1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 41 ValueToValueMapTy &VMap, 42 const Twine &NameSuffix, Function *F, 43 ClonedCodeInfo *CodeInfo) { 44 DenseMap<const MDNode *, MDNode *> Cache; 45 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 46 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 47 48 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 49 50 // Loop over all instructions, and copy them over. 51 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 52 II != IE; ++II) { 53 Instruction *NewInst = II->clone(); 54 if (F && F->getSubprogram()) 55 DebugLoc::reparentDebugInfo(*NewInst, BB->getParent()->getSubprogram(), 56 F->getSubprogram(), Cache); 57 if (II->hasName()) 58 NewInst->setName(II->getName()+NameSuffix); 59 NewBB->getInstList().push_back(NewInst); 60 VMap[&*II] = NewInst; // Add instruction map to value. 61 62 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 63 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 64 if (isa<ConstantInt>(AI->getArraySize())) 65 hasStaticAllocas = true; 66 else 67 hasDynamicAllocas = true; 68 } 69 } 70 71 if (CodeInfo) { 72 CodeInfo->ContainsCalls |= hasCalls; 73 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 74 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 75 BB != &BB->getParent()->getEntryBlock(); 76 } 77 return NewBB; 78 } 79 80 // Clone OldFunc into NewFunc, transforming the old arguments into references to 81 // VMap values. 82 // 83 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 84 ValueToValueMapTy &VMap, 85 bool ModuleLevelChanges, 86 SmallVectorImpl<ReturnInst*> &Returns, 87 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 88 ValueMapTypeRemapper *TypeMapper, 89 ValueMaterializer *Materializer) { 90 assert(NameSuffix && "NameSuffix cannot be null!"); 91 92 #ifndef NDEBUG 93 for (const Argument &I : OldFunc->args()) 94 assert(VMap.count(&I) && "No mapping from source argument specified!"); 95 #endif 96 97 // Copy all attributes other than those stored in the AttributeList. We need 98 // to remap the parameter indices of the AttributeList. 99 AttributeList NewAttrs = NewFunc->getAttributes(); 100 NewFunc->copyAttributesFrom(OldFunc); 101 NewFunc->setAttributes(NewAttrs); 102 103 // Fix up the personality function that got copied over. 104 if (OldFunc->hasPersonalityFn()) 105 NewFunc->setPersonalityFn( 106 MapValue(OldFunc->getPersonalityFn(), VMap, 107 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 108 TypeMapper, Materializer)); 109 110 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 111 AttributeList OldAttrs = OldFunc->getAttributes(); 112 113 // Clone any argument attributes that are present in the VMap. 114 for (const Argument &OldArg : OldFunc->args()) { 115 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 116 NewArgAttrs[NewArg->getArgNo()] = 117 OldAttrs.getParamAttributes(OldArg.getArgNo()); 118 } 119 } 120 121 NewFunc->setAttributes( 122 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 123 OldAttrs.getRetAttributes(), NewArgAttrs)); 124 125 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 126 OldFunc->getAllMetadata(MDs); 127 for (auto MD : MDs) { 128 MDNode *NewMD; 129 bool MustCloneSP = 130 (MD.first == LLVMContext::MD_dbg && OldFunc->getParent() && 131 OldFunc->getParent() == NewFunc->getParent()); 132 if (MustCloneSP) { 133 auto *SP = cast<DISubprogram>(MD.second); 134 NewMD = DISubprogram::getDistinct( 135 NewFunc->getContext(), SP->getScope(), SP->getName(), 136 NewFunc->getName(), SP->getFile(), SP->getLine(), SP->getType(), 137 SP->isLocalToUnit(), SP->isDefinition(), SP->getScopeLine(), 138 SP->getContainingType(), SP->getVirtuality(), SP->getVirtualIndex(), 139 SP->getThisAdjustment(), SP->getFlags(), SP->isOptimized(), 140 SP->getUnit(), SP->getTemplateParams(), SP->getDeclaration(), 141 SP->getVariables(), SP->getThrownTypes()); 142 } else 143 NewMD = 144 MapMetadata(MD.second, VMap, 145 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 146 TypeMapper, Materializer); 147 NewFunc->addMetadata(MD.first, *NewMD); 148 } 149 150 // Loop over all of the basic blocks in the function, cloning them as 151 // appropriate. Note that we save BE this way in order to handle cloning of 152 // recursive functions into themselves. 153 // 154 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 155 BI != BE; ++BI) { 156 const BasicBlock &BB = *BI; 157 158 // Create a new basic block and copy instructions into it! 159 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 160 161 // Add basic block mapping. 162 VMap[&BB] = CBB; 163 164 // It is only legal to clone a function if a block address within that 165 // function is never referenced outside of the function. Given that, we 166 // want to map block addresses from the old function to block addresses in 167 // the clone. (This is different from the generic ValueMapper 168 // implementation, which generates an invalid blockaddress when 169 // cloning a function.) 