1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37 
38 /// See comments in Cloning.h.
39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
40                                   ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo) {
43   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
44   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
45 
46   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
47 
48   // Loop over all instructions, and copy them over.
49   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
50        II != IE; ++II) {
51     Instruction *NewInst = II->clone();
52     if (II->hasName())
53       NewInst->setName(II->getName()+NameSuffix);
54     NewBB->getInstList().push_back(NewInst);
55     VMap[&*II] = NewInst; // Add instruction map to value.
56 
57     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
58     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
59       if (isa<ConstantInt>(AI->getArraySize()))
60         hasStaticAllocas = true;
61       else
62         hasDynamicAllocas = true;
63     }
64   }
65 
66   if (CodeInfo) {
67     CodeInfo->ContainsCalls          |= hasCalls;
68     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
69     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
70                                         BB != &BB->getParent()->getEntryBlock();
71   }
72   return NewBB;
73 }
74 
75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
76 // VMap values.
77 //
78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
79                              ValueToValueMapTy &VMap,
80                              bool ModuleLevelChanges,
81                              SmallVectorImpl<ReturnInst*> &Returns,
82                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
83                              ValueMapTypeRemapper *TypeMapper,
84                              ValueMaterializer *Materializer) {
85   assert(NameSuffix && "NameSuffix cannot be null!");
86 
87 #ifndef NDEBUG
88   for (const Argument &I : OldFunc->args())
89     assert(VMap.count(&I) && "No mapping from source argument specified!");
90 #endif
91 
92   // Copy all attributes other than those stored in the AttributeSet.  We need
93   // to remap the parameter indices of the AttributeSet.
94   AttributeSet NewAttrs = NewFunc->getAttributes();
95   NewFunc->copyAttributesFrom(OldFunc);
96   NewFunc->setAttributes(NewAttrs);
97 
98   // Fix up the personality function that got copied over.
99   if (OldFunc->hasPersonalityFn())
100     NewFunc->setPersonalityFn(
101         MapValue(OldFunc->getPersonalityFn(), VMap,
102                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
103                  TypeMapper, Materializer));
104 
105   AttributeSet OldAttrs = OldFunc->getAttributes();
106   // Clone any argument attributes that are present in the VMap.
107   for (const Argument &OldArg : OldFunc->args())
108     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
109       AttributeSet attrs =
110           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111       if (attrs.getNumSlots() > 0)
112         NewArg->addAttr(attrs);
113     }
114 
115   NewFunc->setAttributes(
116       NewFunc->getAttributes()
117           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
118                          OldAttrs.getRetAttributes())
119           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
120                          OldAttrs.getFnAttributes()));
121 
122   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
123   OldFunc->getAllMetadata(MDs);
124   for (auto MD : MDs)
125     NewFunc->addMetadata(
126         MD.first,
127         *MapMetadata(MD.second, VMap,
128                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
129                      TypeMapper, Materializer));
130 
131   // Loop over all of the basic blocks in the function, cloning them as
132   // appropriate.  Note that we save BE this way in order to handle cloning of
133   // recursive functions into themselves.
134   //
135   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
136        BI != BE; ++BI) {
137     const BasicBlock &BB = *BI;
138 
139     // Create a new basic block and copy instructions into it!
140     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
141 
142     // Add basic block mapping.
143     VMap[&BB] = CBB;
144 
145     // It is only legal to clone a function if a block address within that
146     // function is never referenced outside of the function.  Given that, we
147     // want to map block addresses from the old function to block addresses in
148     // the clone. (This is different from the generic ValueMapper
149     // implementation, which generates an invalid blockaddress when
150     // cloning a function.)
151     if (BB.hasAddressTaken()) {
152       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
153                                               const_cast<BasicBlock*>(&BB));
154       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
155     }
156 
157     // Note return instructions for the caller.
158     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
159       Returns.push_back(RI);
160   }
161 
162   // Loop over all of the instructions in the function, fixing up operand
163   // references as we go.  This uses VMap to do all the hard work.
164   for (Function::iterator BB =
165            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
166                           BE = NewFunc->end();
167        BB != BE; ++BB)
168     // Loop over all instructions, fixing each one as we find it...
169     for (Instruction &II : *BB)
170       RemapInstruction(&II, VMap,
171                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
172                        TypeMapper, Materializer);
173 }
174 
175 /// Return a copy of the specified function and add it to that function's
176 /// module.  Also, any references specified in the VMap are changed to refer to
177 /// their mapped value instead of the original one.  If any of the arguments to
178 /// the function are in the VMap, the arguments are deleted from the resultant
179 /// function.  The VMap is updated to include mappings from all of the
180 /// instructions and basicblocks in the function from their old to new values.
