1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugInfo.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
41                                   ValueToValueMapTy &VMap,
42                                   const Twine &NameSuffix, Function *F,
43                                   ClonedCodeInfo *CodeInfo) {
44   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
45   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
46 
47   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
48 
49   // Loop over all instructions, and copy them over.
50   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
51        II != IE; ++II) {
52     Instruction *NewInst = II->clone();
53     if (II->hasName())
54       NewInst->setName(II->getName()+NameSuffix);
55     NewBB->getInstList().push_back(NewInst);
56     VMap[&*II] = NewInst; // Add instruction map to value.
57 
58     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
59     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
60       if (isa<ConstantInt>(AI->getArraySize()))
61         hasStaticAllocas = true;
62       else
63         hasDynamicAllocas = true;
64     }
65   }
66 
67   if (CodeInfo) {
68     CodeInfo->ContainsCalls          |= hasCalls;
69     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
70     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
71                                         BB != &BB->getParent()->getEntryBlock();
72   }
73   return NewBB;
74 }
75 
76 // Clone OldFunc into NewFunc, transforming the old arguments into references to
77 // VMap values.
78 //
79 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
80                              ValueToValueMapTy &VMap,
81                              bool ModuleLevelChanges,
82                              SmallVectorImpl<ReturnInst*> &Returns,
83                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
84                              ValueMapTypeRemapper *TypeMapper,
85                              ValueMaterializer *Materializer) {
86   assert(NameSuffix && "NameSuffix cannot be null!");
87 
88 #ifndef NDEBUG
89   for (const Argument &I : OldFunc->args())
90     assert(VMap.count(&I) && "No mapping from source argument specified!");
91 #endif
92 
93   // Copy all attributes other than those stored in the AttributeList.  We need
94   // to remap the parameter indices of the AttributeList.
95   AttributeList NewAttrs = NewFunc->getAttributes();
96   NewFunc->copyAttributesFrom(OldFunc);
97   NewFunc->setAttributes(NewAttrs);
98 
99   // Fix up the personality function that got copied over.
100   if (OldFunc->hasPersonalityFn())
101     NewFunc->setPersonalityFn(
102         MapValue(OldFunc->getPersonalityFn(), VMap,
103                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
104                  TypeMapper, Materializer));
105 
106   AttributeList OldAttrs = OldFunc->getAttributes();
107   // Clone any argument attributes that are present in the VMap.
108   for (const Argument &OldArg : OldFunc->args())
109     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
110       AttributeList attrs = OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111       if (attrs.getNumSlots() > 0)
112         NewArg->addAttr(attrs);
113     }
114 
115   NewFunc->setAttributes(
116       NewFunc->getAttributes()
117           .addAttributes(NewFunc->getContext(), AttributeList::ReturnIndex,
118                          OldAttrs.getRetAttributes())
119           .addAttributes(NewFunc->getContext(), AttributeList::FunctionIndex,
120                          OldAttrs.getFnAttributes()));
121 
122   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
123   OldFunc->getAllMetadata(MDs);
124   for (auto MD : MDs)
125     NewFunc->addMetadata(
126         MD.first,
127         *MapMetadata(MD.second, VMap,
128                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
129                      TypeMapper, Materializer));
130 
131   // Loop over all of the basic blocks in the function, cloning them as
132   // appropriate.  Note that we save BE this way in order to handle cloning of
133   // recursive functions into themselves.
134   //
135   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
136        BI != BE; ++BI) {
137     const BasicBlock &BB = *BI;
138 
139     // Create a new basic block and copy instructions into it!
140     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
141 
142     // Add basic block mapping.
143     VMap[&BB] = CBB;
144 
145     // It is only legal to clone a function if a block address within that
146     // function is never referenced outside of the function.  Given that, we
147     // want to map block addresses from the old function to block addresses in
148     // the clone. (This is different from the generic ValueMapper
149     // implementation, which generates an invalid blockaddress when
150     // cloning a function.)
151     if (BB.hasAddressTaken()) {
152       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
153                                               const_cast<BasicBlock*>(&BB));
154       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
155     }
156 
157     // Note return instructions for the caller.
158     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
159       Returns.push_back(RI);
160   }
161 
162   // Loop over all of the instructions in the function, fixing up operand
163   // references as we go.  This uses VMap to do all the hard work.
