1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugInfo.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
41                                   ValueToValueMapTy &VMap,
42                                   const Twine &NameSuffix, Function *F,
43                                   ClonedCodeInfo *CodeInfo) {
44   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
45   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
46 
47   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
48 
49   // Loop over all instructions, and copy them over.
50   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
51        II != IE; ++II) {
52     Instruction *NewInst = II->clone();
53     if (II->hasName())
54       NewInst->setName(II->getName()+NameSuffix);
55     NewBB->getInstList().push_back(NewInst);
56     VMap[&*II] = NewInst; // Add instruction map to value.
57 
58     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
59     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
60       if (isa<ConstantInt>(AI->getArraySize()))
61         hasStaticAllocas = true;
62       else
63         hasDynamicAllocas = true;
64     }
65   }
66 
67   if (CodeInfo) {
68     CodeInfo->ContainsCalls          |= hasCalls;
69     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
70     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
71                                         BB != &BB->getParent()->getEntryBlock();
72   }
73   return NewBB;
74 }
75 
76 // Clone OldFunc into NewFunc, transforming the old arguments into references to
77 // VMap values.
78 //
79 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
80                              ValueToValueMapTy &VMap,
81                              bool ModuleLevelChanges,
82                              SmallVectorImpl<ReturnInst*> &Returns,
83                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
84                              ValueMapTypeRemapper *TypeMapper,
85                              ValueMaterializer *Materializer) {
86   assert(NameSuffix && "NameSuffix cannot be null!");
87 
88 #ifndef NDEBUG
89   for (const Argument &I : OldFunc->args())
90     assert(VMap.count(&I) && "No mapping from source argument specified!");
91 #endif
92 
93   // Copy all attributes other than those stored in the AttributeList.  We need
94   // to remap the parameter indices of the AttributeList.
95   AttributeList NewAttrs = NewFunc->getAttributes();
96   NewFunc->copyAttributesFrom(OldFunc);
97   NewFunc->setAttributes(NewAttrs);
98 
99   // Fix up the personality function that got copied over.
100   if (OldFunc->hasPersonalityFn())
101     NewFunc->setPersonalityFn(
102         MapValue(OldFunc->getPersonalityFn(), VMap,
103                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
104                  TypeMapper, Materializer));
105 
106   SmallVector<std::pair<unsigned, AttributeSetNode*>, 4> AttrVec;
107   AttributeList OldAttrs = OldFunc->getAttributes();
108 
109   // Copy the return attributes.
110   if (auto *RetAttrs = OldAttrs.getRetAttributes())
111     AttrVec.emplace_back(AttributeList::ReturnIndex, RetAttrs);
112 
113   // Clone any argument attributes that are present in the VMap.
114   for (const Argument &OldArg : OldFunc->args())
115     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
116       if (auto *ParmAttrs = OldAttrs.getParamAttributes(OldArg.getArgNo() + 1))
117         AttrVec.emplace_back(NewArg->getArgNo() + 1, ParmAttrs);
118     }
119 
120   // Copy any function attributes.
121   if (auto *FnAttrs = OldAttrs.getFnAttributes())
122     AttrVec.emplace_back(AttributeList::FunctionIndex, FnAttrs);
123 
124   NewFunc->setAttributes(AttributeList::get(NewFunc->getContext(), AttrVec));
125 
126   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
127   OldFunc->getAllMetadata(MDs);
128   for (auto MD : MDs)
129     NewFunc->addMetadata(
130         MD.first,
131         *MapMetadata(MD.second, VMap,
132                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
133                      TypeMapper, Materializer));
134 
135   // Loop over all of the basic blocks in the function, cloning them as
136   // appropriate.  Note that we save BE this way in order to handle cloning of
137   // recursive functions into themselves.
138   //
139   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
140        BI != BE; ++BI) {
141     const BasicBlock &BB = *BI;
142 
143     // Create a new basic block and copy instructions into it!
144     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
145 
146     // Add basic block mapping.
147     VMap[&BB] = CBB;
148 
149     // It is only legal to clone a function if a block address within that
150     // function is never referenced outside of the function.  Given that, we
151     // want to map block addresses from the old function to block addresses in
152     // the clone. (This is different from the generic ValueMapper
153     // implementation, which generates an invalid blockaddress when
154     // cloning a function.)