170 if (BB.hasAddressTaken()) { 171 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 172 const_cast<BasicBlock*>(&BB)); 173 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 174 } 175 176 // Note return instructions for the caller. 177 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 178 Returns.push_back(RI); 179 } 180 181 // Loop over all of the instructions in the function, fixing up operand 182 // references as we go. This uses VMap to do all the hard work. 183 for (Function::iterator BB = 184 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 185 BE = NewFunc->end(); 186 BB != BE; ++BB) 187 // Loop over all instructions, fixing each one as we find it... 188 for (Instruction &II : *BB) 189 RemapInstruction(&II, VMap, 190 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 191 TypeMapper, Materializer); 192 } 193 194 /// Return a copy of the specified function and add it to that function's 195 /// module. Also, any references specified in the VMap are changed to refer to 196 /// their mapped value instead of the original one. If any of the arguments to 197 /// the function are in the VMap, the arguments are deleted from the resultant 198 /// function. The VMap is updated to include mappings from all of the 199 /// instructions and basicblocks in the function from their old to new values. 200 /// 201 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 202 ClonedCodeInfo *CodeInfo) { 203 std::vector<Type*> ArgTypes; 204 205 // The user might be deleting arguments to the function by specifying them in 206 // the VMap. If so, we need to not add the arguments to the arg ty vector 207 // 208 for (const Argument &I : F->args()) 209 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 210 ArgTypes.push_back(I.getType()); 211 212 // Create a new function type... 213 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 214 ArgTypes, F->getFunctionType()->isVarArg()); 215 216 // Create the new function... 217 Function *NewF = 218 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent()); 219 220 // Loop over the arguments, copying the names of the mapped arguments over... 221 Function::arg_iterator DestI = NewF->arg_begin(); 222 for (const Argument & I : F->args()) 223 if (VMap.count(&I) == 0) { // Is this argument preserved? 224 DestI->setName(I.getName()); // Copy the name over... 225 VMap[&I] = &*DestI++; // Add mapping to VMap 226 } 227 228 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 229 CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "", 230 CodeInfo); 231 232 return NewF; 233 } 234 235 236 237 namespace { 238 /// This is a private class used to implement CloneAndPruneFunctionInto. 239 struct PruningFunctionCloner { 240 Function *NewFunc; 241 const Function *OldFunc; 242 ValueToValueMapTy &VMap; 243 bool ModuleLevelChanges; 244 const char *NameSuffix; 245 ClonedCodeInfo *CodeInfo; 246 247 public: 248 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 249 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 250 const char *nameSuffix, ClonedCodeInfo *codeInfo) 251 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 252 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 253 CodeInfo(codeInfo) {} 254 255 /// The specified block is found to be reachable, clone it and 256 /// anything that it can reach. 257 void CloneBlock(const BasicBlock *BB, 258 BasicBlock::const_iterator StartingInst, 259 std::vector<const BasicBlock*> &ToClone); 260 }; 261 } 262 263 /// The specified block is found to be reachable, clone it and 264 /// anything that it can reach. 265 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 266 BasicBlock::const_iterator StartingInst, 267 std::vector<const BasicBlock*> &ToClone){ 268 WeakTrackingVH &BBEntry = VMap[BB]; 269 270 // Have we already cloned this block? 271 if (BBEntry) return; 272 273 // Nope, clone it now. 274 BasicBlock *NewBB; 275 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 276 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 277 278 // It is only legal to clone a function if a block address within that 279 // function is never referenced outside of the function. Given that, we 280 // want to map block addresses from the old function to block addresses in 281 // the clone. (This is different from the generic ValueMapper 282 // implementation, which generates an invalid blockaddress when 283 // cloning a function.) 284 // 285 // Note that we don't need to fix the mapping for unreachable blocks; 286 // the default mapping there is safe. 287 if (BB->hasAddressTaken()) { 288 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 289 const_cast<BasicBlock*>(BB)); 290 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 291 } 292 293 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 294 295 // Loop over all instructions, and copy them over, DCE'ing as we go. This 296 // loop doesn't include the terminator. 