181 ///
182 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
183                               ClonedCodeInfo *CodeInfo) {
184   std::vector<Type*> ArgTypes;
185 
186   // The user might be deleting arguments to the function by specifying them in
187   // the VMap.  If so, we need to not add the arguments to the arg ty vector
188   //
189   for (const Argument &I : F->args())
190     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
191       ArgTypes.push_back(I.getType());
192 
193   // Create a new function type...
194   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
195                                     ArgTypes, F->getFunctionType()->isVarArg());
196 
197   // Create the new function...
198   Function *NewF =
199       Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
200 
201   // Loop over the arguments, copying the names of the mapped arguments over...
202   Function::arg_iterator DestI = NewF->arg_begin();
203   for (const Argument & I : F->args())
204     if (VMap.count(&I) == 0) {     // Is this argument preserved?
205       DestI->setName(I.getName()); // Copy the name over...
206       VMap[&I] = &*DestI++;        // Add mapping to VMap
207     }
208 
209   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
210   CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
211                     CodeInfo);
212 
213   return NewF;
214 }
215 
216 
217 
218 namespace {
219   /// This is a private class used to implement CloneAndPruneFunctionInto.
220   struct PruningFunctionCloner {
221     Function *NewFunc;
222     const Function *OldFunc;
223     ValueToValueMapTy &VMap;
224     bool ModuleLevelChanges;
225     const char *NameSuffix;
226     ClonedCodeInfo *CodeInfo;
227 
228   public:
229     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
230                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
231                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
232         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
233           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
234           CodeInfo(codeInfo) {}
235 
236     /// The specified block is found to be reachable, clone it and
237     /// anything that it can reach.
238     void CloneBlock(const BasicBlock *BB,
239                     BasicBlock::const_iterator StartingInst,
240                     std::vector<const BasicBlock*> &ToClone);
241   };
242 }
243 
244 /// The specified block is found to be reachable, clone it and
245 /// anything that it can reach.
246 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
247                                        BasicBlock::const_iterator StartingInst,
248                                        std::vector<const BasicBlock*> &ToClone){
249   WeakVH &BBEntry = VMap[BB];
250 
251   // Have we already cloned this block?
252   if (BBEntry) return;
253 
254   // Nope, clone it now.
255   BasicBlock *NewBB;
256   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
257   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
258 
259   // It is only legal to clone a function if a block address within that
260   // function is never referenced outside of the function.  Given that, we
261   // want to map block addresses from the old function to block addresses in
262   // the clone. (This is different from the generic ValueMapper
263   // implementation, which generates an invalid blockaddress when
264   // cloning a function.)
265   //
266   // Note that we don't need to fix the mapping for unreachable blocks;
267   // the default mapping there is safe.
268   if (BB->hasAddressTaken()) {
269     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
270                                             const_cast<BasicBlock*>(BB));
271     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
272   }
273 
274   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
275 
276   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
277   // loop doesn't include the terminator.
278   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
279        II != IE; ++II) {
280 
281     Instruction *NewInst = II->clone();
282 
283     // Eagerly remap operands to the newly cloned instruction, except for PHI
284     // nodes for which we defer processing until we update the CFG.
285     if (!isa<PHINode>(NewInst)) {
286       RemapInstruction(NewInst, VMap,
287                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
288 
289       // If we can simplify this instruction to some other value, simply add
290       // a mapping to that value rather than inserting a new instruction into
291       // the basic block.
292       if (Value *V =
293               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
294         // On the off-chance that this simplifies to an instruction in the old
295         // function, map it back into the new function.
296         if (Value *MappedV = VMap.lookup(V))
297           V = MappedV;
298 
299         VMap[&*II] = V;
300         delete NewInst;
301         continue;
302       }
303     }
304 
305     if (II->hasName())
306       NewInst->setName(II->getName()+NameSuffix);
307     VMap[&*II] = NewInst; // Add instruction map to value.
308     NewBB->getInstList().push_back(NewInst);
309     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
310 
311     if (CodeInfo)
312       if (auto CS = ImmutableCallSite(&*II))
313         if (CS.hasOperandBundles())
314           CodeInfo->OperandBundleCallSites.push_back(NewInst);
315 
316     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
317       if (isa<ConstantInt>(AI->getArraySize()))
318         hasStaticAllocas = true;
319       else
320         hasDynamicAllocas = true;
321     }
322   }
323 
324   // Finally, clone over the terminator.