155     if (BB.hasAddressTaken()) {
156       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
157                                               const_cast<BasicBlock*>(&BB));
158       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
159     }
160 
161     // Note return instructions for the caller.
162     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
163       Returns.push_back(RI);
164   }
165 
166   // Loop over all of the instructions in the function, fixing up operand
167   // references as we go.  This uses VMap to do all the hard work.
168   for (Function::iterator BB =
169            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
170                           BE = NewFunc->end();
171        BB != BE; ++BB)
172     // Loop over all instructions, fixing each one as we find it...
173     for (Instruction &II : *BB)
174       RemapInstruction(&II, VMap,
175                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
176                        TypeMapper, Materializer);
177 }
178 
179 /// Return a copy of the specified function and add it to that function's
180 /// module.  Also, any references specified in the VMap are changed to refer to
181 /// their mapped value instead of the original one.  If any of the arguments to
182 /// the function are in the VMap, the arguments are deleted from the resultant
183 /// function.  The VMap is updated to include mappings from all of the
184 /// instructions and basicblocks in the function from their old to new values.
185 ///
186 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
187                               ClonedCodeInfo *CodeInfo) {
188   std::vector<Type*> ArgTypes;
189 
190   // The user might be deleting arguments to the function by specifying them in
191   // the VMap.  If so, we need to not add the arguments to the arg ty vector
192   //
193   for (const Argument &I : F->args())
194     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
195       ArgTypes.push_back(I.getType());
196 
197   // Create a new function type...
198   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
199                                     ArgTypes, F->getFunctionType()->isVarArg());
200 
201   // Create the new function...
202   Function *NewF =
203       Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
204 
205   // Loop over the arguments, copying the names of the mapped arguments over...
206   Function::arg_iterator DestI = NewF->arg_begin();
207   for (const Argument & I : F->args())
208     if (VMap.count(&I) == 0) {     // Is this argument preserved?
209       DestI->setName(I.getName()); // Copy the name over...
210       VMap[&I] = &*DestI++;        // Add mapping to VMap
211     }
212 
213   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
214   CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
215                     CodeInfo);
216 
217   return NewF;
218 }
219 
220 
221 
222 namespace {
223   /// This is a private class used to implement CloneAndPruneFunctionInto.
224   struct PruningFunctionCloner {
225     Function *NewFunc;
226     const Function *OldFunc;
227     ValueToValueMapTy &VMap;
228     bool ModuleLevelChanges;
229     const char *NameSuffix;
230     ClonedCodeInfo *CodeInfo;
231 
232   public:
233     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
234                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
235                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
236         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
237           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
238           CodeInfo(codeInfo) {}
239 
240     /// The specified block is found to be reachable, clone it and
241     /// anything that it can reach.
242     void CloneBlock(const BasicBlock *BB,
243                     BasicBlock::const_iterator StartingInst,
244                     std::vector<const BasicBlock*> &ToClone);
245   };
246 }
247 
248 /// The specified block is found to be reachable, clone it and
249 /// anything that it can reach.
250 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
251                                        BasicBlock::const_iterator StartingInst,
252                                        std::vector<const BasicBlock*> &ToClone){
253   WeakVH &BBEntry = VMap[BB];
254 
255   // Have we already cloned this block?
256   if (BBEntry) return;
257 
258   // Nope, clone it now.
259   BasicBlock *NewBB;
260   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
261   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
262 
263   // It is only legal to clone a function if a block address within that
264   // function is never referenced outside of the function.  Given that, we
265   // want to map block addresses from the old function to block addresses in
266   // the clone. (This is different from the generic ValueMapper
267   // implementation, which generates an invalid blockaddress when
268   // cloning a function.)
269   //
270   // Note that we don't need to fix the mapping for unreachable blocks;
271   // the default mapping there is safe.
272   if (BB->hasAddressTaken()) {
273     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
274                                             const_cast<BasicBlock*>(BB));
275     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
276   }
277 
278   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
279 
280   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
281   // loop doesn't include the terminator.
282   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
283        II != IE; ++II) {
284 
285     Instruction *NewInst = II->clone();
286 
287     // Eagerly remap operands to the newly cloned instruction, except for PHI
288     // nodes for which we defer processing until we update the CFG.
