1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner.  This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/ValueMapper.h"
37 #include <map>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "clone-function"
41 
42 /// See comments in Cloning.h.
43 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
44                                   const Twine &NameSuffix, Function *F,
45                                   ClonedCodeInfo *CodeInfo,
46                                   DebugInfoFinder *DIFinder) {
47   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
48   if (BB->hasName())
49     NewBB->setName(BB->getName() + NameSuffix);
50 
51   bool hasCalls = false, hasDynamicAllocas = false;
52   Module *TheModule = F ? F->getParent() : nullptr;
53 
54   // Loop over all instructions, and copy them over.
55   for (const Instruction &I : *BB) {
56     if (DIFinder && TheModule)
57       DIFinder->processInstruction(*TheModule, I);
58 
59     Instruction *NewInst = I.clone();
60     if (I.hasName())
61       NewInst->setName(I.getName() + NameSuffix);
62     NewBB->getInstList().push_back(NewInst);
63     VMap[&I] = NewInst; // Add instruction map to value.
64 
65     hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
66     if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
67       if (!AI->isStaticAlloca()) {
68         hasDynamicAllocas = true;
69       }
70     }
71   }
72 
73   if (CodeInfo) {
74     CodeInfo->ContainsCalls |= hasCalls;
75     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
76   }
77   return NewBB;
78 }
79 
80 // Clone OldFunc into NewFunc, transforming the old arguments into references to
81 // VMap values.
82 //
83 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
84                              ValueToValueMapTy &VMap,
85                              CloneFunctionChangeType Changes,
86                              SmallVectorImpl<ReturnInst *> &Returns,
87                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
88                              ValueMapTypeRemapper *TypeMapper,
89                              ValueMaterializer *Materializer) {
90   assert(NameSuffix && "NameSuffix cannot be null!");
91 
92 #ifndef NDEBUG
93   for (const Argument &I : OldFunc->args())
94     assert(VMap.count(&I) && "No mapping from source argument specified!");
95 #endif
96 
97   bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
98 
99   // Copy all attributes other than those stored in the AttributeList.  We need
100   // to remap the parameter indices of the AttributeList.
101   AttributeList NewAttrs = NewFunc->getAttributes();
102   NewFunc->copyAttributesFrom(OldFunc);
103   NewFunc->setAttributes(NewAttrs);
104 
105   // Fix up the personality function that got copied over.
106   if (OldFunc->hasPersonalityFn())
107     NewFunc->setPersonalityFn(
108         MapValue(OldFunc->getPersonalityFn(), VMap,
109                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
110                  TypeMapper, Materializer));
111 
112   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
113   AttributeList OldAttrs = OldFunc->getAttributes();
114 
115   // Clone any argument attributes that are present in the VMap.
116   for (const Argument &OldArg : OldFunc->args()) {
117     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
118       NewArgAttrs[NewArg->getArgNo()] =
119           OldAttrs.getParamAttributes(OldArg.getArgNo());
120     }
121   }
122 
123   NewFunc->setAttributes(
124       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
125                          OldAttrs.getRetAttributes(), NewArgAttrs));
126 
127   // Everything else beyond this point deals with function instructions,
128   // so if we are dealing with a function declaration, we're done.
129   if (OldFunc->isDeclaration())
130     return;
131 
132   // When we remap instructions within the same module, we want to avoid
133   // duplicating inlined DISubprograms, so record all subprograms we find as we
134   // duplicate instructions and then freeze them in the MD map. We also record
135   // information about dbg.value and dbg.declare to avoid duplicating the
136   // types.
137   Optional<DebugInfoFinder> DIFinder;
138 
139   // Track the subprogram attachment that needs to be cloned to fine-tune the
140   // mapping within the same module.
141   DISubprogram *SPClonedWithinModule = nullptr;
142   if (Changes < CloneFunctionChangeType::DifferentModule) {
143     assert((NewFunc->getParent() == nullptr ||
144             NewFunc->getParent() == OldFunc->getParent()) &&
145            "Expected NewFunc to have the same parent, or no parent");
146 
147     // Need to find subprograms, types, and compile units.
