1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CFG.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfo.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 #include <map> 37 using namespace llvm; 38 39 /// See comments in Cloning.h. 40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 41 ValueToValueMapTy &VMap, 42 const Twine &NameSuffix, Function *F, 43 ClonedCodeInfo *CodeInfo) { 44 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 45 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 46 47 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 48 49 // Loop over all instructions, and copy them over. 50 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 51 II != IE; ++II) { 52 Instruction *NewInst = II->clone(); 53 if (II->hasName()) 54 NewInst->setName(II->getName()+NameSuffix); 55 NewBB->getInstList().push_back(NewInst); 56 VMap[&*II] = NewInst; // Add instruction map to value. 57 58 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 59 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 60 if (isa<ConstantInt>(AI->getArraySize())) 61 hasStaticAllocas = true; 62 else 63 hasDynamicAllocas = true; 64 } 65 } 66 67 if (CodeInfo) { 68 CodeInfo->ContainsCalls |= hasCalls; 69 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 70 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 71 BB != &BB->getParent()->getEntryBlock(); 72 } 73 return NewBB; 74 } 75 76 // Clone OldFunc into NewFunc, transforming the old arguments into references to 77 // VMap values. 78 // 79 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 80 ValueToValueMapTy &VMap, 81 bool ModuleLevelChanges, 82 SmallVectorImpl<ReturnInst*> &Returns, 83 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 84 ValueMapTypeRemapper *TypeMapper, 85 ValueMaterializer *Materializer) { 86 assert(NameSuffix && "NameSuffix cannot be null!"); 87 88 #ifndef NDEBUG 89 for (const Argument &I : OldFunc->args()) 90 assert(VMap.count(&I) && "No mapping from source argument specified!"); 91 #endif 92 93 // Copy all attributes other than those stored in the AttributeList. We need 94 // to remap the parameter indices of the AttributeList. 95 AttributeList NewAttrs = NewFunc->getAttributes(); 96 NewFunc->copyAttributesFrom(OldFunc); 97 NewFunc->setAttributes(NewAttrs); 98 99 // Fix up the personality function that got copied over. 100 if (OldFunc->hasPersonalityFn()) 101 NewFunc->setPersonalityFn( 102 MapValue(OldFunc->getPersonalityFn(), VMap, 103 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 104 TypeMapper, Materializer)); 105 106 SmallVector<std::pair<unsigned, AttributeSetNode*>, 4> AttrVec; 107 AttributeList OldAttrs = OldFunc->getAttributes(); 108 109 // Copy the return attributes. 110 if (auto *RetAttrs = OldAttrs.getRetAttributes()) 111 AttrVec.emplace_back(AttributeList::ReturnIndex, RetAttrs); 112 113 // Clone any argument attributes that are present in the VMap. 114 for (const Argument &OldArg : OldFunc->args()) 115 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 116 if (auto *ParmAttrs = OldAttrs.getParamAttributes(OldArg.getArgNo() + 1)) 117 AttrVec.emplace_back(NewArg->getArgNo() + 1, ParmAttrs); 118 } 119 120 // Copy any function attributes. 121 if (auto *FnAttrs = OldAttrs.getFnAttributes()) 122 AttrVec.emplace_back(AttributeList::FunctionIndex, FnAttrs); 123 124 NewFunc->setAttributes(AttributeList::get(NewFunc->getContext(), AttrVec)); 125 126 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 127 OldFunc->getAllMetadata(MDs); 128 for (auto MD : MDs) 129 NewFunc->addMetadata( 130 MD.first, 131 *MapMetadata(MD.second, VMap, 132 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 133 TypeMapper, Materializer)); 134 135 // Loop over all of the basic blocks in the function, cloning them as 136 // appropriate. Note that we save BE this way in order to handle cloning of 137 // recursive functions into themselves. 138 // 139 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 140 BI != BE; ++BI) { 141 const BasicBlock &BB = *BI; 142 143 // Create a new basic block and copy instructions into it! 144 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 145 146 // Add basic block mapping. 147 VMap[&BB] = CBB; 148 149 // It is only legal to clone a function if a block address within that 150 // function is never referenced outside of the function. Given that, we 151 // want to map block addresses from the old function to block addresses in 152 // the clone. (This is different from the generic ValueMapper 153 // implementation, which generates an invalid blockaddress when 154 // cloning a function.) 155 if (BB.hasAddressTaken()) { 156 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 157 const_cast<BasicBlock*>(&BB)); 158 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 159 } 160 161 // Note return instructions for the caller. 