164   for (Function::iterator BB =
165            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
166                           BE = NewFunc->end();
167        BB != BE; ++BB)
168     // Loop over all instructions, fixing each one as we find it...
169     for (Instruction &II : *BB)
170       RemapInstruction(&II, VMap,
171                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
172                        TypeMapper, Materializer);
173 }
174 
175 /// Return a copy of the specified function and add it to that function's
176 /// module.  Also, any references specified in the VMap are changed to refer to
177 /// their mapped value instead of the original one.  If any of the arguments to
178 /// the function are in the VMap, the arguments are deleted from the resultant
179 /// function.  The VMap is updated to include mappings from all of the
180 /// instructions and basicblocks in the function from their old to new values.
181 ///
182 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
183                               ClonedCodeInfo *CodeInfo) {
184   std::vector<Type*> ArgTypes;
185 
186   // The user might be deleting arguments to the function by specifying them in
187   // the VMap.  If so, we need to not add the arguments to the arg ty vector
188   //
189   for (const Argument &I : F->args())
190     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
191       ArgTypes.push_back(I.getType());
192 
193   // Create a new function type...
194   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
195                                     ArgTypes, F->getFunctionType()->isVarArg());
196 
197   // Create the new function...
198   Function *NewF =
199       Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
200 
201   // Loop over the arguments, copying the names of the mapped arguments over...
202   Function::arg_iterator DestI = NewF->arg_begin();
203   for (const Argument & I : F->args())
204     if (VMap.count(&I) == 0) {     // Is this argument preserved?
205       DestI->setName(I.getName()); // Copy the name over...
206       VMap[&I] = &*DestI++;        // Add mapping to VMap
207     }
208 
209   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
210   CloneFunctionInto(NewF, F, VMap, /*ModuleLevelChanges=*/false, Returns, "",
211                     CodeInfo);
212 
213   return NewF;
214 }
215 
216 
217 
218 namespace {
219   /// This is a private class used to implement CloneAndPruneFunctionInto.
220   struct PruningFunctionCloner {
221     Function *NewFunc;
222     const Function *OldFunc;
223     ValueToValueMapTy &VMap;
224     bool ModuleLevelChanges;
225     const char *NameSuffix;
226     ClonedCodeInfo *CodeInfo;
227 
228   public:
229     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
230                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
231                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
232         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
233           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
234           CodeInfo(codeInfo) {}
235 
236     /// The specified block is found to be reachable, clone it and
237     /// anything that it can reach.
238     void CloneBlock(const BasicBlock *BB,
239                     BasicBlock::const_iterator StartingInst,
240                     std::vector<const BasicBlock*> &ToClone);
241   };
242 }
243 
244 /// The specified block is found to be reachable, clone it and
245 /// anything that it can reach.
246 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
247                                        BasicBlock::const_iterator StartingInst,
248                                        std::vector<const BasicBlock*> &ToClone){
249   WeakVH &BBEntry = VMap[BB];
250 
251   // Have we already cloned this block?
252   if (BBEntry) return;
253 
254   // Nope, clone it now.
255   BasicBlock *NewBB;
256   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
257   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
258 
259   // It is only legal to clone a function if a block address within that
260   // function is never referenced outside of the function.  Given that, we
261   // want to map block addresses from the old function to block addresses in
262   // the clone. (This is different from the generic ValueMapper
263   // implementation, which generates an invalid blockaddress when
264   // cloning a function.)
265   //
266   // Note that we don't need to fix the mapping for unreachable blocks;
267   // the default mapping there is safe.
268   if (BB->hasAddressTaken()) {
269     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
270                                             const_cast<BasicBlock*>(BB));
271     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
272   }
273 
274   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
275 
276   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
277   // loop doesn't include the terminator.
278   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
279        II != IE; ++II) {
280 
281     Instruction *NewInst = II->clone();
282 
283     // Eagerly remap operands to the newly cloned instruction, except for PHI
284     // nodes for which we defer processing until we update the CFG.
285     if (!isa<PHINode>(NewInst)) {
286       RemapInstruction(NewInst, VMap,
287                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
288 
289       // If we can simplify this instruction to some other value, simply add
290       // a mapping to that value rather than inserting a new instruction into
291       // the basic block.