148     DIFinder.emplace();
149 
150     SPClonedWithinModule = OldFunc->getSubprogram();
151     if (SPClonedWithinModule)
152       DIFinder->processSubprogram(SPClonedWithinModule);
153   } else {
154     assert((NewFunc->getParent() == nullptr ||
155             NewFunc->getParent() != OldFunc->getParent()) &&
156            "Expected NewFunc to have different parents, or no parent");
157 
158     if (Changes == CloneFunctionChangeType::DifferentModule) {
159       assert(NewFunc->getParent() &&
160              "Need parent of new function to maintain debug info invariants");
161 
162       // Need to find all the compile units.
163       DIFinder.emplace();
164     }
165   }
166 
167   // Loop over all of the basic blocks in the function, cloning them as
168   // appropriate.  Note that we save BE this way in order to handle cloning of
169   // recursive functions into themselves.
170   for (const BasicBlock &BB : *OldFunc) {
171 
172     // Create a new basic block and copy instructions into it!
173     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
174                                       DIFinder ? &*DIFinder : nullptr);
175 
176     // Add basic block mapping.
177     VMap[&BB] = CBB;
178 
179     // It is only legal to clone a function if a block address within that
180     // function is never referenced outside of the function.  Given that, we
181     // want to map block addresses from the old function to block addresses in
182     // the clone. (This is different from the generic ValueMapper
183     // implementation, which generates an invalid blockaddress when
184     // cloning a function.)
185     if (BB.hasAddressTaken()) {
186       Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
187                                               const_cast<BasicBlock *>(&BB));
188       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
189     }
190 
191     // Note return instructions for the caller.
192     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
193       Returns.push_back(RI);
194   }
195 
196   if (Changes < CloneFunctionChangeType::DifferentModule &&
197       DIFinder->subprogram_count() > 0) {
198     // Turn on module-level changes, since we need to clone (some of) the
199     // debug info metadata.
200     //
201     // FIXME: Metadata effectively owned by a function should be made
202     // local, and only that local metadata should be cloned.
203     ModuleLevelChanges = true;
204 
205     auto mapToSelfIfNew = [&VMap](MDNode *N) {
206       // Avoid clobbering an existing mapping.
207       (void)VMap.MD().try_emplace(N, N);
208     };
209 
210     // Avoid cloning types, compile units, and (other) subprograms.
211     for (DISubprogram *ISP : DIFinder->subprograms())
212       if (ISP != SPClonedWithinModule)
213         mapToSelfIfNew(ISP);
214 
215     for (DICompileUnit *CU : DIFinder->compile_units())
216       mapToSelfIfNew(CU);
217 
218     for (DIType *Type : DIFinder->types())
219       mapToSelfIfNew(Type);
220   } else {
221     assert(!SPClonedWithinModule &&
222            "Subprogram should be in DIFinder->subprogram_count()...");
223   }
224 
225   const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
226   // Duplicate the metadata that is attached to the cloned function.
227   // Subprograms/CUs/types that were already mapped to themselves won't be
228   // duplicated.
229   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
230   OldFunc->getAllMetadata(MDs);
231   for (auto MD : MDs) {
232     NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
233                                                 TypeMapper, Materializer));
234   }
235 
236   // Loop over all of the instructions in the new function, fixing up operand
237   // references as we go. This uses VMap to do all the hard work.
238   for (Function::iterator
239            BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
240            BE = NewFunc->end();
241        BB != BE; ++BB)
242     // Loop over all instructions, fixing each one as we find it...
243     for (Instruction &II : *BB)
244       RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
245 
246   // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
247   // same module, the compile unit will already be listed (or not). When
248   // cloning a module, CloneModule() will handle creating the named metadata.
249   if (Changes != CloneFunctionChangeType::DifferentModule)
250     return;
251 
252   // Update !llvm.dbg.cu with compile units added to the new module if this
253   // function is being cloned in isolation.
254   //
255   // FIXME: This is making global / module-level changes, which doesn't seem
256   // like the right encapsulation  Consider dropping the requirement to update
257   // !llvm.dbg.cu (either obsoleting the node, or restricting it to
258   // non-discardable compile units) instead of discovering compile units by
259   // visiting the metadata attached to global values, which would allow this
260   // code to be deleted. Alternatively, perhaps give responsibility for this
261   // update to CloneFunctionInto's callers.
262   auto *NewModule = NewFunc->getParent();
263   auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
264   // Avoid multiple insertions of the same DICompileUnit to NMD.