289     if (!isa<PHINode>(NewInst)) {
290       RemapInstruction(NewInst, VMap,
291                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
292 
293       // If we can simplify this instruction to some other value, simply add
294       // a mapping to that value rather than inserting a new instruction into
295       // the basic block.
296       if (Value *V =
297               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
298         // On the off-chance that this simplifies to an instruction in the old
299         // function, map it back into the new function.
300         if (Value *MappedV = VMap.lookup(V))
301           V = MappedV;
302 
303         if (!NewInst->mayHaveSideEffects()) {
304           VMap[&*II] = V;
305           delete NewInst;
306           continue;
307         }
308       }
309     }
310 
311     if (II->hasName())
312       NewInst->setName(II->getName()+NameSuffix);
313     VMap[&*II] = NewInst; // Add instruction map to value.
314     NewBB->getInstList().push_back(NewInst);
315     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
316 
317     if (CodeInfo)
318       if (auto CS = ImmutableCallSite(&*II))
319         if (CS.hasOperandBundles())
320           CodeInfo->OperandBundleCallSites.push_back(NewInst);
321 
322     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
323       if (isa<ConstantInt>(AI->getArraySize()))
324         hasStaticAllocas = true;
325       else
326         hasDynamicAllocas = true;
327     }
328   }
329 
330   // Finally, clone over the terminator.
331   const TerminatorInst *OldTI = BB->getTerminator();
332   bool TerminatorDone = false;
333   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
334     if (BI->isConditional()) {
335       // If the condition was a known constant in the callee...
336       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
337       // Or is a known constant in the caller...
338       if (!Cond) {
339         Value *V = VMap.lookup(BI->getCondition());
340         Cond = dyn_cast_or_null<ConstantInt>(V);
341       }
342 
343       // Constant fold to uncond branch!
344       if (Cond) {
345         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
346         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
347         ToClone.push_back(Dest);
348         TerminatorDone = true;
349       }
350     }
351   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
352     // If switching on a value known constant in the caller.
353     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
354     if (!Cond) { // Or known constant after constant prop in the callee...
355       Value *V = VMap.lookup(SI->getCondition());
356       Cond = dyn_cast_or_null<ConstantInt>(V);
357     }
358     if (Cond) {     // Constant fold to uncond branch!
359       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
360       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
361       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
362       ToClone.push_back(Dest);
363       TerminatorDone = true;
364     }
365   }
366 
367   if (!TerminatorDone) {
368     Instruction *NewInst = OldTI->clone();
369     if (OldTI->hasName())
370       NewInst->setName(OldTI->getName()+NameSuffix);
371     NewBB->getInstList().push_back(NewInst);
372     VMap[OldTI] = NewInst;             // Add instruction map to value.
373 
374     if (CodeInfo)
375       if (auto CS = ImmutableCallSite(OldTI))
376         if (CS.hasOperandBundles())
377           CodeInfo->OperandBundleCallSites.push_back(NewInst);
378 
379     // Recursively clone any reachable successor blocks.
380     const TerminatorInst *TI = BB->getTerminator();
381     for (const BasicBlock *Succ : TI->successors())
382       ToClone.push_back(Succ);
383   }
384 
385   if (CodeInfo) {
386     CodeInfo->ContainsCalls          |= hasCalls;
387     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
388     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
389       BB != &BB->getParent()->front();
390   }
391 }
392 
393 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
394 /// entire function. Instead it starts at an instruction provided by the caller
395 /// and copies (and prunes) only the code reachable from that instruction.
396 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
397                                      const Instruction *StartingInst,
398                                      ValueToValueMapTy &VMap,
399                                      bool ModuleLevelChanges,
400                                      SmallVectorImpl<ReturnInst *> &Returns,
401                                      const char *NameSuffix,
402                                      ClonedCodeInfo *CodeInfo) {
403   assert(NameSuffix && "NameSuffix cannot be null!");
404 
405   ValueMapTypeRemapper *TypeMapper = nullptr;
406   ValueMaterializer *Materializer = nullptr;
407 
408 #ifndef NDEBUG
409   // If the cloning starts at the beginning of the function, verify that
410   // the function arguments are mapped.