292       if (Value *V =
293               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
294         // On the off-chance that this simplifies to an instruction in the old
295         // function, map it back into the new function.
296         if (Value *MappedV = VMap.lookup(V))
297           V = MappedV;
298 
299         if (!NewInst->mayHaveSideEffects()) {
300           VMap[&*II] = V;
301           delete NewInst;
302           continue;
303         }
304       }
305     }
306 
307     if (II->hasName())
308       NewInst->setName(II->getName()+NameSuffix);
309     VMap[&*II] = NewInst; // Add instruction map to value.
310     NewBB->getInstList().push_back(NewInst);
311     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
312 
313     if (CodeInfo)
314       if (auto CS = ImmutableCallSite(&*II))
315         if (CS.hasOperandBundles())
316           CodeInfo->OperandBundleCallSites.push_back(NewInst);
317 
318     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
319       if (isa<ConstantInt>(AI->getArraySize()))
320         hasStaticAllocas = true;
321       else
322         hasDynamicAllocas = true;
323     }
324   }
325 
326   // Finally, clone over the terminator.
327   const TerminatorInst *OldTI = BB->getTerminator();
328   bool TerminatorDone = false;
329   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
330     if (BI->isConditional()) {
331       // If the condition was a known constant in the callee...
332       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
333       // Or is a known constant in the caller...
334       if (!Cond) {
335         Value *V = VMap.lookup(BI->getCondition());
336         Cond = dyn_cast_or_null<ConstantInt>(V);
337       }
338 
339       // Constant fold to uncond branch!
340       if (Cond) {
341         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
342         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
343         ToClone.push_back(Dest);
344         TerminatorDone = true;
345       }
346     }
347   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
348     // If switching on a value known constant in the caller.
349     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
350     if (!Cond) { // Or known constant after constant prop in the callee...
351       Value *V = VMap.lookup(SI->getCondition());
352       Cond = dyn_cast_or_null<ConstantInt>(V);
353     }
354     if (Cond) {     // Constant fold to uncond branch!
355       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
356       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
357       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
358       ToClone.push_back(Dest);
359       TerminatorDone = true;
360     }
361   }
362 
363   if (!TerminatorDone) {
364     Instruction *NewInst = OldTI->clone();
365     if (OldTI->hasName())
366       NewInst->setName(OldTI->getName()+NameSuffix);
367     NewBB->getInstList().push_back(NewInst);
368     VMap[OldTI] = NewInst;             // Add instruction map to value.
369 
370     if (CodeInfo)
371       if (auto CS = ImmutableCallSite(OldTI))
372         if (CS.hasOperandBundles())
373           CodeInfo->OperandBundleCallSites.push_back(NewInst);
374 
375     // Recursively clone any reachable successor blocks.
376     const TerminatorInst *TI = BB->getTerminator();
377     for (const BasicBlock *Succ : TI->successors())
378       ToClone.push_back(Succ);
379   }
380 
381   if (CodeInfo) {
382     CodeInfo->ContainsCalls          |= hasCalls;
383     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
384     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
385       BB != &BB->getParent()->front();
386   }
387 }
388 
389 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
390 /// entire function. Instead it starts at an instruction provided by the caller
391 /// and copies (and prunes) only the code reachable from that instruction.
392 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
393                                      const Instruction *StartingInst,
394                                      ValueToValueMapTy &VMap,
395                                      bool ModuleLevelChanges,
396                                      SmallVectorImpl<ReturnInst *> &Returns,
397                                      const char *NameSuffix,
398                                      ClonedCodeInfo *CodeInfo) {
399   assert(NameSuffix && "NameSuffix cannot be null!");
400 
401   ValueMapTypeRemapper *TypeMapper = nullptr;
402   ValueMaterializer *Materializer = nullptr;
403 
404 #ifndef NDEBUG
405   // If the cloning starts at the beginning of the function, verify that
406   // the function arguments are mapped.
407   if (!StartingInst)
408     for (const Argument &II : OldFunc->args())
409       assert(VMap.count(&II) && "No mapping from source argument specified!");
410 #endif
411 
412   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
413                             NameSuffix, CodeInfo);
414   const BasicBlock *StartingBB;
415   if (StartingInst)
416     StartingBB = StartingInst->getParent();
417   else {
418     StartingBB = &OldFunc->getEntryBlock();
419     StartingInst = &StartingBB->front();
420   }
421 
422   // Clone the entry block, and anything recursively reachable from it.