265   SmallPtrSet<const void *, 8> Visited;
266   for (auto *Operand : NMD->operands())
267     Visited.insert(Operand);
268   for (auto *Unit : DIFinder->compile_units()) {
269     MDNode *MappedUnit =
270         MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
271     if (Visited.insert(MappedUnit).second)
272       NMD->addOperand(MappedUnit);
273   }
274 }
275 
276 /// Return a copy of the specified function and add it to that function's
277 /// module.  Also, any references specified in the VMap are changed to refer to
278 /// their mapped value instead of the original one.  If any of the arguments to
279 /// the function are in the VMap, the arguments are deleted from the resultant
280 /// function.  The VMap is updated to include mappings from all of the
281 /// instructions and basicblocks in the function from their old to new values.
282 ///
283 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
284                               ClonedCodeInfo *CodeInfo) {
285   std::vector<Type *> ArgTypes;
286 
287   // The user might be deleting arguments to the function by specifying them in
288   // the VMap.  If so, we need to not add the arguments to the arg ty vector
289   //
290   for (const Argument &I : F->args())
291     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
292       ArgTypes.push_back(I.getType());
293 
294   // Create a new function type...
295   FunctionType *FTy =
296       FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
297                         F->getFunctionType()->isVarArg());
298 
299   // Create the new function...
300   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
301                                     F->getName(), F->getParent());
302 
303   // Loop over the arguments, copying the names of the mapped arguments over...
304   Function::arg_iterator DestI = NewF->arg_begin();
305   for (const Argument &I : F->args())
306     if (VMap.count(&I) == 0) {     // Is this argument preserved?
307       DestI->setName(I.getName()); // Copy the name over...
308       VMap[&I] = &*DestI++;        // Add mapping to VMap
309     }
310 
311   SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
312   CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
313                     Returns, "", CodeInfo);
314 
315   return NewF;
316 }
317 
318 namespace {
319 /// This is a private class used to implement CloneAndPruneFunctionInto.
320 struct PruningFunctionCloner {
321   Function *NewFunc;
322   const Function *OldFunc;
323   ValueToValueMapTy &VMap;
324   bool ModuleLevelChanges;
325   const char *NameSuffix;
326   ClonedCodeInfo *CodeInfo;
327 
328 public:
329   PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
330                         ValueToValueMapTy &valueMap, bool moduleLevelChanges,
331                         const char *nameSuffix, ClonedCodeInfo *codeInfo)
332       : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
333         ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
334         CodeInfo(codeInfo) {}
335 
336   /// The specified block is found to be reachable, clone it and
337   /// anything that it can reach.
338   void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
339                   std::vector<const BasicBlock *> &ToClone);
340 };
341 } // namespace
342 
343 /// The specified block is found to be reachable, clone it and
344 /// anything that it can reach.
345 void PruningFunctionCloner::CloneBlock(
346     const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
347     std::vector<const BasicBlock *> &ToClone) {
348   WeakTrackingVH &BBEntry = VMap[BB];
349 
350   // Have we already cloned this block?
351   if (BBEntry)
352     return;
353 
354   // Nope, clone it now.
355   BasicBlock *NewBB;
356   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
357   if (BB->hasName())
358     NewBB->setName(BB->getName() + NameSuffix);
359 
360   // It is only legal to clone a function if a block address within that
361   // function is never referenced outside of the function.  Given that, we
362   // want to map block addresses from the old function to block addresses in
363   // the clone. (This is different from the generic ValueMapper
364   // implementation, which generates an invalid blockaddress when
365   // cloning a function.)
366   //
367   // Note that we don't need to fix the mapping for unreachable blocks;
368   // the default mapping there is safe.
369   if (BB->hasAddressTaken()) {
370     Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
371                                             const_cast<BasicBlock *>(BB));
372     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
373   }
374 
375   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
376 
377   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
378   // loop doesn't include the terminator.
379   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
380        ++II) {
381 
382     Instruction *NewInst = II->clone();
383 
384     // Eagerly remap operands to the newly cloned instruction, except for PHI
385     // nodes for which we defer processing until we update the CFG.
386     if (!isa<PHINode>(NewInst)) {
387       RemapInstruction(NewInst, VMap,
388                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
389 
390       // If we can simplify this instruction to some other value, simply add
391       // a mapping to that value rather than inserting a new instruction into
392       // the basic block.
