308 NewBB->getInstList().push_back(NewInst); 309 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 310 311 if (CodeInfo) 312 if (auto CS = ImmutableCallSite(&*II)) 313 if (CS.hasOperandBundles()) 314 CodeInfo->OperandBundleCallSites.push_back(NewInst); 315 316 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 317 if (isa<ConstantInt>(AI->getArraySize())) 318 hasStaticAllocas = true; 319 else 320 hasDynamicAllocas = true; 321 } 322 } 323 324 // Finally, clone over the terminator. 325 const TerminatorInst *OldTI = BB->getTerminator(); 326 bool TerminatorDone = false; 327 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 328 if (BI->isConditional()) { 329 // If the condition was a known constant in the callee... 330 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 331 // Or is a known constant in the caller... 332 if (!Cond) { 333 Value *V = VMap.lookup(BI->getCondition()); 334 Cond = dyn_cast_or_null<ConstantInt>(V); 335 } 336 337 // Constant fold to uncond branch! 338 if (Cond) { 339 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 340 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 341 ToClone.push_back(Dest); 342 TerminatorDone = true; 343 } 344 } 345 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 346 // If switching on a value known constant in the caller. 347 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 348 if (!Cond) { // Or known constant after constant prop in the callee... 349 Value *V = VMap.lookup(SI->getCondition()); 350 Cond = dyn_cast_or_null<ConstantInt>(V); 351 } 352 if (Cond) { // Constant fold to uncond branch! 353 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 354 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 355 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 356 ToClone.push_back(Dest); 357 TerminatorDone = true; 358 } 359 } 360 361 if (!TerminatorDone) { 362 Instruction *NewInst = OldTI->clone(); 363 if (OldTI->hasName()) 364 NewInst->setName(OldTI->getName()+NameSuffix); 365 NewBB->getInstList().push_back(NewInst); 366 VMap[OldTI] = NewInst; // Add instruction map to value. 367 368 if (CodeInfo) 369 if (auto CS = ImmutableCallSite(OldTI)) 370 if (CS.hasOperandBundles()) 371 CodeInfo->OperandBundleCallSites.push_back(NewInst); 372 373 // Recursively clone any reachable successor blocks. 374 const TerminatorInst *TI = BB->getTerminator(); 375 for (const BasicBlock *Succ : TI->successors()) 376 ToClone.push_back(Succ); 377 } 378 379 if (CodeInfo) { 380 CodeInfo->ContainsCalls |= hasCalls; 381 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 382 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 383 BB != &BB->getParent()->front(); 384 } 385 } 386 387 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 388 /// entire function. Instead it starts at an instruction provided by the caller 389 /// and copies (and prunes) only the code reachable from that instruction. 390 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 391 const Instruction *StartingInst, 392 ValueToValueMapTy &VMap, 393 bool ModuleLevelChanges, 394 SmallVectorImpl<ReturnInst *> &Returns, 395 const char *NameSuffix, 396 ClonedCodeInfo *CodeInfo) { 397 assert(NameSuffix && "NameSuffix cannot be null!"); 398 399 ValueMapTypeRemapper *TypeMapper = nullptr; 400 ValueMaterializer *Materializer = nullptr; 401 402 #ifndef NDEBUG 403 // If the cloning starts at the beginning of the function, verify that 404 // the function arguments are mapped. 405 if (!StartingInst) 406 for (const Argument &II : OldFunc->args()) 407 assert(VMap.count(&II) && "No mapping from source argument specified!"); 408 #endif 409 410 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 411 NameSuffix, CodeInfo); 412 const BasicBlock *StartingBB; 413 if (StartingInst) 414 StartingBB = StartingInst->getParent(); 415 else { 416 StartingBB = &OldFunc->getEntryBlock(); 417 StartingInst = &StartingBB->front(); 418 } 419 420 // Clone the entry block, and anything recursively reachable from it. 421 std::vector<const BasicBlock*> CloneWorklist; 422 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 423 while (!CloneWorklist.empty()) { 424 const BasicBlock *BB = CloneWorklist.back(); 425 CloneWorklist.pop_back(); 426 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 427 } 428 429 // Loop over all of the basic blocks in the old function. If the block was 430 // reachable, we have cloned it and the old block is now in the value map: 431 // insert it into the new function in the right order. If not, ignore it. 432 // 433 // Defer PHI resolution until rest of function is resolved. 434 SmallVector<const PHINode*, 16> PHIToResolve; 435 for (const BasicBlock &BI : *OldFunc) { 436 Value *V = VMap.lookup(&BI); 437 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 438 if (!NewBB) continue; // Dead block. 439 440 // Add the new block to the new function. 441 NewFunc->getBasicBlockList().push_back(NewBB); 442 443 // Handle PHI nodes specially, as we have to remove references to dead 444 // blocks. 