1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugInfo.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
41                                   ValueToValueMapTy &VMap,
42                                   const Twine &NameSuffix, Function *F,
43                                   ClonedCodeInfo *CodeInfo) {
44   DenseMap<const MDNode *, MDNode *> Cache;
45   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
47 
48   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
49 
50   // Loop over all instructions, and copy them over.
51   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
52        II != IE; ++II) {
53     Instruction *NewInst = II->clone();
54     if (F && F->getSubprogram())
55       DebugLoc::reparentDebugInfo(*NewInst, BB->getParent()->getSubprogram(),
56                                   F->getSubprogram(), Cache);
57     if (II->hasName())
58       NewInst->setName(II->getName()+NameSuffix);
59     NewBB->getInstList().push_back(NewInst);
60     VMap[&*II] = NewInst; // Add instruction map to value.
61 
62     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
63     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
64       if (isa<ConstantInt>(AI->getArraySize()))
65         hasStaticAllocas = true;
66       else
67         hasDynamicAllocas = true;
68     }
69   }
70 
71   if (CodeInfo) {
72     CodeInfo->ContainsCalls          |= hasCalls;
73     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
74     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
75                                         BB != &BB->getParent()->getEntryBlock();
76   }
77   return NewBB;
78 }
79 
80 // Clone OldFunc into NewFunc, transforming the old arguments into references to
81 // VMap values.
82 //
83 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
84                              ValueToValueMapTy &VMap,
85                              bool ModuleLevelChanges,
86                              SmallVectorImpl<ReturnInst*> &Returns,
87                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
88                              ValueMapTypeRemapper *TypeMapper,
89                              ValueMaterializer *Materializer) {
90   assert(NameSuffix && "NameSuffix cannot be null!");
91 
92 #ifndef NDEBUG
93   for (const Argument &I : OldFunc->args())
94     assert(VMap.count(&I) && "No mapping from source argument specified!");
95 #endif
96 
97   // Copy all attributes other than those stored in the AttributeList.  We need
98   // to remap the parameter indices of the AttributeList.
99   AttributeList NewAttrs = NewFunc->getAttributes();
100   NewFunc->copyAttributesFrom(OldFunc);
101   NewFunc->setAttributes(NewAttrs);
102 
103   // Fix up the personality function that got copied over.
104   if (OldFunc->hasPersonalityFn())
105     NewFunc->setPersonalityFn(
106         MapValue(OldFunc->getPersonalityFn(), VMap,
107                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
108                  TypeMapper, Materializer));
109 
110   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
111   AttributeList OldAttrs = OldFunc->getAttributes();
112 
113   // Clone any argument attributes that are present in the VMap.
114   for (const Argument &OldArg : OldFunc->args()) {
115     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
116       NewArgAttrs[NewArg->getArgNo()] =
117           OldAttrs.getParamAttributes(OldArg.getArgNo());
118     }
119   }
120 
121   NewFunc->setAttributes(
122       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
123                          OldAttrs.getRetAttributes(), NewArgAttrs));
124 
125   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
126   OldFunc->getAllMetadata(MDs);
127   for (auto MD : MDs) {
128     MDNode *NewMD;
129     bool MustCloneSP =
130         (MD.first == LLVMContext::MD_dbg && OldFunc->getParent() &&
131          OldFunc->getParent() == NewFunc->getParent());
132     if (MustCloneSP) {
133       auto *SP = cast<DISubprogram>(MD.second);
134       NewMD = DISubprogram::getDistinct(
135           NewFunc->getContext(), SP->getScope(), SP->getName(),
136           NewFunc->getName(), SP->getFile(), SP->getLine(), SP->getType(),
137           SP->isLocalToUnit(), SP->isDefinition(), SP->getScopeLine(),
138           SP->getContainingType(), SP->getVirtuality(), SP->getVirtualIndex(),
139           SP->getThisAdjustment(), SP->getFlags(), SP->isOptimized(),
140           SP->getUnit(), SP->getTemplateParams(), SP->getDeclaration(),
141           SP->getVariables(), SP->getThrownTypes());
142     } else
143       NewMD =
144           MapMetadata(MD.second, VMap,
145                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
146                       TypeMapper, Materializer);
147     NewFunc->addMetadata(MD.first, *NewMD);
148   }
149 
150   // Loop over all of the basic blocks in the function, cloning them as
151   // appropriate.  Note that we save BE this way in order to handle cloning of
152   // recursive functions into themselves.