393       if (Value *V =
394               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
395         // On the off-chance that this simplifies to an instruction in the old
396         // function, map it back into the new function.
397         if (NewFunc != OldFunc)
398           if (Value *MappedV = VMap.lookup(V))
399             V = MappedV;
400 
401         if (!NewInst->mayHaveSideEffects()) {
402           VMap[&*II] = V;
403           NewInst->deleteValue();
404           continue;
405         }
406       }
407     }
408 
409     if (II->hasName())
410       NewInst->setName(II->getName() + NameSuffix);
411     VMap[&*II] = NewInst; // Add instruction map to value.
412     NewBB->getInstList().push_back(NewInst);
413     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
414 
415     if (CodeInfo)
416       if (auto *CB = dyn_cast<CallBase>(&*II))
417         if (CB->hasOperandBundles())
418           CodeInfo->OperandBundleCallSites.push_back(NewInst);
419 
420     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
421       if (isa<ConstantInt>(AI->getArraySize()))
422         hasStaticAllocas = true;
423       else
424         hasDynamicAllocas = true;
425     }
426   }
427 
428   // Finally, clone over the terminator.
429   const Instruction *OldTI = BB->getTerminator();
430   bool TerminatorDone = false;
431   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
432     if (BI->isConditional()) {
433       // If the condition was a known constant in the callee...
434       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
435       // Or is a known constant in the caller...
436       if (!Cond) {
437         Value *V = VMap.lookup(BI->getCondition());
438         Cond = dyn_cast_or_null<ConstantInt>(V);
439       }
440 
441       // Constant fold to uncond branch!
442       if (Cond) {
443         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
444         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
445         ToClone.push_back(Dest);
446         TerminatorDone = true;
447       }
448     }
449   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
450     // If switching on a value known constant in the caller.
451     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
452     if (!Cond) { // Or known constant after constant prop in the callee...
453       Value *V = VMap.lookup(SI->getCondition());
454       Cond = dyn_cast_or_null<ConstantInt>(V);
455     }
456     if (Cond) { // Constant fold to uncond branch!
457       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
458       BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
459       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
460       ToClone.push_back(Dest);
461       TerminatorDone = true;
462     }
463   }
464 
465   if (!TerminatorDone) {
466     Instruction *NewInst = OldTI->clone();
467     if (OldTI->hasName())
468       NewInst->setName(OldTI->getName() + NameSuffix);
469     NewBB->getInstList().push_back(NewInst);
470     VMap[OldTI] = NewInst; // Add instruction map to value.
471 
472     if (CodeInfo)
473       if (auto *CB = dyn_cast<CallBase>(OldTI))
474         if (CB->hasOperandBundles())
475           CodeInfo->OperandBundleCallSites.push_back(NewInst);
476 
477     // Recursively clone any reachable successor blocks.
478     append_range(ToClone, successors(BB->getTerminator()));
479   }
480 
481   if (CodeInfo) {
482     CodeInfo->ContainsCalls |= hasCalls;
483     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
484     CodeInfo->ContainsDynamicAllocas |=
485         hasStaticAllocas && BB != &BB->getParent()->front();
486   }
487 }
488 
489 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
490 /// entire function. Instead it starts at an instruction provided by the caller
491 /// and copies (and prunes) only the code reachable from that instruction.
492 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
493                                      const Instruction *StartingInst,
494                                      ValueToValueMapTy &VMap,
495                                      bool ModuleLevelChanges,
496                                      SmallVectorImpl<ReturnInst *> &Returns,
497                                      const char *NameSuffix,
498                                      ClonedCodeInfo *CodeInfo) {
499   assert(NameSuffix && "NameSuffix cannot be null!");
500 
501   ValueMapTypeRemapper *TypeMapper = nullptr;
502   ValueMaterializer *Materializer = nullptr;
503 
504 #ifndef NDEBUG
505   // If the cloning starts at the beginning of the function, verify that
506   // the function arguments are mapped.
507   if (!StartingInst)
508     for (const Argument &II : OldFunc->args())
509       assert(VMap.count(&II) && "No mapping from source argument specified!");
510 #endif
511 
512   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
513                             NameSuffix, CodeInfo);
514   const BasicBlock *StartingBB;
515   if (StartingInst)
516     StartingBB = StartingInst->getParent();
517   else {
518     StartingBB = &OldFunc->getEntryBlock();
519     StartingInst = &StartingBB->front();
520   }
521 
522   // Clone the entry block, and anything recursively reachable from it.