411   if (!StartingInst)
412     for (const Argument &II : OldFunc->args())
413       assert(VMap.count(&II) && "No mapping from source argument specified!");
414 #endif
415 
416   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
417                             NameSuffix, CodeInfo);
418   const BasicBlock *StartingBB;
419   if (StartingInst)
420     StartingBB = StartingInst->getParent();
421   else {
422     StartingBB = &OldFunc->getEntryBlock();
423     StartingInst = &StartingBB->front();
424   }
425 
426   // Clone the entry block, and anything recursively reachable from it.
427   std::vector<const BasicBlock*> CloneWorklist;
428   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
429   while (!CloneWorklist.empty()) {
430     const BasicBlock *BB = CloneWorklist.back();
431     CloneWorklist.pop_back();
432     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
433   }
434 
435   // Loop over all of the basic blocks in the old function.  If the block was
436   // reachable, we have cloned it and the old block is now in the value map:
437   // insert it into the new function in the right order.  If not, ignore it.
438   //
439   // Defer PHI resolution until rest of function is resolved.
440   SmallVector<const PHINode*, 16> PHIToResolve;
441   for (const BasicBlock &BI : *OldFunc) {
442     Value *V = VMap.lookup(&BI);
443     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
444     if (!NewBB) continue;  // Dead block.
445 
446     // Add the new block to the new function.
447     NewFunc->getBasicBlockList().push_back(NewBB);
448 
449     // Handle PHI nodes specially, as we have to remove references to dead
450     // blocks.
451     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
452       // PHI nodes may have been remapped to non-PHI nodes by the caller or
453       // during the cloning process.
454       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
455         if (isa<PHINode>(VMap[PN]))
456           PHIToResolve.push_back(PN);
457         else
458           break;
459       } else {
460         break;
461       }
462     }
463 
464     // Finally, remap the terminator instructions, as those can't be remapped
465     // until all BBs are mapped.
466     RemapInstruction(NewBB->getTerminator(), VMap,
467                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
468                      TypeMapper, Materializer);
469   }
470 
471   // Defer PHI resolution until rest of function is resolved, PHI resolution
472   // requires the CFG to be up-to-date.
473   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
474     const PHINode *OPN = PHIToResolve[phino];
475     unsigned NumPreds = OPN->getNumIncomingValues();
476     const BasicBlock *OldBB = OPN->getParent();
477     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
478 
479     // Map operands for blocks that are live and remove operands for blocks
480     // that are dead.
481     for (; phino != PHIToResolve.size() &&
482          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
483       OPN = PHIToResolve[phino];
484       PHINode *PN = cast<PHINode>(VMap[OPN]);
485       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
486         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
487         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
488           Value *InVal = MapValue(PN->getIncomingValue(pred),
489                                   VMap,
490                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
491           assert(InVal && "Unknown input value?");
492           PN->setIncomingValue(pred, InVal);
493           PN->setIncomingBlock(pred, MappedBlock);
494         } else {
495           PN->removeIncomingValue(pred, false);
496           --pred;  // Revisit the next entry.
497           --e;
498         }
499       }
500     }
501 
502     // The loop above has removed PHI entries for those blocks that are dead
503     // and has updated others.  However, if a block is live (i.e. copied over)
504     // but its terminator has been changed to not go to this block, then our
505     // phi nodes will have invalid entries.  Update the PHI nodes in this
506     // case.
507     PHINode *PN = cast<PHINode>(NewBB->begin());
508     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
509     if (NumPreds != PN->getNumIncomingValues()) {
510       assert(NumPreds < PN->getNumIncomingValues());
511       // Count how many times each predecessor comes to this block.
512       std::map<BasicBlock*, unsigned> PredCount;
513       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
514            PI != E; ++PI)
515         --PredCount[*PI];
516 
517       // Figure out how many entries to remove from each PHI.
518       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
519         ++PredCount[PN->getIncomingBlock(i)];
520 
521       // At this point, the excess predecessor entries are positive in the
522       // map.  Loop over all of the PHIs and remove excess predecessor
523       // entries.
524       BasicBlock::iterator I = NewBB->begin();
525       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
526         for (const auto &PCI : PredCount) {
527           BasicBlock *Pred = PCI.first;
528           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
529             PN->removeIncomingValue(Pred, false);
530         }
531       }
532     }
533 
534     // If the loops above have made these phi nodes have 0 or 1 operand,
535     // replace them with undef or the input value.  We must do this for
536     // correctness, because 0-operand phis are not valid.
