1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/DomTreeUpdater.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/ValueMapper.h" 37 #include <map> 38 using namespace llvm; 39 40 /// See comments in Cloning.h. 41 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 42 const Twine &NameSuffix, Function *F, 43 ClonedCodeInfo *CodeInfo, 44 DebugInfoFinder *DIFinder) { 45 DenseMap<const MDNode *, MDNode *> Cache; 46 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 47 if (BB->hasName()) 48 NewBB->setName(BB->getName() + NameSuffix); 49 50 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 51 Module *TheModule = F ? F->getParent() : nullptr; 52 53 // Loop over all instructions, and copy them over. 54 for (const Instruction &I : *BB) { 55 if (DIFinder && TheModule) 56 DIFinder->processInstruction(*TheModule, I); 57 58 Instruction *NewInst = I.clone(); 59 if (I.hasName()) 60 NewInst->setName(I.getName() + NameSuffix); 61 NewBB->getInstList().push_back(NewInst); 62 VMap[&I] = NewInst; // Add instruction map to value. 63 64 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); 65 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 66 if (isa<ConstantInt>(AI->getArraySize())) 67 hasStaticAllocas = true; 68 else 69 hasDynamicAllocas = true; 70 } 71 } 72 73 if (CodeInfo) { 74 CodeInfo->ContainsCalls |= hasCalls; 75 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 76 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 77 BB != &BB->getParent()->getEntryBlock(); 78 } 79 return NewBB; 80 } 81 82 // Clone OldFunc into NewFunc, transforming the old arguments into references to 83 // VMap values. 84 // 85 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 86 ValueToValueMapTy &VMap, 87 bool ModuleLevelChanges, 88 SmallVectorImpl<ReturnInst*> &Returns, 89 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 90 ValueMapTypeRemapper *TypeMapper, 91 ValueMaterializer *Materializer) { 92 assert(NameSuffix && "NameSuffix cannot be null!"); 93 94 #ifndef NDEBUG 95 for (const Argument &I : OldFunc->args()) 96 assert(VMap.count(&I) && "No mapping from source argument specified!"); 97 #endif 98 99 // Copy all attributes other than those stored in the AttributeList. We need 100 // to remap the parameter indices of the AttributeList. 101 AttributeList NewAttrs = NewFunc->getAttributes(); 102 NewFunc->copyAttributesFrom(OldFunc); 103 NewFunc->setAttributes(NewAttrs); 104 105 // Fix up the personality function that got copied over. 106 if (OldFunc->hasPersonalityFn()) 107 NewFunc->setPersonalityFn( 108 MapValue(OldFunc->getPersonalityFn(), VMap, 109 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 110 TypeMapper, Materializer)); 111 112 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 113 AttributeList OldAttrs = OldFunc->getAttributes(); 114 115 // Clone any argument attributes that are present in the VMap. 116 for (const Argument &OldArg : OldFunc->args()) { 117 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 118 NewArgAttrs[NewArg->getArgNo()] = 119 OldAttrs.getParamAttributes(OldArg.getArgNo()); 120 } 121 } 122 123 NewFunc->setAttributes( 124 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 125 OldAttrs.getRetAttributes(), NewArgAttrs)); 126 127 bool MustCloneSP = 128 OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); 129 DISubprogram *SP = OldFunc->getSubprogram(); 130 if (SP) { 131 assert(!MustCloneSP || ModuleLevelChanges); 132 // Add mappings for some DebugInfo nodes that we don't want duplicated 133 // even if they're distinct. 134 auto &MD = VMap.MD(); 135 MD[SP->getUnit()].reset(SP->getUnit()); 136 MD[SP->getType()].reset(SP->getType()); 137 MD[SP->getFile()].reset(SP->getFile()); 138 // If we're not cloning into the same module, no need to clone the 139 // subprogram 140 if (!MustCloneSP) 141 MD[SP].reset(SP); 142 } 143 144 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 145 OldFunc->getAllMetadata(MDs); 146 for (auto MD : MDs) { 147 NewFunc->addMetadata( 148 MD.first, 149 *MapMetadata(MD.second, VMap, 150 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 151 TypeMapper, Materializer)); 152 } 153 154 // When we remap instructions, we want to avoid duplicating inlined 155 // DISubprograms, so record all subprograms we find as we duplicate 156 // instructions and then freeze them in the MD map. 157 // We also record information about dbg.value and dbg.declare to avoid 158 // duplicating the types. 