162 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 163 Returns.push_back(RI); 164 } 165 166 // Loop over all of the instructions in the function, fixing up operand 167 // references as we go. This uses VMap to do all the hard work. 168 for (Function::iterator BB = 169 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 170 BE = NewFunc->end(); 171 BB != BE; ++BB) 172 // Loop over all instructions, fixing each one as we find it... 173 for (Instruction &II : *BB) 174 RemapInstruction(&II, VMap, 175 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 176 TypeMapper, Materializer); 177 } 178 179 /// Return a copy of the specified function and add it to that function's 180 /// module. Also, any references specified in the VMap are changed to refer to 181 /// their mapped value instead of the original one. If any of the arguments to 182 /// the function are in the VMap, the arguments are deleted from the resultant 183 /// function. The VMap is updated to include mappings from all of the 184 /// instructions and basicblocks in the function from their old to new values. 185 /// 186 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 187 ClonedCodeInfo *CodeInfo) { 188 std::vector<Type*> ArgTypes; 189 190 // The user might be deleting arguments to the function by specifying them in 191 // the VMap. If so, we need to not add the arguments to the arg ty vector 192 // 193 for (const Argument &I : F->args()) 194 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 195 ArgTypes.push_back(I.getType()); 196 197 // Create a new function type... 198 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 199 ArgTypes, F->getFunctionType()->isVarArg()); 200 201 // Create the new function... 202 Function *NewF = 203 Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent()); 204 205 // Loop over the arguments, copying the names of the mapped arguments over... 206 Function::arg_iterator DestI = NewF->arg_begin(); 207 for (const Argument & I : F->args()) 208 if (VMap.count(&I) == 0) { // Is this argument preserved? 209 DestI->setName(I.getName()); // Copy the name over... 210 VMap[&I] = &*DestI++; // Add mapping to VMap 211 } 212 213 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 214 CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "", 215 CodeInfo); 216 217 return NewF; 218 } 219 220 221 222 namespace { 223 /// This is a private class used to implement CloneAndPruneFunctionInto. 224 struct PruningFunctionCloner { 225 Function *NewFunc; 226 const Function *OldFunc; 227 ValueToValueMapTy &VMap; 228 bool ModuleLevelChanges; 229 const char *NameSuffix; 230 ClonedCodeInfo *CodeInfo; 231 232 public: 233 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 234 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 235 const char *nameSuffix, ClonedCodeInfo *codeInfo) 236 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 237 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 238 CodeInfo(codeInfo) {} 239 240 /// The specified block is found to be reachable, clone it and 241 /// anything that it can reach. 242 void CloneBlock(const BasicBlock *BB, 243 BasicBlock::const_iterator StartingInst, 244 std::vector<const BasicBlock*> &ToClone); 245 }; 246 } 247 248 /// The specified block is found to be reachable, clone it and 249 /// anything that it can reach. 250 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 251 BasicBlock::const_iterator StartingInst, 252 std::vector<const BasicBlock*> &ToClone){ 253 WeakVH &BBEntry = VMap[BB]; 254 255 // Have we already cloned this block? 256 if (BBEntry) return; 257 258 // Nope, clone it now. 259 BasicBlock *NewBB; 260 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 261 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 262 263 // It is only legal to clone a function if a block address within that 264 // function is never referenced outside of the function. Given that, we 265 // want to map block addresses from the old function to block addresses in 266 // the clone. (This is different from the generic ValueMapper 267 // implementation, which generates an invalid blockaddress when 268 // cloning a function.) 269 // 270 // Note that we don't need to fix the mapping for unreachable blocks; 271 // the default mapping there is safe. 272 if (BB->hasAddressTaken()) { 273 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 274 const_cast<BasicBlock*>(BB)); 275 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 276 } 277 278 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 279 280 // Loop over all instructions, and copy them over, DCE'ing as we go. This 281 // loop doesn't include the terminator. 