297 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 298 II != IE; ++II) { 299 300 Instruction *NewInst = II->clone(); 301 302 // Eagerly remap operands to the newly cloned instruction, except for PHI 303 // nodes for which we defer processing until we update the CFG. 304 if (!isa<PHINode>(NewInst)) { 305 RemapInstruction(NewInst, VMap, 306 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 307 308 // If we can simplify this instruction to some other value, simply add 309 // a mapping to that value rather than inserting a new instruction into 310 // the basic block. 311 if (Value *V = 312 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 313 // On the off-chance that this simplifies to an instruction in the old 314 // function, map it back into the new function. 315 if (Value *MappedV = VMap.lookup(V)) 316 V = MappedV; 317 318 if (!NewInst->mayHaveSideEffects()) { 319 VMap[&*II] = V; 320 delete NewInst; 321 continue; 322 } 323 } 324 } 325 326 if (II->hasName()) 327 NewInst->setName(II->getName()+NameSuffix); 328 VMap[&*II] = NewInst; // Add instruction map to value. 329 NewBB->getInstList().push_back(NewInst); 330 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 331 332 if (CodeInfo) 333 if (auto CS = ImmutableCallSite(&*II)) 334 if (CS.hasOperandBundles()) 335 CodeInfo->OperandBundleCallSites.push_back(NewInst); 336 337 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 338 if (isa<ConstantInt>(AI->getArraySize())) 339 hasStaticAllocas = true; 340 else 341 hasDynamicAllocas = true; 342 } 343 } 344 345 // Finally, clone over the terminator. 346 const TerminatorInst *OldTI = BB->getTerminator(); 347 bool TerminatorDone = false; 348 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 349 if (BI->isConditional()) { 350 // If the condition was a known constant in the callee... 351 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 352 // Or is a known constant in the caller... 353 if (!Cond) { 354 Value *V = VMap.lookup(BI->getCondition()); 355 Cond = dyn_cast_or_null<ConstantInt>(V); 356 } 357 358 // Constant fold to uncond branch! 359 if (Cond) { 360 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 361 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 362 ToClone.push_back(Dest); 363 TerminatorDone = true; 364 } 365 } 366 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 367 // If switching on a value known constant in the caller. 368 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 369 if (!Cond) { // Or known constant after constant prop in the callee... 370 Value *V = VMap.lookup(SI->getCondition()); 371 Cond = dyn_cast_or_null<ConstantInt>(V); 372 } 373 if (Cond) { // Constant fold to uncond branch! 374 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 375 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 376 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 377 ToClone.push_back(Dest); 378 TerminatorDone = true; 379 } 380 } 381 382 if (!TerminatorDone) { 383 Instruction *NewInst = OldTI->clone(); 384 if (OldTI->hasName()) 385 NewInst->setName(OldTI->getName()+NameSuffix); 386 NewBB->getInstList().push_back(NewInst); 387 VMap[OldTI] = NewInst; // Add instruction map to value. 388 389 if (CodeInfo) 390 if (auto CS = ImmutableCallSite(OldTI)) 391 if (CS.hasOperandBundles()) 392 CodeInfo->OperandBundleCallSites.push_back(NewInst); 393 394 // Recursively clone any reachable successor blocks. 395 const TerminatorInst *TI = BB->getTerminator(); 396 for (const BasicBlock *Succ : TI->successors()) 397 ToClone.push_back(Succ); 398 } 399 400 if (CodeInfo) { 401 CodeInfo->ContainsCalls |= hasCalls; 402 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 403 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 404 BB != &BB->getParent()->front(); 405 } 406 } 407 408 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 409 /// entire function. Instead it starts at an instruction provided by the caller 410 /// and copies (and prunes) only the code reachable from that instruction. 411 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 412 const Instruction *StartingInst, 413 ValueToValueMapTy &VMap, 414 bool ModuleLevelChanges, 415 SmallVectorImpl<ReturnInst *> &Returns, 416 const char *NameSuffix, 417 ClonedCodeInfo *CodeInfo) { 418 assert(NameSuffix && "NameSuffix cannot be null!"); 419 420 ValueMapTypeRemapper *TypeMapper = nullptr; 421 ValueMaterializer *Materializer = nullptr; 422 423 #ifndef NDEBUG 424 // If the cloning starts at the beginning of the function, verify that 425 // the function arguments are mapped. 