159 DebugInfoFinder DIFinder; 160 161 // Loop over all of the basic blocks in the function, cloning them as 162 // appropriate. Note that we save BE this way in order to handle cloning of 163 // recursive functions into themselves. 164 // 165 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 166 BI != BE; ++BI) { 167 const BasicBlock &BB = *BI; 168 169 // Create a new basic block and copy instructions into it! 170 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 171 ModuleLevelChanges ? &DIFinder : nullptr); 172 173 // Add basic block mapping. 174 VMap[&BB] = CBB; 175 176 // It is only legal to clone a function if a block address within that 177 // function is never referenced outside of the function. Given that, we 178 // want to map block addresses from the old function to block addresses in 179 // the clone. (This is different from the generic ValueMapper 180 // implementation, which generates an invalid blockaddress when 181 // cloning a function.) 182 if (BB.hasAddressTaken()) { 183 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 184 const_cast<BasicBlock*>(&BB)); 185 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 186 } 187 188 // Note return instructions for the caller. 189 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 190 Returns.push_back(RI); 191 } 192 193 for (DISubprogram *ISP : DIFinder.subprograms()) 194 if (ISP != SP) 195 VMap.MD()[ISP].reset(ISP); 196 197 for (DICompileUnit *CU : DIFinder.compile_units()) 198 VMap.MD()[CU].reset(CU); 199 200 for (DIType *Type : DIFinder.types()) 201 VMap.MD()[Type].reset(Type); 202 203 // Loop over all of the instructions in the function, fixing up operand 204 // references as we go. This uses VMap to do all the hard work. 205 for (Function::iterator BB = 206 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 207 BE = NewFunc->end(); 208 BB != BE; ++BB) 209 // Loop over all instructions, fixing each one as we find it... 210 for (Instruction &II : *BB) 211 RemapInstruction(&II, VMap, 212 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 213 TypeMapper, Materializer); 214 } 215 216 /// Return a copy of the specified function and add it to that function's 217 /// module. Also, any references specified in the VMap are changed to refer to 218 /// their mapped value instead of the original one. If any of the arguments to 219 /// the function are in the VMap, the arguments are deleted from the resultant 220 /// function. The VMap is updated to include mappings from all of the 221 /// instructions and basicblocks in the function from their old to new values. 222 /// 223 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 224 ClonedCodeInfo *CodeInfo) { 225 std::vector<Type*> ArgTypes; 226 227 // The user might be deleting arguments to the function by specifying them in 228 // the VMap. If so, we need to not add the arguments to the arg ty vector 229 // 230 for (const Argument &I : F->args()) 231 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 232 ArgTypes.push_back(I.getType()); 233 234 // Create a new function type... 235 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 236 ArgTypes, F->getFunctionType()->isVarArg()); 237 238 // Create the new function... 239 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 240 F->getName(), F->getParent()); 241 242 // Loop over the arguments, copying the names of the mapped arguments over... 243 Function::arg_iterator DestI = NewF->arg_begin(); 244 for (const Argument & I : F->args()) 245 if (VMap.count(&I) == 0) { // Is this argument preserved? 246 DestI->setName(I.getName()); // Copy the name over... 247 VMap[&I] = &*DestI++; // Add mapping to VMap 248 } 249 250 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 251 CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", 252 CodeInfo); 253 254 return NewF; 255 } 256 257 258 259 namespace { 260 /// This is a private class used to implement CloneAndPruneFunctionInto. 261 struct PruningFunctionCloner { 262 Function *NewFunc; 263 const Function *OldFunc; 264 ValueToValueMapTy &VMap; 265 bool ModuleLevelChanges; 266 const char *NameSuffix; 267 ClonedCodeInfo *CodeInfo; 268 269 public: 270 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 271 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 272 const char *nameSuffix, ClonedCodeInfo *codeInfo) 273 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 274 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 275 CodeInfo(codeInfo) {} 276 277 /// The specified block is found to be reachable, clone it and 278 /// anything that it can reach. 