325   const TerminatorInst *OldTI = BB->getTerminator();
326   bool TerminatorDone = false;
327   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
328     if (BI->isConditional()) {
329       // If the condition was a known constant in the callee...
330       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
331       // Or is a known constant in the caller...
332       if (!Cond) {
333         Value *V = VMap.lookup(BI->getCondition());
334         Cond = dyn_cast_or_null<ConstantInt>(V);
335       }
336 
337       // Constant fold to uncond branch!
338       if (Cond) {
339         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
340         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
341         ToClone.push_back(Dest);
342         TerminatorDone = true;
343       }
344     }
345   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
346     // If switching on a value known constant in the caller.
347     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
348     if (!Cond) { // Or known constant after constant prop in the callee...
349       Value *V = VMap.lookup(SI->getCondition());
350       Cond = dyn_cast_or_null<ConstantInt>(V);
351     }
352     if (Cond) {     // Constant fold to uncond branch!
353       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
354       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
355       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
356       ToClone.push_back(Dest);
357       TerminatorDone = true;
358     }
359   }
360 
361   if (!TerminatorDone) {
362     Instruction *NewInst = OldTI->clone();
363     if (OldTI->hasName())
364       NewInst->setName(OldTI->getName()+NameSuffix);
365     NewBB->getInstList().push_back(NewInst);
366     VMap[OldTI] = NewInst;             // Add instruction map to value.
367 
368     if (CodeInfo)
369       if (auto CS = ImmutableCallSite(OldTI))
370         if (CS.hasOperandBundles())
371           CodeInfo->OperandBundleCallSites.push_back(NewInst);
372 
373     // Recursively clone any reachable successor blocks.
374     const TerminatorInst *TI = BB->getTerminator();
375     for (const BasicBlock *Succ : TI->successors())
376       ToClone.push_back(Succ);
377   }
378 
379   if (CodeInfo) {
380     CodeInfo->ContainsCalls          |= hasCalls;
381     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
382     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
383       BB != &BB->getParent()->front();
384   }
385 }
386 
387 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
388 /// entire function. Instead it starts at an instruction provided by the caller
389 /// and copies (and prunes) only the code reachable from that instruction.
390 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
391                                      const Instruction *StartingInst,
392                                      ValueToValueMapTy &VMap,
393                                      bool ModuleLevelChanges,
394                                      SmallVectorImpl<ReturnInst *> &Returns,
395                                      const char *NameSuffix,
396                                      ClonedCodeInfo *CodeInfo) {
397   assert(NameSuffix && "NameSuffix cannot be null!");
398 
399   ValueMapTypeRemapper *TypeMapper = nullptr;
400   ValueMaterializer *Materializer = nullptr;
401 
402 #ifndef NDEBUG
403   // If the cloning starts at the beginning of the function, verify that
404   // the function arguments are mapped.
405   if (!StartingInst)
406     for (const Argument &II : OldFunc->args())
407       assert(VMap.count(&II) && "No mapping from source argument specified!");
408 #endif
409 
410   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
411                             NameSuffix, CodeInfo);
412   const BasicBlock *StartingBB;
413   if (StartingInst)
414     StartingBB = StartingInst->getParent();
415   else {
416     StartingBB = &OldFunc->getEntryBlock();
417     StartingInst = &StartingBB->front();
418   }
419 
420   // Clone the entry block, and anything recursively reachable from it.
421   std::vector<const BasicBlock*> CloneWorklist;
422   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
423   while (!CloneWorklist.empty()) {
424     const BasicBlock *BB = CloneWorklist.back();
425     CloneWorklist.pop_back();
426     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
427   }
428 
429   // Loop over all of the basic blocks in the old function.  If the block was
430   // reachable, we have cloned it and the old block is now in the value map:
431   // insert it into the new function in the right order.  If not, ignore it.
432   //
433   // Defer PHI resolution until rest of function is resolved.
434   SmallVector<const PHINode*, 16> PHIToResolve;
435   for (const BasicBlock &BI : *OldFunc) {
436     Value *V = VMap.lookup(&BI);
437     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
438     if (!NewBB) continue;  // Dead block.
439 
440     // Add the new block to the new function.
441     NewFunc->getBasicBlockList().push_back(NewBB);
442 
443     // Handle PHI nodes specially, as we have to remove references to dead
444     // blocks.