537     PN = cast<PHINode>(NewBB->begin());
538     if (PN->getNumIncomingValues() == 0) {
539       BasicBlock::iterator I = NewBB->begin();
540       BasicBlock::const_iterator OldI = OldBB->begin();
541       while ((PN = dyn_cast<PHINode>(I++))) {
542         Value *NV = UndefValue::get(PN->getType());
543         PN->replaceAllUsesWith(NV);
544         assert(VMap[&*OldI] == PN && "VMap mismatch");
545         VMap[&*OldI] = NV;
546         PN->eraseFromParent();
547         ++OldI;
548       }
549     }
550   }
551 
552   // Make a second pass over the PHINodes now that all of them have been
553   // remapped into the new function, simplifying the PHINode and performing any
554   // recursive simplifications exposed. This will transparently update the
555   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
556   // two PHINodes, the iteration over the old PHIs remains valid, and the
557   // mapping will just map us to the new node (which may not even be a PHI
558   // node).
559   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
560   SmallSetVector<const Value *, 8> Worklist;
561   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
562     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
563       Worklist.insert(PHIToResolve[Idx]);
564 
565   // Note that we must test the size on each iteration, the worklist can grow.
566   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
567     const Value *OrigV = Worklist[Idx];
568     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
569     if (!I)
570       continue;
571 
572     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
573     // the CGSCC.
574     CallSite CS = CallSite(I);
575     if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
576       continue;
577 
578     // See if this instruction simplifies.
579     Value *SimpleV = SimplifyInstruction(I, DL);
580     if (!SimpleV)
581       continue;
582 
583     // Stash away all the uses of the old instruction so we can check them for
584     // recursive simplifications after a RAUW. This is cheaper than checking all
585     // uses of To on the recursive step in most cases.
586     for (const User *U : OrigV->users())
587       Worklist.insert(cast<Instruction>(U));
588 
589     // Replace the instruction with its simplified value.
590     I->replaceAllUsesWith(SimpleV);
591 
592     // If the original instruction had no side effects, remove it.
593     if (isInstructionTriviallyDead(I))
594       I->eraseFromParent();
595     else
596       VMap[OrigV] = I;
597   }
598 
599   // Now that the inlined function body has been fully constructed, go through
600   // and zap unconditional fall-through branches. This happens all the time when
601   // specializing code: code specialization turns conditional branches into
602   // uncond branches, and this code folds them.
603   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
604   Function::iterator I = Begin;
605   while (I != NewFunc->end()) {
606     // Check if this block has become dead during inlining or other
607     // simplifications. Note that the first block will appear dead, as it has
608     // not yet been wired up properly.
609     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
610                        I->getSinglePredecessor() == &*I)) {
611       BasicBlock *DeadBB = &*I++;
612       DeleteDeadBlock(DeadBB);
613       continue;
614     }
615 
616     // We need to simplify conditional branches and switches with a constant
617     // operand. We try to prune these out when cloning, but if the
618     // simplification required looking through PHI nodes, those are only
619     // available after forming the full basic block. That may leave some here,
620     // and we still want to prune the dead code as early as possible.
621     ConstantFoldTerminator(&*I);
622 
623     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
624     if (!BI || BI->isConditional()) { ++I; continue; }
625 
626     BasicBlock *Dest = BI->getSuccessor(0);
627     if (!Dest->getSinglePredecessor()) {
628       ++I; continue;
629     }
630 
631     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
632     // above should have zapped all of them..
633     assert(!isa<PHINode>(Dest->begin()));
634 
635     // We know all single-entry PHI nodes in the inlined function have been
636     // removed, so we just need to splice the blocks.
637     BI->eraseFromParent();
638 
639     // Make all PHI nodes that referred to Dest now refer to I as their source.
640     Dest->replaceAllUsesWith(&*I);
641 
642     // Move all the instructions in the succ to the pred.
643     I->getInstList().splice(I->end(), Dest->getInstList());
644 
645     // Remove the dest block.
646     Dest->eraseFromParent();
647 
648     // Do not increment I, iteratively merge all things this block branches to.
649   }
650 
651   // Make a final pass over the basic blocks from the old function to gather
652   // any return instructions which survived folding. We have to do this here
653   // because we can iteratively remove and merge returns above.