279 void CloneBlock(const BasicBlock *BB, 280 BasicBlock::const_iterator StartingInst, 281 std::vector<const BasicBlock*> &ToClone); 282 }; 283 } 284 285 /// The specified block is found to be reachable, clone it and 286 /// anything that it can reach. 287 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 288 BasicBlock::const_iterator StartingInst, 289 std::vector<const BasicBlock*> &ToClone){ 290 WeakTrackingVH &BBEntry = VMap[BB]; 291 292 // Have we already cloned this block? 293 if (BBEntry) return; 294 295 // Nope, clone it now. 296 BasicBlock *NewBB; 297 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 298 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 299 300 // It is only legal to clone a function if a block address within that 301 // function is never referenced outside of the function. Given that, we 302 // want to map block addresses from the old function to block addresses in 303 // the clone. (This is different from the generic ValueMapper 304 // implementation, which generates an invalid blockaddress when 305 // cloning a function.) 306 // 307 // Note that we don't need to fix the mapping for unreachable blocks; 308 // the default mapping there is safe. 309 if (BB->hasAddressTaken()) { 310 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 311 const_cast<BasicBlock*>(BB)); 312 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 313 } 314 315 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 316 317 // Loop over all instructions, and copy them over, DCE'ing as we go. This 318 // loop doesn't include the terminator. 319 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 320 II != IE; ++II) { 321 322 Instruction *NewInst = II->clone(); 323 324 // Eagerly remap operands to the newly cloned instruction, except for PHI 325 // nodes for which we defer processing until we update the CFG. 326 if (!isa<PHINode>(NewInst)) { 327 RemapInstruction(NewInst, VMap, 328 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 329 330 // If we can simplify this instruction to some other value, simply add 331 // a mapping to that value rather than inserting a new instruction into 332 // the basic block. 333 if (Value *V = 334 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 335 // On the off-chance that this simplifies to an instruction in the old 336 // function, map it back into the new function. 337 if (NewFunc != OldFunc) 338 if (Value *MappedV = VMap.lookup(V)) 339 V = MappedV; 340 341 if (!NewInst->mayHaveSideEffects()) { 342 VMap[&*II] = V; 343 NewInst->deleteValue(); 344 continue; 345 } 346 } 347 } 348 349 if (II->hasName()) 350 NewInst->setName(II->getName()+NameSuffix); 351 VMap[&*II] = NewInst; // Add instruction map to value. 352 NewBB->getInstList().push_back(NewInst); 353 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 354 355 if (CodeInfo) 356 if (auto CS = ImmutableCallSite(&*II)) 357 if (CS.hasOperandBundles()) 358 CodeInfo->OperandBundleCallSites.push_back(NewInst); 359 360 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 361 if (isa<ConstantInt>(AI->getArraySize())) 362 hasStaticAllocas = true; 363 else 364 hasDynamicAllocas = true; 365 } 366 } 367 368 // Finally, clone over the terminator. 369 const Instruction *OldTI = BB->getTerminator(); 370 bool TerminatorDone = false; 371 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 372 if (BI->isConditional()) { 373 // If the condition was a known constant in the callee... 374 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 375 // Or is a known constant in the caller... 376 if (!Cond) { 377 Value *V = VMap.lookup(BI->getCondition()); 378 Cond = dyn_cast_or_null<ConstantInt>(V); 379 } 380 381 // Constant fold to uncond branch! 382 if (Cond) { 383 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 384 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 385 ToClone.push_back(Dest); 386 TerminatorDone = true; 387 } 388 } 389 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 390 // If switching on a value known constant in the caller. 