153   //
154   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
155        BI != BE; ++BI) {
156     const BasicBlock &BB = *BI;
157 
158     // Create a new basic block and copy instructions into it!
159     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
160 
161     // Add basic block mapping.
162     VMap[&BB] = CBB;
163 
164     // It is only legal to clone a function if a block address within that
165     // function is never referenced outside of the function.  Given that, we
166     // want to map block addresses from the old function to block addresses in
167     // the clone. (This is different from the generic ValueMapper
168     // implementation, which generates an invalid blockaddress when
169     // cloning a function.)
170     if (BB.hasAddressTaken()) {
171       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
172                                               const_cast<BasicBlock*>(&BB));
173       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
174     }
175 
176     // Note return instructions for the caller.
177     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
178       Returns.push_back(RI);
179   }
180 
181   // Loop over all of the instructions in the function, fixing up operand
182   // references as we go.  This uses VMap to do all the hard work.
183   for (Function::iterator BB =
184            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
185                           BE = NewFunc->end();
186        BB != BE; ++BB)
187     // Loop over all instructions, fixing each one as we find it...
188     for (Instruction &II : *BB)
189       RemapInstruction(&II, VMap,
190                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
191                        TypeMapper, Materializer);
192 }
193 
194 /// Return a copy of the specified function and add it to that function's
195 /// module.  Also, any references specified in the VMap are changed to refer to
196 /// their mapped value instead of the original one.  If any of the arguments to
197 /// the function are in the VMap, the arguments are deleted from the resultant
198 /// function.  The VMap is updated to include mappings from all of the
199 /// instructions and basicblocks in the function from their old to new values.
200 ///
201 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
202                               ClonedCodeInfo *CodeInfo) {
203   std::vector<Type*> ArgTypes;
204 
205   // The user might be deleting arguments to the function by specifying them in
206   // the VMap.  If so, we need to not add the arguments to the arg ty vector
207   //
208   for (const Argument &I : F->args())
209     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
210       ArgTypes.push_back(I.getType());
211 
212   // Create a new function type...
213   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
214                                     ArgTypes, F->getFunctionType()->isVarArg());
215 
216   // Create the new function...
217   Function *NewF =
218       Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
219 
220   // Loop over the arguments, copying the names of the mapped arguments over...
221   Function::arg_iterator DestI = NewF->arg_begin();
222   for (const Argument & I : F->args())
223     if (VMap.count(&I) == 0) {     // Is this argument preserved?
224       DestI->setName(I.getName()); // Copy the name over...
225       VMap[&I] = &*DestI++;        // Add mapping to VMap
226     }
227 
228   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
229   CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
230                     CodeInfo);
231 
232   return NewF;
233 }
234 
235 
236 
237 namespace {
238   /// This is a private class used to implement CloneAndPruneFunctionInto.
239   struct PruningFunctionCloner {
240     Function *NewFunc;
241     const Function *OldFunc;
242     ValueToValueMapTy &VMap;
243     bool ModuleLevelChanges;
244     const char *NameSuffix;
245     ClonedCodeInfo *CodeInfo;
246 
247   public:
248     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
249                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
250                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
251         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
252           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
253           CodeInfo(codeInfo) {}
254 
255     /// The specified block is found to be reachable, clone it and
256     /// anything that it can reach.
257     void CloneBlock(const BasicBlock *BB,
258                     BasicBlock::const_iterator StartingInst,
259                     std::vector<const BasicBlock*> &ToClone);
260   };
261 }
262 
263 /// The specified block is found to be reachable, clone it and
264 /// anything that it can reach.
265 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
266                                        BasicBlock::const_iterator StartingInst,
267                                        std::vector<const BasicBlock*> &ToClone){
268   WeakTrackingVH &BBEntry = VMap[BB];
269 
270   // Have we already cloned this block?
271   if (BBEntry) return;
272 
273   // Nope, clone it now.
274   BasicBlock *NewBB;
275   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
276   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
277 
278   // It is only legal to clone a function if a block address within that
279   // function is never referenced outside of the function.  Given that, we
280   // want to map block addresses from the old function to block addresses in
281   // the clone. (This is different from the generic ValueMapper
282   // implementation, which generates an invalid blockaddress when
283   // cloning a function.)
284   //
285   // Note that we don't need to fix the mapping for unreachable blocks;
286   // the default mapping there is safe.