445 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 446 // PHI nodes may have been remapped to non-PHI nodes by the caller or 447 // during the cloning process. 448 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 449 if (isa<PHINode>(VMap[PN])) 450 PHIToResolve.push_back(PN); 451 else 452 break; 453 } else { 454 break; 455 } 456 } 457 458 // Finally, remap the terminator instructions, as those can't be remapped 459 // until all BBs are mapped. 460 RemapInstruction(NewBB->getTerminator(), VMap, 461 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 462 TypeMapper, Materializer); 463 } 464 465 // Defer PHI resolution until rest of function is resolved, PHI resolution 466 // requires the CFG to be up-to-date. 467 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 468 const PHINode *OPN = PHIToResolve[phino]; 469 unsigned NumPreds = OPN->getNumIncomingValues(); 470 const BasicBlock *OldBB = OPN->getParent(); 471 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 472 473 // Map operands for blocks that are live and remove operands for blocks 474 // that are dead. 475 for (; phino != PHIToResolve.size() && 476 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 477 OPN = PHIToResolve[phino]; 478 PHINode *PN = cast<PHINode>(VMap[OPN]); 479 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 480 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 481 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 482 Value *InVal = MapValue(PN->getIncomingValue(pred), 483 VMap, 484 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 485 assert(InVal && "Unknown input value?"); 486 PN->setIncomingValue(pred, InVal); 487 PN->setIncomingBlock(pred, MappedBlock); 488 } else { 489 PN->removeIncomingValue(pred, false); 490 --pred; // Revisit the next entry. 491 --e; 492 } 493 } 494 } 495 496 // The loop above has removed PHI entries for those blocks that are dead 497 // and has updated others. However, if a block is live (i.e. copied over) 498 // but its terminator has been changed to not go to this block, then our 499 // phi nodes will have invalid entries. Update the PHI nodes in this 500 // case. 501 PHINode *PN = cast<PHINode>(NewBB->begin()); 502 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 503 if (NumPreds != PN->getNumIncomingValues()) { 504 assert(NumPreds < PN->getNumIncomingValues()); 505 // Count how many times each predecessor comes to this block. 506 std::map<BasicBlock*, unsigned> PredCount; 507 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 508 PI != E; ++PI) 509 --PredCount[*PI]; 510 511 // Figure out how many entries to remove from each PHI. 512 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 513 ++PredCount[PN->getIncomingBlock(i)]; 514 515 // At this point, the excess predecessor entries are positive in the 516 // map. Loop over all of the PHIs and remove excess predecessor 517 // entries. 518 BasicBlock::iterator I = NewBB->begin(); 519 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 520 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 521 E = PredCount.end(); PCI != E; ++PCI) { 522 BasicBlock *Pred = PCI->first; 523 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 524 PN->removeIncomingValue(Pred, false); 525 } 526 } 527 } 528 529 // If the loops above have made these phi nodes have 0 or 1 operand, 530 // replace them with undef or the input value. We must do this for 531 // correctness, because 0-operand phis are not valid. 532 PN = cast<PHINode>(NewBB->begin()); 533 if (PN->getNumIncomingValues() == 0) { 534 BasicBlock::iterator I = NewBB->begin(); 535 BasicBlock::const_iterator OldI = OldBB->begin(); 536 while ((PN = dyn_cast<PHINode>(I++))) { 537 Value *NV = UndefValue::get(PN->getType()); 538 PN->replaceAllUsesWith(NV); 539 assert(VMap[&*OldI] == PN && "VMap mismatch"); 540 VMap[&*OldI] = NV; 541 PN->eraseFromParent(); 542 ++OldI; 543 } 544 } 545 } 546 547 // Make a second pass over the PHINodes now that all of them have been 548 // remapped into the new function, simplifying the PHINode and performing any 549 // recursive simplifications exposed. This will transparently update the 550 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 551 // two PHINodes, the iteration over the old PHIs remains valid, and the 552 // mapping will just map us to the new node (which may not even be a PHI 553 // node). 554 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 555 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 556 recursivelySimplifyInstruction(PN); 557 558 // Now that the inlined function body has been fully constructed, go through 559 // and zap unconditional fall-through branches. This happens all the time when 560 // specializing code: code specialization turns conditional branches into 561 // uncond branches, and this code folds them. 562 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 563 Function::iterator I = Begin; 564 while (I != NewFunc->end()) { 565 // Check if this block has become dead during inlining or other 566 // simplifications. Note that the first block will appear dead, as it has 567 // not yet been wired up properly. 