391 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 392 if (!Cond) { // Or known constant after constant prop in the callee... 393 Value *V = VMap.lookup(SI->getCondition()); 394 Cond = dyn_cast_or_null<ConstantInt>(V); 395 } 396 if (Cond) { // Constant fold to uncond branch! 397 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 398 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 399 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 400 ToClone.push_back(Dest); 401 TerminatorDone = true; 402 } 403 } 404 405 if (!TerminatorDone) { 406 Instruction *NewInst = OldTI->clone(); 407 if (OldTI->hasName()) 408 NewInst->setName(OldTI->getName()+NameSuffix); 409 NewBB->getInstList().push_back(NewInst); 410 VMap[OldTI] = NewInst; // Add instruction map to value. 411 412 if (CodeInfo) 413 if (auto CS = ImmutableCallSite(OldTI)) 414 if (CS.hasOperandBundles()) 415 CodeInfo->OperandBundleCallSites.push_back(NewInst); 416 417 // Recursively clone any reachable successor blocks. 418 const Instruction *TI = BB->getTerminator(); 419 for (const BasicBlock *Succ : successors(TI)) 420 ToClone.push_back(Succ); 421 } 422 423 if (CodeInfo) { 424 CodeInfo->ContainsCalls |= hasCalls; 425 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 426 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 427 BB != &BB->getParent()->front(); 428 } 429 } 430 431 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 432 /// entire function. Instead it starts at an instruction provided by the caller 433 /// and copies (and prunes) only the code reachable from that instruction. 434 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 435 const Instruction *StartingInst, 436 ValueToValueMapTy &VMap, 437 bool ModuleLevelChanges, 438 SmallVectorImpl<ReturnInst *> &Returns, 439 const char *NameSuffix, 440 ClonedCodeInfo *CodeInfo) { 441 assert(NameSuffix && "NameSuffix cannot be null!"); 442 443 ValueMapTypeRemapper *TypeMapper = nullptr; 444 ValueMaterializer *Materializer = nullptr; 445 446 #ifndef NDEBUG 447 // If the cloning starts at the beginning of the function, verify that 448 // the function arguments are mapped. 449 if (!StartingInst) 450 for (const Argument &II : OldFunc->args()) 451 assert(VMap.count(&II) && "No mapping from source argument specified!"); 452 #endif 453 454 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 455 NameSuffix, CodeInfo); 456 const BasicBlock *StartingBB; 457 if (StartingInst) 458 StartingBB = StartingInst->getParent(); 459 else { 460 StartingBB = &OldFunc->getEntryBlock(); 461 StartingInst = &StartingBB->front(); 462 } 463 464 // Clone the entry block, and anything recursively reachable from it. 465 std::vector<const BasicBlock*> CloneWorklist; 466 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 467 while (!CloneWorklist.empty()) { 468 const BasicBlock *BB = CloneWorklist.back(); 469 CloneWorklist.pop_back(); 470 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 471 } 472 473 // Loop over all of the basic blocks in the old function. If the block was 474 // reachable, we have cloned it and the old block is now in the value map: 475 // insert it into the new function in the right order. If not, ignore it. 476 // 477 // Defer PHI resolution until rest of function is resolved. 478 SmallVector<const PHINode*, 16> PHIToResolve; 479 for (const BasicBlock &BI : *OldFunc) { 480 Value *V = VMap.lookup(&BI); 481 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 482 if (!NewBB) continue; // Dead block. 483 484 // Add the new block to the new function. 485 NewFunc->getBasicBlockList().push_back(NewBB); 486 487 // Handle PHI nodes specially, as we have to remove references to dead 488 // blocks. 489 for (const PHINode &PN : BI.phis()) { 490 // PHI nodes may have been remapped to non-PHI nodes by the caller or 491 // during the cloning process. 492 if (isa<PHINode>(VMap[&PN])) 493 PHIToResolve.push_back(&PN); 494 else 495 break; 496 } 497 498 // Finally, remap the terminator instructions, as those can't be remapped 499 // until all BBs are mapped. 