287   if (BB->hasAddressTaken()) {
288     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
289                                             const_cast<BasicBlock*>(BB));
290     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
291   }
292 
293   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
294 
295   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
296   // loop doesn't include the terminator.
297   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
298        II != IE; ++II) {
299 
300     Instruction *NewInst = II->clone();
301 
302     // Eagerly remap operands to the newly cloned instruction, except for PHI
303     // nodes for which we defer processing until we update the CFG.
304     if (!isa<PHINode>(NewInst)) {
305       RemapInstruction(NewInst, VMap,
306                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
307 
308       // If we can simplify this instruction to some other value, simply add
309       // a mapping to that value rather than inserting a new instruction into
310       // the basic block.
311       if (Value *V =
312               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
313         // On the off-chance that this simplifies to an instruction in the old
314         // function, map it back into the new function.
315         if (Value *MappedV = VMap.lookup(V))
316           V = MappedV;
317 
318         if (!NewInst->mayHaveSideEffects()) {
319           VMap[&*II] = V;
320           delete NewInst;
321           continue;
322         }
323       }
324     }
325 
326     if (II->hasName())
327       NewInst->setName(II->getName()+NameSuffix);
328     VMap[&*II] = NewInst; // Add instruction map to value.
329     NewBB->getInstList().push_back(NewInst);
330     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
331 
332     if (CodeInfo)
333       if (auto CS = ImmutableCallSite(&*II))
334         if (CS.hasOperandBundles())
335           CodeInfo->OperandBundleCallSites.push_back(NewInst);
336 
337     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
338       if (isa<ConstantInt>(AI->getArraySize()))
339         hasStaticAllocas = true;
340       else
341         hasDynamicAllocas = true;
342     }
343   }
344 
345   // Finally, clone over the terminator.
346   const TerminatorInst *OldTI = BB->getTerminator();
347   bool TerminatorDone = false;
348   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
349     if (BI->isConditional()) {
350       // If the condition was a known constant in the callee...
351       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
352       // Or is a known constant in the caller...
353       if (!Cond) {
354         Value *V = VMap.lookup(BI->getCondition());
355         Cond = dyn_cast_or_null<ConstantInt>(V);
356       }
357 
358       // Constant fold to uncond branch!
359       if (Cond) {
360         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
361         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
362         ToClone.push_back(Dest);
363         TerminatorDone = true;
364       }
365     }
366   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
367     // If switching on a value known constant in the caller.
368     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
369     if (!Cond) { // Or known constant after constant prop in the callee...
370       Value *V = VMap.lookup(SI->getCondition());
371       Cond = dyn_cast_or_null<ConstantInt>(V);
372     }
373     if (Cond) {     // Constant fold to uncond branch!
374       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
375       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
376       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
377       ToClone.push_back(Dest);
378       TerminatorDone = true;
379     }
380   }
381 
382   if (!TerminatorDone) {
383     Instruction *NewInst = OldTI->clone();
384     if (OldTI->hasName())
385       NewInst->setName(OldTI->getName()+NameSuffix);
386     NewBB->getInstList().push_back(NewInst);
387     VMap[OldTI] = NewInst;             // Add instruction map to value.
388 
389     if (CodeInfo)
390       if (auto CS = ImmutableCallSite(OldTI))
391         if (CS.hasOperandBundles())
392           CodeInfo->OperandBundleCallSites.push_back(NewInst);
393 
394     // Recursively clone any reachable successor blocks.
395     const TerminatorInst *TI = BB->getTerminator();
396     for (const BasicBlock *Succ : TI->successors())
397       ToClone.push_back(Succ);
398   }
399 
400   if (CodeInfo) {
401     CodeInfo->ContainsCalls          |= hasCalls;
402     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
403     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
404       BB != &BB->getParent()->front();
405   }
406 }
407 
408 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
409 /// entire function. Instead it starts at an instruction provided by the caller
410 /// and copies (and prunes) only the code reachable from that instruction.
411 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
412                                      const Instruction *StartingInst,
413                                      ValueToValueMapTy &VMap,
414                                      bool ModuleLevelChanges,
415                                      SmallVectorImpl<ReturnInst *> &Returns,
416                                      const char *NameSuffix,
417                                      ClonedCodeInfo *CodeInfo) {
418   assert(NameSuffix && "NameSuffix cannot be null!");
419 
420   ValueMapTypeRemapper *TypeMapper = nullptr;
421   ValueMaterializer *Materializer = nullptr;
422 
423 #ifndef NDEBUG
424   // If the cloning starts at the beginning of the function, verify that
425   // the function arguments are mapped.