523   std::vector<const BasicBlock *> CloneWorklist;
524   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
525   while (!CloneWorklist.empty()) {
526     const BasicBlock *BB = CloneWorklist.back();
527     CloneWorklist.pop_back();
528     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
529   }
530 
531   // Loop over all of the basic blocks in the old function.  If the block was
532   // reachable, we have cloned it and the old block is now in the value map:
533   // insert it into the new function in the right order.  If not, ignore it.
534   //
535   // Defer PHI resolution until rest of function is resolved.
536   SmallVector<const PHINode *, 16> PHIToResolve;
537   for (const BasicBlock &BI : *OldFunc) {
538     Value *V = VMap.lookup(&BI);
539     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
540     if (!NewBB)
541       continue; // Dead block.
542 
543     // Add the new block to the new function.
544     NewFunc->getBasicBlockList().push_back(NewBB);
545 
546     // Handle PHI nodes specially, as we have to remove references to dead
547     // blocks.
548     for (const PHINode &PN : BI.phis()) {
549       // PHI nodes may have been remapped to non-PHI nodes by the caller or
550       // during the cloning process.
551       if (isa<PHINode>(VMap[&PN]))
552         PHIToResolve.push_back(&PN);
553       else
554         break;
555     }
556 
557     // Finally, remap the terminator instructions, as those can't be remapped
558     // until all BBs are mapped.
559     RemapInstruction(NewBB->getTerminator(), VMap,
560                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
561                      TypeMapper, Materializer);
562   }
563 
564   // Defer PHI resolution until rest of function is resolved, PHI resolution
565   // requires the CFG to be up-to-date.
566   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
567     const PHINode *OPN = PHIToResolve[phino];
568     unsigned NumPreds = OPN->getNumIncomingValues();
569     const BasicBlock *OldBB = OPN->getParent();
570     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
571 
572     // Map operands for blocks that are live and remove operands for blocks
573     // that are dead.
574     for (; phino != PHIToResolve.size() &&
575            PHIToResolve[phino]->getParent() == OldBB;
576          ++phino) {
577       OPN = PHIToResolve[phino];
578       PHINode *PN = cast<PHINode>(VMap[OPN]);
579       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
580         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
581         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
582           Value *InVal =
583               MapValue(PN->getIncomingValue(pred), VMap,
584                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
585           assert(InVal && "Unknown input value?");
586           PN->setIncomingValue(pred, InVal);
587           PN->setIncomingBlock(pred, MappedBlock);
588         } else {
589           PN->removeIncomingValue(pred, false);
590           --pred; // Revisit the next entry.
591           --e;
592         }
593       }
594     }
595 
596     // The loop above has removed PHI entries for those blocks that are dead
597     // and has updated others.  However, if a block is live (i.e. copied over)
598     // but its terminator has been changed to not go to this block, then our
599     // phi nodes will have invalid entries.  Update the PHI nodes in this
600     // case.
601     PHINode *PN = cast<PHINode>(NewBB->begin());
602     NumPreds = pred_size(NewBB);
603     if (NumPreds != PN->getNumIncomingValues()) {
604       assert(NumPreds < PN->getNumIncomingValues());
605       // Count how many times each predecessor comes to this block.
606       std::map<BasicBlock *, unsigned> PredCount;
607       for (BasicBlock *Pred : predecessors(NewBB))
608         --PredCount[Pred];
609 
610       // Figure out how many entries to remove from each PHI.
611       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
612         ++PredCount[PN->getIncomingBlock(i)];
613 
614       // At this point, the excess predecessor entries are positive in the
615       // map.  Loop over all of the PHIs and remove excess predecessor
616       // entries.
617       BasicBlock::iterator I = NewBB->begin();
618       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
619         for (const auto &PCI : PredCount) {
620           BasicBlock *Pred = PCI.first;
621           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
622             PN->removeIncomingValue(Pred, false);
623         }
624       }
625     }
626 
627     // If the loops above have made these phi nodes have 0 or 1 operand,
628     // replace them with undef or the input value.  We must do this for
629     // correctness, because 0-operand phis are not valid.