500 RemapInstruction(NewBB->getTerminator(), VMap, 501 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 502 TypeMapper, Materializer); 503 } 504 505 // Defer PHI resolution until rest of function is resolved, PHI resolution 506 // requires the CFG to be up-to-date. 507 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 508 const PHINode *OPN = PHIToResolve[phino]; 509 unsigned NumPreds = OPN->getNumIncomingValues(); 510 const BasicBlock *OldBB = OPN->getParent(); 511 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 512 513 // Map operands for blocks that are live and remove operands for blocks 514 // that are dead. 515 for (; phino != PHIToResolve.size() && 516 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 517 OPN = PHIToResolve[phino]; 518 PHINode *PN = cast<PHINode>(VMap[OPN]); 519 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 520 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 521 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 522 Value *InVal = MapValue(PN->getIncomingValue(pred), 523 VMap, 524 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 525 assert(InVal && "Unknown input value?"); 526 PN->setIncomingValue(pred, InVal); 527 PN->setIncomingBlock(pred, MappedBlock); 528 } else { 529 PN->removeIncomingValue(pred, false); 530 --pred; // Revisit the next entry. 531 --e; 532 } 533 } 534 } 535 536 // The loop above has removed PHI entries for those blocks that are dead 537 // and has updated others. However, if a block is live (i.e. copied over) 538 // but its terminator has been changed to not go to this block, then our 539 // phi nodes will have invalid entries. Update the PHI nodes in this 540 // case. 541 PHINode *PN = cast<PHINode>(NewBB->begin()); 542 NumPreds = pred_size(NewBB); 543 if (NumPreds != PN->getNumIncomingValues()) { 544 assert(NumPreds < PN->getNumIncomingValues()); 545 // Count how many times each predecessor comes to this block. 546 std::map<BasicBlock*, unsigned> PredCount; 547 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 548 PI != E; ++PI) 549 --PredCount[*PI]; 550 551 // Figure out how many entries to remove from each PHI. 552 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 553 ++PredCount[PN->getIncomingBlock(i)]; 554 555 // At this point, the excess predecessor entries are positive in the 556 // map. Loop over all of the PHIs and remove excess predecessor 557 // entries. 558 BasicBlock::iterator I = NewBB->begin(); 559 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 560 for (const auto &PCI : PredCount) { 561 BasicBlock *Pred = PCI.first; 562 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 563 PN->removeIncomingValue(Pred, false); 564 } 565 } 566 } 567 568 // If the loops above have made these phi nodes have 0 or 1 operand, 569 // replace them with undef or the input value. We must do this for 570 // correctness, because 0-operand phis are not valid. 571 PN = cast<PHINode>(NewBB->begin()); 572 if (PN->getNumIncomingValues() == 0) { 573 BasicBlock::iterator I = NewBB->begin(); 574 BasicBlock::const_iterator OldI = OldBB->begin(); 575 while ((PN = dyn_cast<PHINode>(I++))) { 576 Value *NV = UndefValue::get(PN->getType()); 577 PN->replaceAllUsesWith(NV); 578 assert(VMap[&*OldI] == PN && "VMap mismatch"); 579 VMap[&*OldI] = NV; 580 PN->eraseFromParent(); 581 ++OldI; 582 } 583 } 584 } 585 586 // Make a second pass over the PHINodes now that all of them have been 587 // remapped into the new function, simplifying the PHINode and performing any 588 // recursive simplifications exposed. This will transparently update the 589 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 590 // two PHINodes, the iteration over the old PHIs remains valid, and the 591 // mapping will just map us to the new node (which may not even be a PHI 592 // node). 593 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 594 SmallSetVector<const Value *, 8> Worklist; 595 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 596 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 597 Worklist.insert(PHIToResolve[Idx]); 598 599 // Note that we must test the size on each iteration, the worklist can grow. 600 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 601 const Value *OrigV = Worklist[Idx]; 602 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 603 if (!I) 604 continue; 605 606 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 607 // the CGSCC. 608 CallSite CS = CallSite(I); 609 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) 610 continue; 611 612 // See if this instruction simplifies. 