654   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
655                           E = NewFunc->end();
656        I != E; ++I)
657     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
658       Returns.push_back(RI);
659 }
660 
661 
662 /// This works exactly like CloneFunctionInto,
663 /// except that it does some simple constant prop and DCE on the fly.  The
664 /// effect of this is to copy significantly less code in cases where (for
665 /// example) a function call with constant arguments is inlined, and those
666 /// constant arguments cause a significant amount of code in the callee to be
667 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
668 /// used for things like CloneFunction or CloneModule.
669 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
670                                      ValueToValueMapTy &VMap,
671                                      bool ModuleLevelChanges,
672                                      SmallVectorImpl<ReturnInst*> &Returns,
673                                      const char *NameSuffix,
674                                      ClonedCodeInfo *CodeInfo,
675                                      Instruction *TheCall) {
676   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
677                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
678 }
679 
680 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
681 void llvm::remapInstructionsInBlocks(
682     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
683   // Rewrite the code to refer to itself.
684   for (auto *BB : Blocks)
685     for (auto &Inst : *BB)
686       RemapInstruction(&Inst, VMap,
687                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
688 }
689 
690 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
691 /// Blocks.
692 ///
693 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
694 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
695 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
696                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
697                                    const Twine &NameSuffix, LoopInfo *LI,
698                                    DominatorTree *DT,
699                                    SmallVectorImpl<BasicBlock *> &Blocks) {
700   assert(OrigLoop->getSubLoops().empty() &&
701          "Loop to be cloned cannot have inner loop");
702   Function *F = OrigLoop->getHeader()->getParent();
703   Loop *ParentLoop = OrigLoop->getParentLoop();
704 
705   Loop *NewLoop = new Loop();
706   if (ParentLoop)
707     ParentLoop->addChildLoop(NewLoop);
708   else
709     LI->addTopLevelLoop(NewLoop);
710 
711   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
712   assert(OrigPH && "No preheader");
713   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
714   // To rename the loop PHIs.
715   VMap[OrigPH] = NewPH;
716   Blocks.push_back(NewPH);
717 
718   // Update LoopInfo.
719   if (ParentLoop)
720     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
721 
722   // Update DominatorTree.
723   DT->addNewBlock(NewPH, LoopDomBB);
724 
725   for (BasicBlock *BB : OrigLoop->getBlocks()) {
726     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
727     VMap[BB] = NewBB;
728 
729     // Update LoopInfo.
730     NewLoop->addBasicBlockToLoop(NewBB, *LI);
731 
732     // Add DominatorTree node. After seeing all blocks, update to correct IDom.
733     DT->addNewBlock(NewBB, NewPH);
734 
735     Blocks.push_back(NewBB);
736   }
737 
738   for (BasicBlock *BB : OrigLoop->getBlocks()) {
739     // Update DominatorTree.
740     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
741     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
742                                  cast<BasicBlock>(VMap[IDomBB]));
743   }
744 
745   // Move them physically from the end of the block list.
746   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
747                                 NewPH);
748   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
749                                 NewLoop->getHeader()->getIterator(), F->end());
750 
751   return NewLoop;
752 }
753 
754 /// \brief Duplicate non-Phi instructions from the beginning of block up to
755 /// StopAt instruction into a split block between BB and its predecessor.
756 BasicBlock *
757 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
758                                           Instruction *StopAt,
759                                           ValueToValueMapTy &ValueMapping) {
760   // We are going to have to map operands from the original BB block to the new
761   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
762   // account for entry from PredBB.
763   BasicBlock::iterator BI = BB->begin();
764   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
765     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
766 
767   BasicBlock *NewBB = SplitEdge(PredBB, BB);
768   NewBB->setName(PredBB->getName() + ".split");
769   Instruction *NewTerm = NewBB->getTerminator();
770 
771   // Clone the non-phi instructions of BB into NewBB, keeping track of the
772   // mapping and using it to remap operands in the cloned instructions.
773   for (; StopAt != &*BI; ++BI) {
774     Instruction *New = BI->clone();
775     New->setName(BI->getName());
776     New->insertBefore(NewTerm);
777     ValueMapping[&*BI] = New;
778 
779     // Remap operands to patch up intra-block references.
780     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
781       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
782         auto I = ValueMapping.find(Inst);
783         if (I != ValueMapping.end())
784           New->setOperand(i, I->second);
785       }
786   }
787 
788   return NewBB;
789 }
790