630     PN = cast<PHINode>(NewBB->begin());
631     if (PN->getNumIncomingValues() == 0) {
632       BasicBlock::iterator I = NewBB->begin();
633       BasicBlock::const_iterator OldI = OldBB->begin();
634       while ((PN = dyn_cast<PHINode>(I++))) {
635         Value *NV = UndefValue::get(PN->getType());
636         PN->replaceAllUsesWith(NV);
637         assert(VMap[&*OldI] == PN && "VMap mismatch");
638         VMap[&*OldI] = NV;
639         PN->eraseFromParent();
640         ++OldI;
641       }
642     }
643   }
644 
645   // Make a second pass over the PHINodes now that all of them have been
646   // remapped into the new function, simplifying the PHINode and performing any
647   // recursive simplifications exposed. This will transparently update the
648   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
649   // two PHINodes, the iteration over the old PHIs remains valid, and the
650   // mapping will just map us to the new node (which may not even be a PHI
651   // node).
652   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
653   SmallSetVector<const Value *, 8> Worklist;
654   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
655     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
656       Worklist.insert(PHIToResolve[Idx]);
657 
658   // Note that we must test the size on each iteration, the worklist can grow.
659   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
660     const Value *OrigV = Worklist[Idx];
661     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
662     if (!I)
663       continue;
664 
665     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
666     // the CGSCC.
667     CallBase *CB = dyn_cast<CallBase>(I);
668     if (CB && CB->getCalledFunction() &&
669         !CB->getCalledFunction()->isIntrinsic())
670       continue;
671 
672     // See if this instruction simplifies.
673     Value *SimpleV = SimplifyInstruction(I, DL);
674     if (!SimpleV)
675       continue;
676 
677     // Stash away all the uses of the old instruction so we can check them for
678     // recursive simplifications after a RAUW. This is cheaper than checking all
679     // uses of To on the recursive step in most cases.
680     for (const User *U : OrigV->users())
681       Worklist.insert(cast<Instruction>(U));
682 
683     // Replace the instruction with its simplified value.
684     I->replaceAllUsesWith(SimpleV);
685 
686     // If the original instruction had no side effects, remove it.
687     if (isInstructionTriviallyDead(I))
688       I->eraseFromParent();
689     else
690       VMap[OrigV] = I;
691   }
692 
693   // Now that the inlined function body has been fully constructed, go through
694   // and zap unconditional fall-through branches. This happens all the time when
695   // specializing code: code specialization turns conditional branches into
696   // uncond branches, and this code folds them.
697   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
698   Function::iterator I = Begin;
699   while (I != NewFunc->end()) {
700     // We need to simplify conditional branches and switches with a constant
701     // operand. We try to prune these out when cloning, but if the
702     // simplification required looking through PHI nodes, those are only
703     // available after forming the full basic block. That may leave some here,
704     // and we still want to prune the dead code as early as possible.
705     //
706     // Do the folding before we check if the block is dead since we want code
707     // like
708     //  bb:
709     //    br i1 undef, label %bb, label %bb
710     // to be simplified to
711     //  bb:
712     //    br label %bb
713     // before we call I->getSinglePredecessor().
714     ConstantFoldTerminator(&*I);
715 
716     // Check if this block has become dead during inlining or other
717     // simplifications. Note that the first block will appear dead, as it has
718     // not yet been wired up properly.
719     if (I != Begin && (pred_empty(&*I) || I->getSinglePredecessor() == &*I)) {
720       BasicBlock *DeadBB = &*I++;
721       DeleteDeadBlock(DeadBB);
722       continue;
723     }
724 
725     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
726     if (!BI || BI->isConditional()) {
727       ++I;
728       continue;
729     }
730 
731     BasicBlock *Dest = BI->getSuccessor(0);
732     if (!Dest->getSinglePredecessor()) {
733       ++I;
734       continue;
735     }
736 
737     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
738     // above should have zapped all of them..
739     assert(!isa<PHINode>(Dest->begin()));
740 
741     // We know all single-entry PHI nodes in the inlined function have been
742     // removed, so we just need to splice the blocks.
743     BI->eraseFromParent();
744 
745     // Make all PHI nodes that referred to Dest now refer to I as their source.
746     Dest->replaceAllUsesWith(&*I);
747 
748     // Move all the instructions in the succ to the pred.
749     I->getInstList().splice(I->end(), Dest->getInstList());
750 
751     // Remove the dest block.