613 Value *SimpleV = SimplifyInstruction(I, DL); 614 if (!SimpleV) 615 continue; 616 617 // Stash away all the uses of the old instruction so we can check them for 618 // recursive simplifications after a RAUW. This is cheaper than checking all 619 // uses of To on the recursive step in most cases. 620 for (const User *U : OrigV->users()) 621 Worklist.insert(cast<Instruction>(U)); 622 623 // Replace the instruction with its simplified value. 624 I->replaceAllUsesWith(SimpleV); 625 626 // If the original instruction had no side effects, remove it. 627 if (isInstructionTriviallyDead(I)) 628 I->eraseFromParent(); 629 else 630 VMap[OrigV] = I; 631 } 632 633 // Now that the inlined function body has been fully constructed, go through 634 // and zap unconditional fall-through branches. This happens all the time when 635 // specializing code: code specialization turns conditional branches into 636 // uncond branches, and this code folds them. 637 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 638 Function::iterator I = Begin; 639 while (I != NewFunc->end()) { 640 // We need to simplify conditional branches and switches with a constant 641 // operand. We try to prune these out when cloning, but if the 642 // simplification required looking through PHI nodes, those are only 643 // available after forming the full basic block. That may leave some here, 644 // and we still want to prune the dead code as early as possible. 645 // 646 // Do the folding before we check if the block is dead since we want code 647 // like 648 // bb: 649 // br i1 undef, label %bb, label %bb 650 // to be simplified to 651 // bb: 652 // br label %bb 653 // before we call I->getSinglePredecessor(). 654 ConstantFoldTerminator(&*I); 655 656 // Check if this block has become dead during inlining or other 657 // simplifications. Note that the first block will appear dead, as it has 658 // not yet been wired up properly. 659 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 660 I->getSinglePredecessor() == &*I)) { 661 BasicBlock *DeadBB = &*I++; 662 DeleteDeadBlock(DeadBB); 663 continue; 664 } 665 666 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 667 if (!BI || BI->isConditional()) { ++I; continue; } 668 669 BasicBlock *Dest = BI->getSuccessor(0); 670 if (!Dest->getSinglePredecessor()) { 671 ++I; continue; 672 } 673 674 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 675 // above should have zapped all of them.. 676 assert(!isa<PHINode>(Dest->begin())); 677 678 // We know all single-entry PHI nodes in the inlined function have been 679 // removed, so we just need to splice the blocks. 680 BI->eraseFromParent(); 681 682 // Make all PHI nodes that referred to Dest now refer to I as their source. 683 Dest->replaceAllUsesWith(&*I); 684 685 // Move all the instructions in the succ to the pred. 686 I->getInstList().splice(I->end(), Dest->getInstList()); 687 688 // Remove the dest block. 689 Dest->eraseFromParent(); 690 691 // Do not increment I, iteratively merge all things this block branches to. 692 } 693 694 // Make a final pass over the basic blocks from the old function to gather 695 // any return instructions which survived folding. We have to do this here 696 // because we can iteratively remove and merge returns above. 697 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 698 E = NewFunc->end(); 699 I != E; ++I) 700 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 701 Returns.push_back(RI); 702 } 703 704 705 /// This works exactly like CloneFunctionInto, 706 /// except that it does some simple constant prop and DCE on the fly. The 707 /// effect of this is to copy significantly less code in cases where (for 708 /// example) a function call with constant arguments is inlined, and those 709 /// constant arguments cause a significant amount of code in the callee to be 710 /// dead. Since this doesn't produce an exact copy of the input, it can't be 711 /// used for things like CloneFunction or CloneModule. 712 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 713 ValueToValueMapTy &VMap, 714 bool ModuleLevelChanges, 715 SmallVectorImpl<ReturnInst*> &Returns, 716 const char *NameSuffix, 717 ClonedCodeInfo *CodeInfo, 718 Instruction *TheCall) { 719 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 720 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 721 } 722 723 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 724 void llvm::remapInstructionsInBlocks( 725 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 726 // Rewrite the code to refer to itself. 