426   if (!StartingInst)
427     for (const Argument &II : OldFunc->args())
428       assert(VMap.count(&II) && "No mapping from source argument specified!");
429 #endif
430 
431   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
432                             NameSuffix, CodeInfo);
433   const BasicBlock *StartingBB;
434   if (StartingInst)
435     StartingBB = StartingInst->getParent();
436   else {
437     StartingBB = &OldFunc->getEntryBlock();
438     StartingInst = &StartingBB->front();
439   }
440 
441   // Clone the entry block, and anything recursively reachable from it.
442   std::vector<const BasicBlock*> CloneWorklist;
443   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
444   while (!CloneWorklist.empty()) {
445     const BasicBlock *BB = CloneWorklist.back();
446     CloneWorklist.pop_back();
447     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
448   }
449 
450   // Loop over all of the basic blocks in the old function.  If the block was
451   // reachable, we have cloned it and the old block is now in the value map:
452   // insert it into the new function in the right order.  If not, ignore it.
453   //
454   // Defer PHI resolution until rest of function is resolved.
455   SmallVector<const PHINode*, 16> PHIToResolve;
456   for (const BasicBlock &BI : *OldFunc) {
457     Value *V = VMap.lookup(&BI);
458     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
459     if (!NewBB) continue;  // Dead block.
460 
461     // Add the new block to the new function.
462     NewFunc->getBasicBlockList().push_back(NewBB);
463 
464     // Handle PHI nodes specially, as we have to remove references to dead
465     // blocks.
466     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
467       // PHI nodes may have been remapped to non-PHI nodes by the caller or
468       // during the cloning process.
469       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
470         if (isa<PHINode>(VMap[PN]))
471           PHIToResolve.push_back(PN);
472         else
473           break;
474       } else {
475         break;
476       }
477     }
478 
479     // Finally, remap the terminator instructions, as those can't be remapped
480     // until all BBs are mapped.
481     RemapInstruction(NewBB->getTerminator(), VMap,
482                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
483                      TypeMapper, Materializer);
484   }
485 
486   // Defer PHI resolution until rest of function is resolved, PHI resolution
487   // requires the CFG to be up-to-date.
488   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
489     const PHINode *OPN = PHIToResolve[phino];
490     unsigned NumPreds = OPN->getNumIncomingValues();
491     const BasicBlock *OldBB = OPN->getParent();
492     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
493 
494     // Map operands for blocks that are live and remove operands for blocks
495     // that are dead.
496     for (; phino != PHIToResolve.size() &&
497          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
498       OPN = PHIToResolve[phino];
499       PHINode *PN = cast<PHINode>(VMap[OPN]);
500       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
501         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
502         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
503           Value *InVal = MapValue(PN->getIncomingValue(pred),
504                                   VMap,
505                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
506           assert(InVal && "Unknown input value?");
507           PN->setIncomingValue(pred, InVal);
508           PN->setIncomingBlock(pred, MappedBlock);
509         } else {
510           PN->removeIncomingValue(pred, false);
511           --pred;  // Revisit the next entry.
512           --e;
513         }
514       }
515     }
516 
517     // The loop above has removed PHI entries for those blocks that are dead
518     // and has updated others.  However, if a block is live (i.e. copied over)
519     // but its terminator has been changed to not go to this block, then our
520     // phi nodes will have invalid entries.  Update the PHI nodes in this
521     // case.
522     PHINode *PN = cast<PHINode>(NewBB->begin());
523     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
524     if (NumPreds != PN->getNumIncomingValues()) {
525       assert(NumPreds < PN->getNumIncomingValues());
526       // Count how many times each predecessor comes to this block.
527       std::map<BasicBlock*, unsigned> PredCount;
528       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
529            PI != E; ++PI)
530         --PredCount[*PI];
531 
532       // Figure out how many entries to remove from each PHI.
533       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
534         ++PredCount[PN->getIncomingBlock(i)];
535 
536       // At this point, the excess predecessor entries are positive in the
537       // map.  Loop over all of the PHIs and remove excess predecessor
538       // entries.
539       BasicBlock::iterator I = NewBB->begin();
540       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
541         for (const auto &PCI : PredCount) {
542           BasicBlock *Pred = PCI.first;
543           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
544             PN->removeIncomingValue(Pred, false);
545         }
546       }
547     }
548 
549     // If the loops above have made these phi nodes have 0 or 1 operand,
550     // replace them with undef or the input value.  We must do this for
551     // correctness, because 0-operand phis are not valid.