568 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 569 I->getSinglePredecessor() == &*I)) { 570 BasicBlock *DeadBB = &*I++; 571 DeleteDeadBlock(DeadBB); 572 continue; 573 } 574 575 // We need to simplify conditional branches and switches with a constant 576 // operand. We try to prune these out when cloning, but if the 577 // simplification required looking through PHI nodes, those are only 578 // available after forming the full basic block. That may leave some here, 579 // and we still want to prune the dead code as early as possible. 580 ConstantFoldTerminator(&*I); 581 582 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 583 if (!BI || BI->isConditional()) { ++I; continue; } 584 585 BasicBlock *Dest = BI->getSuccessor(0); 586 if (!Dest->getSinglePredecessor()) { 587 ++I; continue; 588 } 589 590 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 591 // above should have zapped all of them.. 592 assert(!isa<PHINode>(Dest->begin())); 593 594 // We know all single-entry PHI nodes in the inlined function have been 595 // removed, so we just need to splice the blocks. 596 BI->eraseFromParent(); 597 598 // Make all PHI nodes that referred to Dest now refer to I as their source. 599 Dest->replaceAllUsesWith(&*I); 600 601 // Move all the instructions in the succ to the pred. 602 I->getInstList().splice(I->end(), Dest->getInstList()); 603 604 // Remove the dest block. 605 Dest->eraseFromParent(); 606 607 // Do not increment I, iteratively merge all things this block branches to. 608 } 609 610 // Make a final pass over the basic blocks from the old function to gather 611 // any return instructions which survived folding. We have to do this here 612 // because we can iteratively remove and merge returns above. 613 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 614 E = NewFunc->end(); 615 I != E; ++I) 616 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 617 Returns.push_back(RI); 618 } 619 620 621 /// This works exactly like CloneFunctionInto, 622 /// except that it does some simple constant prop and DCE on the fly. The 623 /// effect of this is to copy significantly less code in cases where (for 624 /// example) a function call with constant arguments is inlined, and those 625 /// constant arguments cause a significant amount of code in the callee to be 626 /// dead. Since this doesn't produce an exact copy of the input, it can't be 627 /// used for things like CloneFunction or CloneModule. 628 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 629 ValueToValueMapTy &VMap, 630 bool ModuleLevelChanges, 631 SmallVectorImpl<ReturnInst*> &Returns, 632 const char *NameSuffix, 633 ClonedCodeInfo *CodeInfo, 634 Instruction *TheCall) { 635 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 636 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 637 } 638 639 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 640 void llvm::remapInstructionsInBlocks( 641 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 642 // Rewrite the code to refer to itself. 643 for (auto *BB : Blocks) 644 for (auto &Inst : *BB) 645 RemapInstruction(&Inst, VMap, 646 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 647 } 648 649 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 650 /// Blocks. 651 /// 652 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 653 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 654 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 655 Loop *OrigLoop, ValueToValueMapTy &VMap, 656 const Twine &NameSuffix, LoopInfo *LI, 657 DominatorTree *DT, 658 SmallVectorImpl<BasicBlock *> &Blocks) { 659 assert(OrigLoop->getSubLoops().empty() && 660 "Loop to be cloned cannot have inner loop"); 661 Function *F = OrigLoop->getHeader()->getParent(); 662 Loop *ParentLoop = OrigLoop->getParentLoop(); 663 664 Loop *NewLoop = new Loop(); 665 if (ParentLoop) 666 ParentLoop->addChildLoop(NewLoop); 667 else 668 LI->addTopLevelLoop(NewLoop); 669 670 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 671 assert(OrigPH && "No preheader"); 672 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 673 // To rename the loop PHIs. 674 VMap[OrigPH] = NewPH; 675 Blocks.push_back(NewPH); 676 677 // Update LoopInfo. 678 if (ParentLoop) 679 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 680 681 // Update DominatorTree. 682 DT->addNewBlock(NewPH, LoopDomBB); 683 684 for (BasicBlock *BB : OrigLoop->getBlocks()) { 685 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 686 VMap[BB] = NewBB; 687 688 // Update LoopInfo. 689 NewLoop->addBasicBlockToLoop(NewBB, *LI); 690 691 // Update DominatorTree. 692 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 693 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 694 695 Blocks.push_back(NewBB); 696 } 697 698 // Move them physically from the end of the block list. 699 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 700 NewPH); 701 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 702 NewLoop->getHeader()->getIterator(), F->end()); 703 704 return NewLoop; 705 } 706