445     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
446       // PHI nodes may have been remapped to non-PHI nodes by the caller or
447       // during the cloning process.
448       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
449         if (isa<PHINode>(VMap[PN]))
450           PHIToResolve.push_back(PN);
451         else
452           break;
453       } else {
454         break;
455       }
456     }
457 
458     // Finally, remap the terminator instructions, as those can't be remapped
459     // until all BBs are mapped.
460     RemapInstruction(NewBB->getTerminator(), VMap,
461                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
462                      TypeMapper, Materializer);
463   }
464 
465   // Defer PHI resolution until rest of function is resolved, PHI resolution
466   // requires the CFG to be up-to-date.
467   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
468     const PHINode *OPN = PHIToResolve[phino];
469     unsigned NumPreds = OPN->getNumIncomingValues();
470     const BasicBlock *OldBB = OPN->getParent();
471     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
472 
473     // Map operands for blocks that are live and remove operands for blocks
474     // that are dead.
475     for (; phino != PHIToResolve.size() &&
476          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
477       OPN = PHIToResolve[phino];
478       PHINode *PN = cast<PHINode>(VMap[OPN]);
479       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
480         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
481         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
482           Value *InVal = MapValue(PN->getIncomingValue(pred),
483                                   VMap,
484                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
485           assert(InVal && "Unknown input value?");
486           PN->setIncomingValue(pred, InVal);
487           PN->setIncomingBlock(pred, MappedBlock);
488         } else {
489           PN->removeIncomingValue(pred, false);
490           --pred;  // Revisit the next entry.
491           --e;
492         }
493       }
494     }
495 
496     // The loop above has removed PHI entries for those blocks that are dead
497     // and has updated others.  However, if a block is live (i.e. copied over)
498     // but its terminator has been changed to not go to this block, then our
499     // phi nodes will have invalid entries.  Update the PHI nodes in this
500     // case.
501     PHINode *PN = cast<PHINode>(NewBB->begin());
502     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
503     if (NumPreds != PN->getNumIncomingValues()) {
504       assert(NumPreds < PN->getNumIncomingValues());
505       // Count how many times each predecessor comes to this block.
506       std::map<BasicBlock*, unsigned> PredCount;
507       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
508            PI != E; ++PI)
509         --PredCount[*PI];
510 
511       // Figure out how many entries to remove from each PHI.
512       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
513         ++PredCount[PN->getIncomingBlock(i)];
514 
515       // At this point, the excess predecessor entries are positive in the
516       // map.  Loop over all of the PHIs and remove excess predecessor
517       // entries.
518       BasicBlock::iterator I = NewBB->begin();
519       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
520         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
521              E = PredCount.end(); PCI != E; ++PCI) {
522           BasicBlock *Pred     = PCI->first;
523           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
524             PN->removeIncomingValue(Pred, false);
525         }
526       }
527     }
528 
529     // If the loops above have made these phi nodes have 0 or 1 operand,
530     // replace them with undef or the input value.  We must do this for
531     // correctness, because 0-operand phis are not valid.
532     PN = cast<PHINode>(NewBB->begin());
533     if (PN->getNumIncomingValues() == 0) {
534       BasicBlock::iterator I = NewBB->begin();
535       BasicBlock::const_iterator OldI = OldBB->begin();
536       while ((PN = dyn_cast<PHINode>(I++))) {
537         Value *NV = UndefValue::get(PN->getType());
538         PN->replaceAllUsesWith(NV);
539         assert(VMap[&*OldI] == PN && "VMap mismatch");
540         VMap[&*OldI] = NV;
541         PN->eraseFromParent();
542         ++OldI;
543       }
544     }
545   }
546 
547   // Make a second pass over the PHINodes now that all of them have been
548   // remapped into the new function, simplifying the PHINode and performing any
549   // recursive simplifications exposed. This will transparently update the
550   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
551   // two PHINodes, the iteration over the old PHIs remains valid, and the
552   // mapping will just map us to the new node (which may not even be a PHI
553   // node).
554   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
555     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
556       recursivelySimplifyInstruction(PN);
557 
558   // Now that the inlined function body has been fully constructed, go through
559   // and zap unconditional fall-through branches. This happens all the time when
560   // specializing code: code specialization turns conditional branches into
561   // uncond branches, and this code folds them.
562   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
563   Function::iterator I = Begin;
564   while (I != NewFunc->end()) {
565     // Check if this block has become dead during inlining or other
566     // simplifications. Note that the first block will appear dead, as it has
567     // not yet been wired up properly.