426 if (!StartingInst) 427 for (const Argument &II : OldFunc->args()) 428 assert(VMap.count(&II) && "No mapping from source argument specified!"); 429 #endif 430 431 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 432 NameSuffix, CodeInfo); 433 const BasicBlock *StartingBB; 434 if (StartingInst) 435 StartingBB = StartingInst->getParent(); 436 else { 437 StartingBB = &OldFunc->getEntryBlock(); 438 StartingInst = &StartingBB->front(); 439 } 440 441 // Clone the entry block, and anything recursively reachable from it. 442 std::vector<const BasicBlock*> CloneWorklist; 443 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 444 while (!CloneWorklist.empty()) { 445 const BasicBlock *BB = CloneWorklist.back(); 446 CloneWorklist.pop_back(); 447 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 448 } 449 450 // Loop over all of the basic blocks in the old function. If the block was 451 // reachable, we have cloned it and the old block is now in the value map: 452 // insert it into the new function in the right order. If not, ignore it. 453 // 454 // Defer PHI resolution until rest of function is resolved. 455 SmallVector<const PHINode*, 16> PHIToResolve; 456 for (const BasicBlock &BI : *OldFunc) { 457 Value *V = VMap.lookup(&BI); 458 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 459 if (!NewBB) continue; // Dead block. 460 461 // Add the new block to the new function. 462 NewFunc->getBasicBlockList().push_back(NewBB); 463 464 // Handle PHI nodes specially, as we have to remove references to dead 465 // blocks. 466 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 467 // PHI nodes may have been remapped to non-PHI nodes by the caller or 468 // during the cloning process. 469 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 470 if (isa<PHINode>(VMap[PN])) 471 PHIToResolve.push_back(PN); 472 else 473 break; 474 } else { 475 break; 476 } 477 } 478 479 // Finally, remap the terminator instructions, as those can't be remapped 480 // until all BBs are mapped. 481 RemapInstruction(NewBB->getTerminator(), VMap, 482 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 483 TypeMapper, Materializer); 484 } 485 486 // Defer PHI resolution until rest of function is resolved, PHI resolution 487 // requires the CFG to be up-to-date. 488 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 489 const PHINode *OPN = PHIToResolve[phino]; 490 unsigned NumPreds = OPN->getNumIncomingValues(); 491 const BasicBlock *OldBB = OPN->getParent(); 492 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 493 494 // Map operands for blocks that are live and remove operands for blocks 495 // that are dead. 496 for (; phino != PHIToResolve.size() && 497 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 498 OPN = PHIToResolve[phino]; 499 PHINode *PN = cast<PHINode>(VMap[OPN]); 500 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 501 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 502 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 503 Value *InVal = MapValue(PN->getIncomingValue(pred), 504 VMap, 505 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 506 assert(InVal && "Unknown input value?"); 507 PN->setIncomingValue(pred, InVal); 508 PN->setIncomingBlock(pred, MappedBlock); 509 } else { 510 PN->removeIncomingValue(pred, false); 511 --pred; // Revisit the next entry. 512 --e; 513 } 514 } 515 } 516 517 // The loop above has removed PHI entries for those blocks that are dead 518 // and has updated others. However, if a block is live (i.e. copied over) 519 // but its terminator has been changed to not go to this block, then our 520 // phi nodes will have invalid entries. Update the PHI nodes in this 521 // case. 522 PHINode *PN = cast<PHINode>(NewBB->begin()); 523 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 524 if (NumPreds != PN->getNumIncomingValues()) { 525 assert(NumPreds < PN->getNumIncomingValues()); 526 // Count how many times each predecessor comes to this block. 527 std::map<BasicBlock*, unsigned> PredCount; 528 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 529 PI != E; ++PI) 530 --PredCount[*PI]; 531 532 // Figure out how many entries to remove from each PHI. 533 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 534 ++PredCount[PN->getIncomingBlock(i)]; 535 536 // At this point, the excess predecessor entries are positive in the 537 // map. Loop over all of the PHIs and remove excess predecessor 538 // entries. 539 BasicBlock::iterator I = NewBB->begin(); 540 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 541 for (const auto &PCI : PredCount) { 542 BasicBlock *Pred = PCI.first; 543 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 544 PN->removeIncomingValue(Pred, false); 545 } 546 } 547 } 548 549 // If the loops above have made these phi nodes have 0 or 1 operand, 550 // replace them with undef or the input value. We must do this for 551 // correctness, because 0-operand phis are not valid. 