282 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 283 II != IE; ++II) { 284 285 Instruction *NewInst = II->clone(); 286 287 // Eagerly remap operands to the newly cloned instruction, except for PHI 288 // nodes for which we defer processing until we update the CFG. 289 if (!isa<PHINode>(NewInst)) { 290 RemapInstruction(NewInst, VMap, 291 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 292 293 // If we can simplify this instruction to some other value, simply add 294 // a mapping to that value rather than inserting a new instruction into 295 // the basic block. 296 if (Value *V = 297 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 298 // On the off-chance that this simplifies to an instruction in the old 299 // function, map it back into the new function. 300 if (Value *MappedV = VMap.lookup(V)) 301 V = MappedV; 302 303 if (!NewInst->mayHaveSideEffects()) { 304 VMap[&*II] = V; 305 delete NewInst; 306 continue; 307 } 308 } 309 } 310 311 if (II->hasName()) 312 NewInst->setName(II->getName()+NameSuffix); 313 VMap[&*II] = NewInst; // Add instruction map to value. 314 NewBB->getInstList().push_back(NewInst); 315 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 316 317 if (CodeInfo) 318 if (auto CS = ImmutableCallSite(&*II)) 319 if (CS.hasOperandBundles()) 320 CodeInfo->OperandBundleCallSites.push_back(NewInst); 321 322 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 323 if (isa<ConstantInt>(AI->getArraySize())) 324 hasStaticAllocas = true; 325 else 326 hasDynamicAllocas = true; 327 } 328 } 329 330 // Finally, clone over the terminator. 331 const TerminatorInst *OldTI = BB->getTerminator(); 332 bool TerminatorDone = false; 333 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 334 if (BI->isConditional()) { 335 // If the condition was a known constant in the callee... 336 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 337 // Or is a known constant in the caller... 338 if (!Cond) { 339 Value *V = VMap.lookup(BI->getCondition()); 340 Cond = dyn_cast_or_null<ConstantInt>(V); 341 } 342 343 // Constant fold to uncond branch! 344 if (Cond) { 345 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 346 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 347 ToClone.push_back(Dest); 348 TerminatorDone = true; 349 } 350 } 351 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 352 // If switching on a value known constant in the caller. 353 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 354 if (!Cond) { // Or known constant after constant prop in the callee... 355 Value *V = VMap.lookup(SI->getCondition()); 356 Cond = dyn_cast_or_null<ConstantInt>(V); 357 } 358 if (Cond) { // Constant fold to uncond branch! 359 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 360 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 361 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 362 ToClone.push_back(Dest); 363 TerminatorDone = true; 364 } 365 } 366 367 if (!TerminatorDone) { 368 Instruction *NewInst = OldTI->clone(); 369 if (OldTI->hasName()) 370 NewInst->setName(OldTI->getName()+NameSuffix); 371 NewBB->getInstList().push_back(NewInst); 372 VMap[OldTI] = NewInst; // Add instruction map to value. 373 374 if (CodeInfo) 375 if (auto CS = ImmutableCallSite(OldTI)) 376 if (CS.hasOperandBundles()) 377 CodeInfo->OperandBundleCallSites.push_back(NewInst); 378 379 // Recursively clone any reachable successor blocks. 380 const TerminatorInst *TI = BB->getTerminator(); 381 for (const BasicBlock *Succ : TI->successors()) 382 ToClone.push_back(Succ); 383 } 384 385 if (CodeInfo) { 386 CodeInfo->ContainsCalls |= hasCalls; 387 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 388 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 389 BB != &BB->getParent()->front(); 390 } 391 } 392 393 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 394 /// entire function. Instead it starts at an instruction provided by the caller 395 /// and copies (and prunes) only the code reachable from that instruction. 396 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 397 const Instruction *StartingInst, 398 ValueToValueMapTy &VMap, 399 bool ModuleLevelChanges, 400 SmallVectorImpl<ReturnInst *> &Returns, 401 const char *NameSuffix, 402 ClonedCodeInfo *CodeInfo) { 403 assert(NameSuffix && "NameSuffix cannot be null!"); 404 405 ValueMapTypeRemapper *TypeMapper = nullptr; 406 ValueMaterializer *Materializer = nullptr; 407 408 #ifndef NDEBUG 409 // If the cloning starts at the beginning of the function, verify that 410 // the function arguments are mapped. 