752     Dest->eraseFromParent();
753 
754     // Do not increment I, iteratively merge all things this block branches to.
755   }
756 
757   // Make a final pass over the basic blocks from the old function to gather
758   // any return instructions which survived folding. We have to do this here
759   // because we can iteratively remove and merge returns above.
760   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
761                           E = NewFunc->end();
762        I != E; ++I)
763     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
764       Returns.push_back(RI);
765 }
766 
767 /// This works exactly like CloneFunctionInto,
768 /// except that it does some simple constant prop and DCE on the fly.  The
769 /// effect of this is to copy significantly less code in cases where (for
770 /// example) a function call with constant arguments is inlined, and those
771 /// constant arguments cause a significant amount of code in the callee to be
772 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
773 /// used for things like CloneFunction or CloneModule.
774 void llvm::CloneAndPruneFunctionInto(
775     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
776     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
777     const char *NameSuffix, ClonedCodeInfo *CodeInfo, Instruction *TheCall) {
778   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
779                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
780 }
781 
782 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
783 void llvm::remapInstructionsInBlocks(
784     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
785   // Rewrite the code to refer to itself.
786   for (auto *BB : Blocks)
787     for (auto &Inst : *BB)
788       RemapInstruction(&Inst, VMap,
789                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
790 }
791 
792 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
793 /// Blocks.
794 ///
795 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
796 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
797 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
798                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
799                                    const Twine &NameSuffix, LoopInfo *LI,
800                                    DominatorTree *DT,
801                                    SmallVectorImpl<BasicBlock *> &Blocks) {
802   Function *F = OrigLoop->getHeader()->getParent();
803   Loop *ParentLoop = OrigLoop->getParentLoop();
804   DenseMap<Loop *, Loop *> LMap;
805 
806   Loop *NewLoop = LI->AllocateLoop();
807   LMap[OrigLoop] = NewLoop;
808   if (ParentLoop)
809     ParentLoop->addChildLoop(NewLoop);
810   else
811     LI->addTopLevelLoop(NewLoop);
812 
813   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
814   assert(OrigPH && "No preheader");
815   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
816   // To rename the loop PHIs.
817   VMap[OrigPH] = NewPH;
818   Blocks.push_back(NewPH);
819 
820   // Update LoopInfo.
821   if (ParentLoop)
822     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
823 
824   // Update DominatorTree.
825   DT->addNewBlock(NewPH, LoopDomBB);
826 
827   for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
828     Loop *&NewLoop = LMap[CurLoop];
829     if (!NewLoop) {
830       NewLoop = LI->AllocateLoop();
831 
832       // Establish the parent/child relationship.
833       Loop *OrigParent = CurLoop->getParentLoop();
834       assert(OrigParent && "Could not find the original parent loop");
835       Loop *NewParentLoop = LMap[OrigParent];
836       assert(NewParentLoop && "Could not find the new parent loop");
837 
838       NewParentLoop->addChildLoop(NewLoop);
839     }
840   }
841 
842   for (BasicBlock *BB : OrigLoop->getBlocks()) {
843     Loop *CurLoop = LI->getLoopFor(BB);
844     Loop *&NewLoop = LMap[CurLoop];
845     assert(NewLoop && "Expecting new loop to be allocated");
846 
847     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
848     VMap[BB] = NewBB;
849 
850     // Update LoopInfo.
851     NewLoop->addBasicBlockToLoop(NewBB, *LI);
852 
853     // Add DominatorTree node. After seeing all blocks, update to correct
854     // IDom.
855     DT->addNewBlock(NewBB, NewPH);
856 
857     Blocks.push_back(NewBB);
858   }
859 
860   for (BasicBlock *BB : OrigLoop->getBlocks()) {
861     // Update loop headers.
862     Loop *CurLoop = LI->getLoopFor(BB);
863     if (BB == CurLoop->getHeader())
864       LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
865 
866     // Update DominatorTree.
867     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
868     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
869                                  cast<BasicBlock>(VMap[IDomBB]));
870   }
871 
872   // Move them physically from the end of the block list.
873   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
874                                 NewPH);
875   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
876                                 NewLoop->getHeader()->getIterator(), F->end());
877 
878   return NewLoop;
879 }
880 
881 /// Duplicate non-Phi instructions from the beginning of block up to
882 /// StopAt instruction into a split block between BB and its predecessor.