552 PN = cast<PHINode>(NewBB->begin()); 553 if (PN->getNumIncomingValues() == 0) { 554 BasicBlock::iterator I = NewBB->begin(); 555 BasicBlock::const_iterator OldI = OldBB->begin(); 556 while ((PN = dyn_cast<PHINode>(I++))) { 557 Value *NV = UndefValue::get(PN->getType()); 558 PN->replaceAllUsesWith(NV); 559 assert(VMap[&*OldI] == PN && "VMap mismatch"); 560 VMap[&*OldI] = NV; 561 PN->eraseFromParent(); 562 ++OldI; 563 } 564 } 565 } 566 567 // Make a second pass over the PHINodes now that all of them have been 568 // remapped into the new function, simplifying the PHINode and performing any 569 // recursive simplifications exposed. This will transparently update the 570 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 571 // two PHINodes, the iteration over the old PHIs remains valid, and the 572 // mapping will just map us to the new node (which may not even be a PHI 573 // node). 574 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 575 SmallSetVector<const Value *, 8> Worklist; 576 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 577 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 578 Worklist.insert(PHIToResolve[Idx]); 579 580 // Note that we must test the size on each iteration, the worklist can grow. 581 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 582 const Value *OrigV = Worklist[Idx]; 583 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 584 if (!I) 585 continue; 586 587 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 588 // the CGSCC. 589 CallSite CS = CallSite(I); 590 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) 591 continue; 592 593 // See if this instruction simplifies. 594 Value *SimpleV = SimplifyInstruction(I, DL); 595 if (!SimpleV) 596 continue; 597 598 // Stash away all the uses of the old instruction so we can check them for 599 // recursive simplifications after a RAUW. This is cheaper than checking all 600 // uses of To on the recursive step in most cases. 601 for (const User *U : OrigV->users()) 602 Worklist.insert(cast<Instruction>(U)); 603 604 // Replace the instruction with its simplified value. 605 I->replaceAllUsesWith(SimpleV); 606 607 // If the original instruction had no side effects, remove it. 608 if (isInstructionTriviallyDead(I)) 609 I->eraseFromParent(); 610 else 611 VMap[OrigV] = I; 612 } 613 614 // Now that the inlined function body has been fully constructed, go through 615 // and zap unconditional fall-through branches. This happens all the time when 616 // specializing code: code specialization turns conditional branches into 617 // uncond branches, and this code folds them. 618 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 619 Function::iterator I = Begin; 620 while (I != NewFunc->end()) { 621 // Check if this block has become dead during inlining or other 622 // simplifications. Note that the first block will appear dead, as it has 623 // not yet been wired up properly. 624 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 625 I->getSinglePredecessor() == &*I)) { 626 BasicBlock *DeadBB = &*I++; 627 DeleteDeadBlock(DeadBB); 628 continue; 629 } 630 631 // We need to simplify conditional branches and switches with a constant 632 // operand. We try to prune these out when cloning, but if the 633 // simplification required looking through PHI nodes, those are only 634 // available after forming the full basic block. That may leave some here, 635 // and we still want to prune the dead code as early as possible. 636 ConstantFoldTerminator(&*I); 637 638 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 639 if (!BI || BI->isConditional()) { ++I; continue; } 640 641 BasicBlock *Dest = BI->getSuccessor(0); 642 if (!Dest->getSinglePredecessor()) { 643 ++I; continue; 644 } 645 646 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 647 // above should have zapped all of them.. 648 assert(!isa<PHINode>(Dest->begin())); 649 650 // We know all single-entry PHI nodes in the inlined function have been 651 // removed, so we just need to splice the blocks. 652 BI->eraseFromParent(); 653 654 // Make all PHI nodes that referred to Dest now refer to I as their source. 655 Dest->replaceAllUsesWith(&*I); 656 657 // Move all the instructions in the succ to the pred. 658 I->getInstList().splice(I->end(), Dest->getInstList()); 659 660 // Remove the dest block. 661 Dest->eraseFromParent(); 662 663 // Do not increment I, iteratively merge all things this block branches to. 664 } 665 666 // Make a final pass over the basic blocks from the old function to gather 667 // any return instructions which survived folding. We have to do this here 668 // because we can iteratively remove and merge returns above. 