411 if (!StartingInst) 412 for (const Argument &II : OldFunc->args()) 413 assert(VMap.count(&II) && "No mapping from source argument specified!"); 414 #endif 415 416 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 417 NameSuffix, CodeInfo); 418 const BasicBlock *StartingBB; 419 if (StartingInst) 420 StartingBB = StartingInst->getParent(); 421 else { 422 StartingBB = &OldFunc->getEntryBlock(); 423 StartingInst = &StartingBB->front(); 424 } 425 426 // Clone the entry block, and anything recursively reachable from it. 427 std::vector<const BasicBlock*> CloneWorklist; 428 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 429 while (!CloneWorklist.empty()) { 430 const BasicBlock *BB = CloneWorklist.back(); 431 CloneWorklist.pop_back(); 432 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 433 } 434 435 // Loop over all of the basic blocks in the old function. If the block was 436 // reachable, we have cloned it and the old block is now in the value map: 437 // insert it into the new function in the right order. If not, ignore it. 438 // 439 // Defer PHI resolution until rest of function is resolved. 440 SmallVector<const PHINode*, 16> PHIToResolve; 441 for (const BasicBlock &BI : *OldFunc) { 442 Value *V = VMap.lookup(&BI); 443 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 444 if (!NewBB) continue; // Dead block. 445 446 // Add the new block to the new function. 447 NewFunc->getBasicBlockList().push_back(NewBB); 448 449 // Handle PHI nodes specially, as we have to remove references to dead 450 // blocks. 451 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 452 // PHI nodes may have been remapped to non-PHI nodes by the caller or 453 // during the cloning process. 454 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 455 if (isa<PHINode>(VMap[PN])) 456 PHIToResolve.push_back(PN); 457 else 458 break; 459 } else { 460 break; 461 } 462 } 463 464 // Finally, remap the terminator instructions, as those can't be remapped 465 // until all BBs are mapped. 466 RemapInstruction(NewBB->getTerminator(), VMap, 467 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 468 TypeMapper, Materializer); 469 } 470 471 // Defer PHI resolution until rest of function is resolved, PHI resolution 472 // requires the CFG to be up-to-date. 473 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 474 const PHINode *OPN = PHIToResolve[phino]; 475 unsigned NumPreds = OPN->getNumIncomingValues(); 476 const BasicBlock *OldBB = OPN->getParent(); 477 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 478 479 // Map operands for blocks that are live and remove operands for blocks 480 // that are dead. 481 for (; phino != PHIToResolve.size() && 482 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 483 OPN = PHIToResolve[phino]; 484 PHINode *PN = cast<PHINode>(VMap[OPN]); 485 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 486 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 487 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 488 Value *InVal = MapValue(PN->getIncomingValue(pred), 489 VMap, 490 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 491 assert(InVal && "Unknown input value?"); 492 PN->setIncomingValue(pred, InVal); 493 PN->setIncomingBlock(pred, MappedBlock); 494 } else { 495 PN->removeIncomingValue(pred, false); 496 --pred; // Revisit the next entry. 497 --e; 498 } 499 } 500 } 501 502 // The loop above has removed PHI entries for those blocks that are dead 503 // and has updated others. However, if a block is live (i.e. copied over) 504 // but its terminator has been changed to not go to this block, then our 505 // phi nodes will have invalid entries. Update the PHI nodes in this 506 // case. 507 PHINode *PN = cast<PHINode>(NewBB->begin()); 508 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 509 if (NumPreds != PN->getNumIncomingValues()) { 510 assert(NumPreds < PN->getNumIncomingValues()); 511 // Count how many times each predecessor comes to this block. 512 std::map<BasicBlock*, unsigned> PredCount; 513 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 514 PI != E; ++PI) 515 --PredCount[*PI]; 516 517 // Figure out how many entries to remove from each PHI. 518 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 519 ++PredCount[PN->getIncomingBlock(i)]; 520 521 // At this point, the excess predecessor entries are positive in the 522 // map. Loop over all of the PHIs and remove excess predecessor 523 // entries. 524 BasicBlock::iterator I = NewBB->begin(); 525 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 526 for (const auto &PCI : PredCount) { 527 BasicBlock *Pred = PCI.first; 528 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 529 PN->removeIncomingValue(Pred, false); 530 } 531 } 532 } 533 534 // If the loops above have made these phi nodes have 0 or 1 operand, 535 // replace them with undef or the input value. We must do this for 536 // correctness, because 0-operand phis are not valid. 