423   std::vector<const BasicBlock*> CloneWorklist;
424   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
425   while (!CloneWorklist.empty()) {
426     const BasicBlock *BB = CloneWorklist.back();
427     CloneWorklist.pop_back();
428     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
429   }
430 
431   // Loop over all of the basic blocks in the old function.  If the block was
432   // reachable, we have cloned it and the old block is now in the value map:
433   // insert it into the new function in the right order.  If not, ignore it.
434   //
435   // Defer PHI resolution until rest of function is resolved.
436   SmallVector<const PHINode*, 16> PHIToResolve;
437   for (const BasicBlock &BI : *OldFunc) {
438     Value *V = VMap.lookup(&BI);
439     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
440     if (!NewBB) continue;  // Dead block.
441 
442     // Add the new block to the new function.
443     NewFunc->getBasicBlockList().push_back(NewBB);
444 
445     // Handle PHI nodes specially, as we have to remove references to dead
446     // blocks.
447     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
448       // PHI nodes may have been remapped to non-PHI nodes by the caller or
449       // during the cloning process.
450       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
451         if (isa<PHINode>(VMap[PN]))
452           PHIToResolve.push_back(PN);
453         else
454           break;
455       } else {
456         break;
457       }
458     }
459 
460     // Finally, remap the terminator instructions, as those can't be remapped
461     // until all BBs are mapped.
462     RemapInstruction(NewBB->getTerminator(), VMap,
463                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
464                      TypeMapper, Materializer);
465   }
466 
467   // Defer PHI resolution until rest of function is resolved, PHI resolution
468   // requires the CFG to be up-to-date.
469   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
470     const PHINode *OPN = PHIToResolve[phino];
471     unsigned NumPreds = OPN->getNumIncomingValues();
472     const BasicBlock *OldBB = OPN->getParent();
473     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
474 
475     // Map operands for blocks that are live and remove operands for blocks
476     // that are dead.
477     for (; phino != PHIToResolve.size() &&
478          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
479       OPN = PHIToResolve[phino];
480       PHINode *PN = cast<PHINode>(VMap[OPN]);
481       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
482         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
483         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
484           Value *InVal = MapValue(PN->getIncomingValue(pred),
485                                   VMap,
486                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
487           assert(InVal && "Unknown input value?");
488           PN->setIncomingValue(pred, InVal);
489           PN->setIncomingBlock(pred, MappedBlock);
490         } else {
491           PN->removeIncomingValue(pred, false);
492           --pred;  // Revisit the next entry.
493           --e;
494         }
495       }
496     }
497 
498     // The loop above has removed PHI entries for those blocks that are dead
499     // and has updated others.  However, if a block is live (i.e. copied over)
500     // but its terminator has been changed to not go to this block, then our
501     // phi nodes will have invalid entries.  Update the PHI nodes in this
502     // case.
503     PHINode *PN = cast<PHINode>(NewBB->begin());
504     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
505     if (NumPreds != PN->getNumIncomingValues()) {
506       assert(NumPreds < PN->getNumIncomingValues());
507       // Count how many times each predecessor comes to this block.
508       std::map<BasicBlock*, unsigned> PredCount;
509       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
510            PI != E; ++PI)
511         --PredCount[*PI];
512 
513       // Figure out how many entries to remove from each PHI.
514       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
515         ++PredCount[PN->getIncomingBlock(i)];
516 
517       // At this point, the excess predecessor entries are positive in the
518       // map.  Loop over all of the PHIs and remove excess predecessor
519       // entries.
520       BasicBlock::iterator I = NewBB->begin();
521       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
522         for (const auto &PCI : PredCount) {
523           BasicBlock *Pred = PCI.first;
524           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
525             PN->removeIncomingValue(Pred, false);
526         }
527       }
528     }
529 
530     // If the loops above have made these phi nodes have 0 or 1 operand,
531     // replace them with undef or the input value.  We must do this for
532     // correctness, because 0-operand phis are not valid.