669 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 670 E = NewFunc->end(); 671 I != E; ++I) 672 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 673 Returns.push_back(RI); 674 } 675 676 677 /// This works exactly like CloneFunctionInto, 678 /// except that it does some simple constant prop and DCE on the fly. The 679 /// effect of this is to copy significantly less code in cases where (for 680 /// example) a function call with constant arguments is inlined, and those 681 /// constant arguments cause a significant amount of code in the callee to be 682 /// dead. Since this doesn't produce an exact copy of the input, it can't be 683 /// used for things like CloneFunction or CloneModule. 684 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 685 ValueToValueMapTy &VMap, 686 bool ModuleLevelChanges, 687 SmallVectorImpl<ReturnInst*> &Returns, 688 const char *NameSuffix, 689 ClonedCodeInfo *CodeInfo, 690 Instruction *TheCall) { 691 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 692 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 693 } 694 695 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 696 void llvm::remapInstructionsInBlocks( 697 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 698 // Rewrite the code to refer to itself. 699 for (auto *BB : Blocks) 700 for (auto &Inst : *BB) 701 RemapInstruction(&Inst, VMap, 702 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 703 } 704 705 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 706 /// Blocks. 707 /// 708 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 709 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 710 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 711 Loop *OrigLoop, ValueToValueMapTy &VMap, 712 const Twine &NameSuffix, LoopInfo *LI, 713 DominatorTree *DT, 714 SmallVectorImpl<BasicBlock *> &Blocks) { 715 assert(OrigLoop->getSubLoops().empty() && 716 "Loop to be cloned cannot have inner loop"); 717 Function *F = OrigLoop->getHeader()->getParent(); 718 Loop *ParentLoop = OrigLoop->getParentLoop(); 719 720 Loop *NewLoop = new Loop(); 721 if (ParentLoop) 722 ParentLoop->addChildLoop(NewLoop); 723 else 724 LI->addTopLevelLoop(NewLoop); 725 726 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 727 assert(OrigPH && "No preheader"); 728 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 729 // To rename the loop PHIs. 730 VMap[OrigPH] = NewPH; 731 Blocks.push_back(NewPH); 732 733 // Update LoopInfo. 734 if (ParentLoop) 735 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 736 737 // Update DominatorTree. 738 DT->addNewBlock(NewPH, LoopDomBB); 739 740 for (BasicBlock *BB : OrigLoop->getBlocks()) { 741 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 742 VMap[BB] = NewBB; 743 744 // Update LoopInfo. 745 NewLoop->addBasicBlockToLoop(NewBB, *LI); 746 747 // Add DominatorTree node. After seeing all blocks, update to correct IDom. 748 DT->addNewBlock(NewBB, NewPH); 749 750 Blocks.push_back(NewBB); 751 } 752 753 for (BasicBlock *BB : OrigLoop->getBlocks()) { 754 // Update DominatorTree. 755 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 756 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 757 cast<BasicBlock>(VMap[IDomBB])); 758 } 759 760 // Move them physically from the end of the block list. 761 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 762 NewPH); 763 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 764 NewLoop->getHeader()->getIterator(), F->end()); 765 766 return NewLoop; 767 } 768 769 /// \brief Duplicate non-Phi instructions from the beginning of block up to 770 /// StopAt instruction into a split block between BB and its predecessor. 771 BasicBlock * 772 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, 773 Instruction *StopAt, 774 ValueToValueMapTy &ValueMapping) { 775 // We are going to have to map operands from the original BB block to the new 776 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 777 // account for entry from PredBB. 778 BasicBlock::iterator BI = BB->begin(); 779 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 780 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 781 782 BasicBlock *NewBB = SplitEdge(PredBB, BB); 783 NewBB->setName(PredBB->getName() + ".split"); 784 Instruction *NewTerm = NewBB->getTerminator(); 785 786 // Clone the non-phi instructions of BB into NewBB, keeping track of the 787 // mapping and using it to remap operands in the cloned instructions. 788 for (; StopAt != &*BI; ++BI) { 789 Instruction *New = BI->clone(); 790 New->setName(BI->getName()); 791 New->insertBefore(NewTerm); 792 ValueMapping[&*BI] = New; 793 794 // Remap operands to patch up intra-block references. 795 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 796 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 797 auto I = ValueMapping.find(Inst); 798 if (I != ValueMapping.end()) 799 New->setOperand(i, I->second); 800 } 801 } 802 803 return NewBB; 804 } 805