537 PN = cast<PHINode>(NewBB->begin()); 538 if (PN->getNumIncomingValues() == 0) { 539 BasicBlock::iterator I = NewBB->begin(); 540 BasicBlock::const_iterator OldI = OldBB->begin(); 541 while ((PN = dyn_cast<PHINode>(I++))) { 542 Value *NV = UndefValue::get(PN->getType()); 543 PN->replaceAllUsesWith(NV); 544 assert(VMap[&*OldI] == PN && "VMap mismatch"); 545 VMap[&*OldI] = NV; 546 PN->eraseFromParent(); 547 ++OldI; 548 } 549 } 550 } 551 552 // Make a second pass over the PHINodes now that all of them have been 553 // remapped into the new function, simplifying the PHINode and performing any 554 // recursive simplifications exposed. This will transparently update the 555 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 556 // two PHINodes, the iteration over the old PHIs remains valid, and the 557 // mapping will just map us to the new node (which may not even be a PHI 558 // node). 559 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 560 SmallSetVector<const Value *, 8> Worklist; 561 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 562 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 563 Worklist.insert(PHIToResolve[Idx]); 564 565 // Note that we must test the size on each iteration, the worklist can grow. 566 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 567 const Value *OrigV = Worklist[Idx]; 568 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 569 if (!I) 570 continue; 571 572 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 573 // the CGSCC. 574 CallSite CS = CallSite(I); 575 if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) 576 continue; 577 578 // See if this instruction simplifies. 579 Value *SimpleV = SimplifyInstruction(I, DL); 580 if (!SimpleV) 581 continue; 582 583 // Stash away all the uses of the old instruction so we can check them for 584 // recursive simplifications after a RAUW. This is cheaper than checking all 585 // uses of To on the recursive step in most cases. 586 for (const User *U : OrigV->users()) 587 Worklist.insert(cast<Instruction>(U)); 588 589 // Replace the instruction with its simplified value. 590 I->replaceAllUsesWith(SimpleV); 591 592 // If the original instruction had no side effects, remove it. 593 if (isInstructionTriviallyDead(I)) 594 I->eraseFromParent(); 595 else 596 VMap[OrigV] = I; 597 } 598 599 // Now that the inlined function body has been fully constructed, go through 600 // and zap unconditional fall-through branches. This happens all the time when 601 // specializing code: code specialization turns conditional branches into 602 // uncond branches, and this code folds them. 603 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 604 Function::iterator I = Begin; 605 while (I != NewFunc->end()) { 606 // Check if this block has become dead during inlining or other 607 // simplifications. Note that the first block will appear dead, as it has 608 // not yet been wired up properly. 609 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 610 I->getSinglePredecessor() == &*I)) { 611 BasicBlock *DeadBB = &*I++; 612 DeleteDeadBlock(DeadBB); 613 continue; 614 } 615 616 // We need to simplify conditional branches and switches with a constant 617 // operand. We try to prune these out when cloning, but if the 618 // simplification required looking through PHI nodes, those are only 619 // available after forming the full basic block. That may leave some here, 620 // and we still want to prune the dead code as early as possible. 621 ConstantFoldTerminator(&*I); 622 623 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 624 if (!BI || BI->isConditional()) { ++I; continue; } 625 626 BasicBlock *Dest = BI->getSuccessor(0); 627 if (!Dest->getSinglePredecessor()) { 628 ++I; continue; 629 } 630 631 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 632 // above should have zapped all of them.. 633 assert(!isa<PHINode>(Dest->begin())); 634 635 // We know all single-entry PHI nodes in the inlined function have been 636 // removed, so we just need to splice the blocks. 637 BI->eraseFromParent(); 638 639 // Make all PHI nodes that referred to Dest now refer to I as their source. 640 Dest->replaceAllUsesWith(&*I); 641 642 // Move all the instructions in the succ to the pred. 643 I->getInstList().splice(I->end(), Dest->getInstList()); 644 645 // Remove the dest block. 646 Dest->eraseFromParent(); 647 648 // Do not increment I, iteratively merge all things this block branches to. 649 } 650 651 // Make a final pass over the basic blocks from the old function to gather 652 // any return instructions which survived folding. We have to do this here 653 // because we can iteratively remove and merge returns above. 