552     PN = cast<PHINode>(NewBB->begin());
553     if (PN->getNumIncomingValues() == 0) {
554       BasicBlock::iterator I = NewBB->begin();
555       BasicBlock::const_iterator OldI = OldBB->begin();
556       while ((PN = dyn_cast<PHINode>(I++))) {
557         Value *NV = UndefValue::get(PN->getType());
558         PN->replaceAllUsesWith(NV);
559         assert(VMap[&*OldI] == PN && "VMap mismatch");
560         VMap[&*OldI] = NV;
561         PN->eraseFromParent();
562         ++OldI;
563       }
564     }
565   }
566 
567   // Make a second pass over the PHINodes now that all of them have been
568   // remapped into the new function, simplifying the PHINode and performing any
569   // recursive simplifications exposed. This will transparently update the
570   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
571   // two PHINodes, the iteration over the old PHIs remains valid, and the
572   // mapping will just map us to the new node (which may not even be a PHI
573   // node).
574   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
575   SmallSetVector<const Value *, 8> Worklist;
576   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
577     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
578       Worklist.insert(PHIToResolve[Idx]);
579 
580   // Note that we must test the size on each iteration, the worklist can grow.
581   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
582     const Value *OrigV = Worklist[Idx];
583     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
584     if (!I)
585       continue;
586 
587     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
588     // the CGSCC.
589     CallSite CS = CallSite(I);
590     if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
591       continue;
592 
593     // See if this instruction simplifies.
594     Value *SimpleV = SimplifyInstruction(I, DL);
595     if (!SimpleV)
596       continue;
597 
598     // Stash away all the uses of the old instruction so we can check them for
599     // recursive simplifications after a RAUW. This is cheaper than checking all
600     // uses of To on the recursive step in most cases.
601     for (const User *U : OrigV->users())
602       Worklist.insert(cast<Instruction>(U));
603 
604     // Replace the instruction with its simplified value.
605     I->replaceAllUsesWith(SimpleV);
606 
607     // If the original instruction had no side effects, remove it.
608     if (isInstructionTriviallyDead(I))
609       I->eraseFromParent();
610     else
611       VMap[OrigV] = I;
612   }
613 
614   // Now that the inlined function body has been fully constructed, go through
615   // and zap unconditional fall-through branches. This happens all the time when
616   // specializing code: code specialization turns conditional branches into
617   // uncond branches, and this code folds them.
618   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
619   Function::iterator I = Begin;
620   while (I != NewFunc->end()) {
621     // Check if this block has become dead during inlining or other
622     // simplifications. Note that the first block will appear dead, as it has
623     // not yet been wired up properly.
624     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
625                        I->getSinglePredecessor() == &*I)) {
626       BasicBlock *DeadBB = &*I++;
627       DeleteDeadBlock(DeadBB);
628       continue;
629     }
630 
631     // We need to simplify conditional branches and switches with a constant
632     // operand. We try to prune these out when cloning, but if the
633     // simplification required looking through PHI nodes, those are only
634     // available after forming the full basic block. That may leave some here,
635     // and we still want to prune the dead code as early as possible.
636     ConstantFoldTerminator(&*I);
637 
638     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
639     if (!BI || BI->isConditional()) { ++I; continue; }
640 
641     BasicBlock *Dest = BI->getSuccessor(0);
642     if (!Dest->getSinglePredecessor()) {
643       ++I; continue;
644     }
645 
646     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
647     // above should have zapped all of them..
648     assert(!isa<PHINode>(Dest->begin()));
649 
650     // We know all single-entry PHI nodes in the inlined function have been
651     // removed, so we just need to splice the blocks.
652     BI->eraseFromParent();
653 
654     // Make all PHI nodes that referred to Dest now refer to I as their source.
655     Dest->replaceAllUsesWith(&*I);
656 
657     // Move all the instructions in the succ to the pred.
658     I->getInstList().splice(I->end(), Dest->getInstList());
659 
660     // Remove the dest block.
661     Dest->eraseFromParent();
662 
663     // Do not increment I, iteratively merge all things this block branches to.
664   }
665 
666   // Make a final pass over the basic blocks from the old function to gather
667   // any return instructions which survived folding. We have to do this here
668   // because we can iteratively remove and merge returns above.