533     PN = cast<PHINode>(NewBB->begin());
534     if (PN->getNumIncomingValues() == 0) {
535       BasicBlock::iterator I = NewBB->begin();
536       BasicBlock::const_iterator OldI = OldBB->begin();
537       while ((PN = dyn_cast<PHINode>(I++))) {
538         Value *NV = UndefValue::get(PN->getType());
539         PN->replaceAllUsesWith(NV);
540         assert(VMap[&*OldI] == PN && "VMap mismatch");
541         VMap[&*OldI] = NV;
542         PN->eraseFromParent();
543         ++OldI;
544       }
545     }
546   }
547 
548   // Make a second pass over the PHINodes now that all of them have been
549   // remapped into the new function, simplifying the PHINode and performing any
550   // recursive simplifications exposed. This will transparently update the
551   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
552   // two PHINodes, the iteration over the old PHIs remains valid, and the
553   // mapping will just map us to the new node (which may not even be a PHI
554   // node).
555   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
556   SmallSetVector<const Value *, 8> Worklist;
557   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
558     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
559       Worklist.insert(PHIToResolve[Idx]);
560 
561   // Note that we must test the size on each iteration, the worklist can grow.
562   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
563     const Value *OrigV = Worklist[Idx];
564     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
565     if (!I)
566       continue;
567 
568     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
569     // the CGSCC.
570     CallSite CS = CallSite(I);
571     if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
572       continue;
573 
574     // See if this instruction simplifies.
575     Value *SimpleV = SimplifyInstruction(I, DL);
576     if (!SimpleV)
577       continue;
578 
579     // Stash away all the uses of the old instruction so we can check them for
580     // recursive simplifications after a RAUW. This is cheaper than checking all
581     // uses of To on the recursive step in most cases.
582     for (const User *U : OrigV->users())
583       Worklist.insert(cast<Instruction>(U));
584 
585     // Replace the instruction with its simplified value.
586     I->replaceAllUsesWith(SimpleV);
587 
588     // If the original instruction had no side effects, remove it.
589     if (isInstructionTriviallyDead(I))
590       I->eraseFromParent();
591     else
592       VMap[OrigV] = I;
593   }
594 
595   // Now that the inlined function body has been fully constructed, go through
596   // and zap unconditional fall-through branches. This happens all the time when
597   // specializing code: code specialization turns conditional branches into
598   // uncond branches, and this code folds them.
599   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
600   Function::iterator I = Begin;
601   while (I != NewFunc->end()) {
602     // Check if this block has become dead during inlining or other
603     // simplifications. Note that the first block will appear dead, as it has
604     // not yet been wired up properly.
605     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
606                        I->getSinglePredecessor() == &*I)) {
607       BasicBlock *DeadBB = &*I++;
608       DeleteDeadBlock(DeadBB);
609       continue;
610     }
611 
612     // We need to simplify conditional branches and switches with a constant
613     // operand. We try to prune these out when cloning, but if the
614     // simplification required looking through PHI nodes, those are only
615     // available after forming the full basic block. That may leave some here,
616     // and we still want to prune the dead code as early as possible.
617     ConstantFoldTerminator(&*I);
618 
619     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
620     if (!BI || BI->isConditional()) { ++I; continue; }
621 
622     BasicBlock *Dest = BI->getSuccessor(0);
623     if (!Dest->getSinglePredecessor()) {
624       ++I; continue;
625     }
626 
627     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
628     // above should have zapped all of them..
629     assert(!isa<PHINode>(Dest->begin()));
630 
631     // We know all single-entry PHI nodes in the inlined function have been
632     // removed, so we just need to splice the blocks.
633     BI->eraseFromParent();
634 
635     // Make all PHI nodes that referred to Dest now refer to I as their source.
636     Dest->replaceAllUsesWith(&*I);
637 
638     // Move all the instructions in the succ to the pred.
639     I->getInstList().splice(I->end(), Dest->getInstList());
640 
641     // Remove the dest block.
642     Dest->eraseFromParent();
643 
644     // Do not increment I, iteratively merge all things this block branches to.
645   }
646 
647   // Make a final pass over the basic blocks from the old function to gather
648   // any return instructions which survived folding. We have to do this here
649   // because we can iteratively remove and merge returns above.