568     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
569                        I->getSinglePredecessor() == &*I)) {
570       BasicBlock *DeadBB = &*I++;
571       DeleteDeadBlock(DeadBB);
572       continue;
573     }
574 
575     // We need to simplify conditional branches and switches with a constant
576     // operand. We try to prune these out when cloning, but if the
577     // simplification required looking through PHI nodes, those are only
578     // available after forming the full basic block. That may leave some here,
579     // and we still want to prune the dead code as early as possible.
580     ConstantFoldTerminator(&*I);
581 
582     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
583     if (!BI || BI->isConditional()) { ++I; continue; }
584 
585     BasicBlock *Dest = BI->getSuccessor(0);
586     if (!Dest->getSinglePredecessor()) {
587       ++I; continue;
588     }
589 
590     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
591     // above should have zapped all of them..
592     assert(!isa<PHINode>(Dest->begin()));
593 
594     // We know all single-entry PHI nodes in the inlined function have been
595     // removed, so we just need to splice the blocks.
596     BI->eraseFromParent();
597 
598     // Make all PHI nodes that referred to Dest now refer to I as their source.
599     Dest->replaceAllUsesWith(&*I);
600 
601     // Move all the instructions in the succ to the pred.
602     I->getInstList().splice(I->end(), Dest->getInstList());
603 
604     // Remove the dest block.
605     Dest->eraseFromParent();
606 
607     // Do not increment I, iteratively merge all things this block branches to.
608   }
609 
610   // Make a final pass over the basic blocks from the old function to gather
611   // any return instructions which survived folding. We have to do this here
612   // because we can iteratively remove and merge returns above.
613   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
614                           E = NewFunc->end();
615        I != E; ++I)
616     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
617       Returns.push_back(RI);
618 }
619 
620 
621 /// This works exactly like CloneFunctionInto,
622 /// except that it does some simple constant prop and DCE on the fly.  The
623 /// effect of this is to copy significantly less code in cases where (for
624 /// example) a function call with constant arguments is inlined, and those
625 /// constant arguments cause a significant amount of code in the callee to be
626 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
627 /// used for things like CloneFunction or CloneModule.
628 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
629                                      ValueToValueMapTy &VMap,
630                                      bool ModuleLevelChanges,
631                                      SmallVectorImpl<ReturnInst*> &Returns,
632                                      const char *NameSuffix,
633                                      ClonedCodeInfo *CodeInfo,
634                                      Instruction *TheCall) {
635   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
636                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
637 }
638 
639 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
640 void llvm::remapInstructionsInBlocks(
641     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
642   // Rewrite the code to refer to itself.
643   for (auto *BB : Blocks)
644     for (auto &Inst : *BB)
645       RemapInstruction(&Inst, VMap,
646                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
647 }
648 
649 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
650 /// Blocks.
651 ///
652 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
653 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
654 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
655                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
656                                    const Twine &NameSuffix, LoopInfo *LI,
657                                    DominatorTree *DT,
658                                    SmallVectorImpl<BasicBlock *> &Blocks) {
659   assert(OrigLoop->getSubLoops().empty() &&
660          "Loop to be cloned cannot have inner loop");
661   Function *F = OrigLoop->getHeader()->getParent();
662   Loop *ParentLoop = OrigLoop->getParentLoop();
663 
664   Loop *NewLoop = new Loop();
665   if (ParentLoop)
666     ParentLoop->addChildLoop(NewLoop);
667   else
668     LI->addTopLevelLoop(NewLoop);
669 
670   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
671   assert(OrigPH && "No preheader");
672   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
673   // To rename the loop PHIs.
674   VMap[OrigPH] = NewPH;
675   Blocks.push_back(NewPH);
676 
677   // Update LoopInfo.
678   if (ParentLoop)
679     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
680 
681   // Update DominatorTree.
682   DT->addNewBlock(NewPH, LoopDomBB);
683 
684   for (BasicBlock *BB : OrigLoop->getBlocks()) {
685     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
686     VMap[BB] = NewBB;
687 
688     // Update LoopInfo.
689     NewLoop->addBasicBlockToLoop(NewBB, *LI);
690 
691     // Update DominatorTree.
692     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
693     DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
694 
695     Blocks.push_back(NewBB);
696   }
697 
698   // Move them physically from the end of the block list.
699   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
700                                 NewPH);
701   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
702                                 NewLoop->getHeader()->getIterator(), F->end());
703 
704   return NewLoop;
705 }
706