669   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
670                           E = NewFunc->end();
671        I != E; ++I)
672     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
673       Returns.push_back(RI);
674 }
675 
676 
677 /// This works exactly like CloneFunctionInto,
678 /// except that it does some simple constant prop and DCE on the fly.  The
679 /// effect of this is to copy significantly less code in cases where (for
680 /// example) a function call with constant arguments is inlined, and those
681 /// constant arguments cause a significant amount of code in the callee to be
682 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
683 /// used for things like CloneFunction or CloneModule.
684 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
685                                      ValueToValueMapTy &VMap,
686                                      bool ModuleLevelChanges,
687                                      SmallVectorImpl<ReturnInst*> &Returns,
688                                      const char *NameSuffix,
689                                      ClonedCodeInfo *CodeInfo,
690                                      Instruction *TheCall) {
691   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
692                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
693 }
694 
695 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
696 void llvm::remapInstructionsInBlocks(
697     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
698   // Rewrite the code to refer to itself.
699   for (auto *BB : Blocks)
700     for (auto &Inst : *BB)
701       RemapInstruction(&Inst, VMap,
702                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
703 }
704 
705 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
706 /// Blocks.
707 ///
708 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
709 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
710 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
711                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
712                                    const Twine &NameSuffix, LoopInfo *LI,
713                                    DominatorTree *DT,
714                                    SmallVectorImpl<BasicBlock *> &Blocks) {
715   assert(OrigLoop->getSubLoops().empty() &&
716          "Loop to be cloned cannot have inner loop");
717   Function *F = OrigLoop->getHeader()->getParent();
718   Loop *ParentLoop = OrigLoop->getParentLoop();
719 
720   Loop *NewLoop = new Loop();
721   if (ParentLoop)
722     ParentLoop->addChildLoop(NewLoop);
723   else
724     LI->addTopLevelLoop(NewLoop);
725 
726   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
727   assert(OrigPH && "No preheader");
728   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
729   // To rename the loop PHIs.
730   VMap[OrigPH] = NewPH;
731   Blocks.push_back(NewPH);
732 
733   // Update LoopInfo.
734   if (ParentLoop)
735     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
736 
737   // Update DominatorTree.
738   DT->addNewBlock(NewPH, LoopDomBB);
739 
740   for (BasicBlock *BB : OrigLoop->getBlocks()) {
741     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
742     VMap[BB] = NewBB;
743 
744     // Update LoopInfo.
745     NewLoop->addBasicBlockToLoop(NewBB, *LI);
746 
747     // Add DominatorTree node. After seeing all blocks, update to correct IDom.
748     DT->addNewBlock(NewBB, NewPH);
749 
750     Blocks.push_back(NewBB);
751   }
752 
753   for (BasicBlock *BB : OrigLoop->getBlocks()) {
754     // Update DominatorTree.
755     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
756     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
757                                  cast<BasicBlock>(VMap[IDomBB]));
758   }
759 
760   // Move them physically from the end of the block list.
761   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
762                                 NewPH);
763   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
764                                 NewLoop->getHeader()->getIterator(), F->end());
765 
766   return NewLoop;
767 }
768 
769 /// \brief Duplicate non-Phi instructions from the beginning of block up to
770 /// StopAt instruction into a split block between BB and its predecessor.
771 BasicBlock *
772 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
773                                           Instruction *StopAt,
774                                           ValueToValueMapTy &ValueMapping) {
775   // We are going to have to map operands from the original BB block to the new
776   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
777   // account for entry from PredBB.
778   BasicBlock::iterator BI = BB->begin();
779   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
780     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
781 
782   BasicBlock *NewBB = SplitEdge(PredBB, BB);
783   NewBB->setName(PredBB->getName() + ".split");
784   Instruction *NewTerm = NewBB->getTerminator();
785 
786   // Clone the non-phi instructions of BB into NewBB, keeping track of the
787   // mapping and using it to remap operands in the cloned instructions.
788   for (; StopAt != &*BI; ++BI) {
789     Instruction *New = BI->clone();
790     New->setName(BI->getName());
791     New->insertBefore(NewTerm);
792     ValueMapping[&*BI] = New;
793 
794     // Remap operands to patch up intra-block references.
795     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
796       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
797         auto I = ValueMapping.find(Inst);
798         if (I != ValueMapping.end())
799           New->setOperand(i, I->second);
800       }
801   }
802 
803   return NewBB;
804 }
805