650   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
651                           E = NewFunc->end();
652        I != E; ++I)
653     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
654       Returns.push_back(RI);
655 }
656 
657 
658 /// This works exactly like CloneFunctionInto,
659 /// except that it does some simple constant prop and DCE on the fly.  The
660 /// effect of this is to copy significantly less code in cases where (for
661 /// example) a function call with constant arguments is inlined, and those
662 /// constant arguments cause a significant amount of code in the callee to be
663 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
664 /// used for things like CloneFunction or CloneModule.
665 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
666                                      ValueToValueMapTy &VMap,
667                                      bool ModuleLevelChanges,
668                                      SmallVectorImpl<ReturnInst*> &Returns,
669                                      const char *NameSuffix,
670                                      ClonedCodeInfo *CodeInfo,
671                                      Instruction *TheCall) {
672   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
673                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
674 }
675 
676 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
677 void llvm::remapInstructionsInBlocks(
678     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
679   // Rewrite the code to refer to itself.
680   for (auto *BB : Blocks)
681     for (auto &Inst : *BB)
682       RemapInstruction(&Inst, VMap,
683                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
684 }
685 
686 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
687 /// Blocks.
688 ///
689 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
690 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
691 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
692                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
693                                    const Twine &NameSuffix, LoopInfo *LI,
694                                    DominatorTree *DT,
695                                    SmallVectorImpl<BasicBlock *> &Blocks) {
696   assert(OrigLoop->getSubLoops().empty() &&
697          "Loop to be cloned cannot have inner loop");
698   Function *F = OrigLoop->getHeader()->getParent();
699   Loop *ParentLoop = OrigLoop->getParentLoop();
700 
701   Loop *NewLoop = new Loop();
702   if (ParentLoop)
703     ParentLoop->addChildLoop(NewLoop);
704   else
705     LI->addTopLevelLoop(NewLoop);
706 
707   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
708   assert(OrigPH && "No preheader");
709   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
710   // To rename the loop PHIs.
711   VMap[OrigPH] = NewPH;
712   Blocks.push_back(NewPH);
713 
714   // Update LoopInfo.
715   if (ParentLoop)
716     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
717 
718   // Update DominatorTree.
719   DT->addNewBlock(NewPH, LoopDomBB);
720 
721   for (BasicBlock *BB : OrigLoop->getBlocks()) {
722     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
723     VMap[BB] = NewBB;
724 
725     // Update LoopInfo.
726     NewLoop->addBasicBlockToLoop(NewBB, *LI);
727 
728     // Add DominatorTree node. After seeing all blocks, update to correct IDom.
729     DT->addNewBlock(NewBB, NewPH);
730 
731     Blocks.push_back(NewBB);
732   }
733 
734   for (BasicBlock *BB : OrigLoop->getBlocks()) {
735     // Update DominatorTree.
736     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
737     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
738                                  cast<BasicBlock>(VMap[IDomBB]));
739   }
740 
741   // Move them physically from the end of the block list.
742   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
743                                 NewPH);
744   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
745                                 NewLoop->getHeader()->getIterator(), F->end());
746 
747   return NewLoop;
748 }
749 
750 /// \brief Duplicate non-Phi instructions from the beginning of block up to
751 /// StopAt instruction into a split block between BB and its predecessor.
752 BasicBlock *
753 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
754                                           Instruction *StopAt,
755                                           ValueToValueMapTy &ValueMapping) {
756   // We are going to have to map operands from the original BB block to the new
757   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
758   // account for entry from PredBB.
759   BasicBlock::iterator BI = BB->begin();
760   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
761     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
762 
763   BasicBlock *NewBB = SplitEdge(PredBB, BB);
764   NewBB->setName(PredBB->getName() + ".split");
765   Instruction *NewTerm = NewBB->getTerminator();
766 
767   // Clone the non-phi instructions of BB into NewBB, keeping track of the
768   // mapping and using it to remap operands in the cloned instructions.
769   for (; StopAt != &*BI; ++BI) {
770     Instruction *New = BI->clone();
771     New->setName(BI->getName());
772     New->insertBefore(NewTerm);
773     ValueMapping[&*BI] = New;
774 
775     // Remap operands to patch up intra-block references.
776     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
777       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
778         auto I = ValueMapping.find(Inst);
779         if (I != ValueMapping.end())
780           New->setOperand(i, I->second);
781       }
782   }
783 
784   return NewBB;
785 }
786