654 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 655 E = NewFunc->end(); 656 I != E; ++I) 657 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 658 Returns.push_back(RI); 659 } 660 661 662 /// This works exactly like CloneFunctionInto, 663 /// except that it does some simple constant prop and DCE on the fly. The 664 /// effect of this is to copy significantly less code in cases where (for 665 /// example) a function call with constant arguments is inlined, and those 666 /// constant arguments cause a significant amount of code in the callee to be 667 /// dead. Since this doesn't produce an exact copy of the input, it can't be 668 /// used for things like CloneFunction or CloneModule. 669 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 670 ValueToValueMapTy &VMap, 671 bool ModuleLevelChanges, 672 SmallVectorImpl<ReturnInst*> &Returns, 673 const char *NameSuffix, 674 ClonedCodeInfo *CodeInfo, 675 Instruction *TheCall) { 676 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 677 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 678 } 679 680 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 681 void llvm::remapInstructionsInBlocks( 682 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 683 // Rewrite the code to refer to itself. 684 for (auto *BB : Blocks) 685 for (auto &Inst : *BB) 686 RemapInstruction(&Inst, VMap, 687 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 688 } 689 690 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 691 /// Blocks. 692 /// 693 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 694 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 695 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 696 Loop *OrigLoop, ValueToValueMapTy &VMap, 697 const Twine &NameSuffix, LoopInfo *LI, 698 DominatorTree *DT, 699 SmallVectorImpl<BasicBlock *> &Blocks) { 700 assert(OrigLoop->getSubLoops().empty() && 701 "Loop to be cloned cannot have inner loop"); 702 Function *F = OrigLoop->getHeader()->getParent(); 703 Loop *ParentLoop = OrigLoop->getParentLoop(); 704 705 Loop *NewLoop = new Loop(); 706 if (ParentLoop) 707 ParentLoop->addChildLoop(NewLoop); 708 else 709 LI->addTopLevelLoop(NewLoop); 710 711 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 712 assert(OrigPH && "No preheader"); 713 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 714 // To rename the loop PHIs. 715 VMap[OrigPH] = NewPH; 716 Blocks.push_back(NewPH); 717 718 // Update LoopInfo. 719 if (ParentLoop) 720 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 721 722 // Update DominatorTree. 723 DT->addNewBlock(NewPH, LoopDomBB); 724 725 for (BasicBlock *BB : OrigLoop->getBlocks()) { 726 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 727 VMap[BB] = NewBB; 728 729 // Update LoopInfo. 730 NewLoop->addBasicBlockToLoop(NewBB, *LI); 731 732 // Add DominatorTree node. After seeing all blocks, update to correct IDom. 733 DT->addNewBlock(NewBB, NewPH); 734 735 Blocks.push_back(NewBB); 736 } 737 738 for (BasicBlock *BB : OrigLoop->getBlocks()) { 739 // Update DominatorTree. 740 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 741 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 742 cast<BasicBlock>(VMap[IDomBB])); 743 } 744 745 // Move them physically from the end of the block list. 746 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 747 NewPH); 748 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 749 NewLoop->getHeader()->getIterator(), F->end()); 750 751 return NewLoop; 752 } 753 754 /// \brief Duplicate non-Phi instructions from the beginning of block up to 755 /// StopAt instruction into a split block between BB and its predecessor. 756 BasicBlock * 757 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, 758 Instruction *StopAt, 759 ValueToValueMapTy &ValueMapping) { 760 // We are going to have to map operands from the original BB block to the new 761 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 762 // account for entry from PredBB. 763 BasicBlock::iterator BI = BB->begin(); 764 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 765 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 766 767 BasicBlock *NewBB = SplitEdge(PredBB, BB); 768 NewBB->setName(PredBB->getName() + ".split"); 769 Instruction *NewTerm = NewBB->getTerminator(); 770 771 // Clone the non-phi instructions of BB into NewBB, keeping track of the 772 // mapping and using it to remap operands in the cloned instructions. 773 for (; StopAt != &*BI; ++BI) { 774 Instruction *New = BI->clone(); 775 New->setName(BI->getName()); 776 New->insertBefore(NewTerm); 777 ValueMapping[&*BI] = New; 778 779 // Remap operands to patch up intra-block references. 780 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 781 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 782 auto I = ValueMapping.find(Inst); 783 if (I != ValueMapping.end()) 784 New->setOperand(i, I->second); 785 } 786 } 787 788 return NewBB; 789 } 790