727 for (auto *BB : Blocks) 728 for (auto &Inst : *BB) 729 RemapInstruction(&Inst, VMap, 730 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 731 } 732 733 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 734 /// Blocks. 735 /// 736 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 737 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 738 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 739 Loop *OrigLoop, ValueToValueMapTy &VMap, 740 const Twine &NameSuffix, LoopInfo *LI, 741 DominatorTree *DT, 742 SmallVectorImpl<BasicBlock *> &Blocks) { 743 assert(OrigLoop->getSubLoops().empty() && 744 "Loop to be cloned cannot have inner loop"); 745 Function *F = OrigLoop->getHeader()->getParent(); 746 Loop *ParentLoop = OrigLoop->getParentLoop(); 747 748 Loop *NewLoop = LI->AllocateLoop(); 749 if (ParentLoop) 750 ParentLoop->addChildLoop(NewLoop); 751 else 752 LI->addTopLevelLoop(NewLoop); 753 754 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 755 assert(OrigPH && "No preheader"); 756 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 757 // To rename the loop PHIs. 758 VMap[OrigPH] = NewPH; 759 Blocks.push_back(NewPH); 760 761 // Update LoopInfo. 762 if (ParentLoop) 763 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 764 765 // Update DominatorTree. 766 DT->addNewBlock(NewPH, LoopDomBB); 767 768 for (BasicBlock *BB : OrigLoop->getBlocks()) { 769 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 770 VMap[BB] = NewBB; 771 772 // Update LoopInfo. 773 NewLoop->addBasicBlockToLoop(NewBB, *LI); 774 775 // Add DominatorTree node. After seeing all blocks, update to correct IDom. 776 DT->addNewBlock(NewBB, NewPH); 777 778 Blocks.push_back(NewBB); 779 } 780 781 for (BasicBlock *BB : OrigLoop->getBlocks()) { 782 // Update DominatorTree. 783 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 784 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 785 cast<BasicBlock>(VMap[IDomBB])); 786 } 787 788 // Move them physically from the end of the block list. 789 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 790 NewPH); 791 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 792 NewLoop->getHeader()->getIterator(), F->end()); 793 794 return NewLoop; 795 } 796 797 /// Duplicate non-Phi instructions from the beginning of block up to 798 /// StopAt instruction into a split block between BB and its predecessor. 799 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 800 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 801 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 802 803 assert(count(successors(PredBB), BB) == 1 && 804 "There must be a single edge between PredBB and BB!"); 805 // We are going to have to map operands from the original BB block to the new 806 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 807 // account for entry from PredBB. 808 BasicBlock::iterator BI = BB->begin(); 809 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 810 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 811 812 BasicBlock *NewBB = SplitEdge(PredBB, BB); 813 NewBB->setName(PredBB->getName() + ".split"); 814 Instruction *NewTerm = NewBB->getTerminator(); 815 816 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 817 // in the update set here. 818 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 819 {DominatorTree::Insert, PredBB, NewBB}, 820 {DominatorTree::Insert, NewBB, BB}}); 821 822 // Clone the non-phi instructions of BB into NewBB, keeping track of the 823 // mapping and using it to remap operands in the cloned instructions. 824 // Stop once we see the terminator too. This covers the case where BB's 825 // terminator gets replaced and StopAt == BB's terminator. 826 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 827 Instruction *New = BI->clone(); 828 New->setName(BI->getName()); 829 New->insertBefore(NewTerm); 830 ValueMapping[&*BI] = New; 831 832 // Remap operands to patch up intra-block references. 833 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 834 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 835 auto I = ValueMapping.find(Inst); 836 if (I != ValueMapping.end()) 837 New->setOperand(i, I->second); 838 } 839 } 840 841 return NewBB; 842 } 843