883 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
884     BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
885     ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
886 
887   assert(count(successors(PredBB), BB) == 1 &&
888          "There must be a single edge between PredBB and BB!");
889   // We are going to have to map operands from the original BB block to the new
890   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
891   // account for entry from PredBB.
892   BasicBlock::iterator BI = BB->begin();
893   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
894     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
895 
896   BasicBlock *NewBB = SplitEdge(PredBB, BB);
897   NewBB->setName(PredBB->getName() + ".split");
898   Instruction *NewTerm = NewBB->getTerminator();
899 
900   // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
901   //        in the update set here.
902   DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
903                     {DominatorTree::Insert, PredBB, NewBB},
904                     {DominatorTree::Insert, NewBB, BB}});
905 
906   // Clone the non-phi instructions of BB into NewBB, keeping track of the
907   // mapping and using it to remap operands in the cloned instructions.
908   // Stop once we see the terminator too. This covers the case where BB's
909   // terminator gets replaced and StopAt == BB's terminator.
910   for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
911     Instruction *New = BI->clone();
912     New->setName(BI->getName());
913     New->insertBefore(NewTerm);
914     ValueMapping[&*BI] = New;
915 
916     // Remap operands to patch up intra-block references.
917     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
918       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
919         auto I = ValueMapping.find(Inst);
920         if (I != ValueMapping.end())
921           New->setOperand(i, I->second);
922       }
923   }
924 
925   return NewBB;
926 }
927 
928 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
929                               DenseMap<MDNode *, MDNode *> &ClonedScopes,
930                               StringRef Ext, LLVMContext &Context) {
931   MDBuilder MDB(Context);
932 
933   for (auto *ScopeList : NoAliasDeclScopes) {
934     for (auto &MDOperand : ScopeList->operands()) {
935       if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
936         AliasScopeNode SNANode(MD);
937 
938         std::string Name;
939         auto ScopeName = SNANode.getName();
940         if (!ScopeName.empty())
941           Name = (Twine(ScopeName) + ":" + Ext).str();
942         else
943           Name = std::string(Ext);
944 
945         MDNode *NewScope = MDB.createAnonymousAliasScope(
946             const_cast<MDNode *>(SNANode.getDomain()), Name);
947         ClonedScopes.insert(std::make_pair(MD, NewScope));
948       }
949     }
950   }
951 }
952 
953 void llvm::adaptNoAliasScopes(Instruction *I,
954                               const DenseMap<MDNode *, MDNode *> &ClonedScopes,
955                               LLVMContext &Context) {
956   auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
957     bool NeedsReplacement = false;
958     SmallVector<Metadata *, 8> NewScopeList;
959     for (auto &MDOp : ScopeList->operands()) {
960       if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
961         if (auto *NewMD = ClonedScopes.lookup(MD)) {
962           NewScopeList.push_back(NewMD);
963           NeedsReplacement = true;
964           continue;
965         }
966         NewScopeList.push_back(MD);
967       }
968     }
969     if (NeedsReplacement)
970       return MDNode::get(Context, NewScopeList);
971     return nullptr;
972   };
973 
974   if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
975     if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
976       Decl->setScopeList(NewScopeList);
977 
978   auto replaceWhenNeeded = [&](unsigned MD_ID) {
979     if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
980       if (auto *NewScopeList = CloneScopeList(CSNoAlias))
981         I->setMetadata(MD_ID, NewScopeList);
982   };
983   replaceWhenNeeded(LLVMContext::MD_noalias);
984   replaceWhenNeeded(LLVMContext::MD_alias_scope);
985 }
986 
987 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
988                                       ArrayRef<BasicBlock *> NewBlocks,
989                                       LLVMContext &Context, StringRef Ext) {
990   if (NoAliasDeclScopes.empty())
991     return;
992 
993   DenseMap<MDNode *, MDNode *> ClonedScopes;
994   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
995                     << NoAliasDeclScopes.size() << " node(s)\n");
996 
997   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
998   // Identify instructions using metadata that needs adaptation
999   for (BasicBlock *NewBlock : NewBlocks)
1000     for (Instruction &I : *NewBlock)
1001       adaptNoAliasScopes(&I, ClonedScopes, Context);
1002 }
1003 
1004 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1005                                       Instruction *IStart, Instruction *IEnd,
1006                                       LLVMContext &Context, StringRef Ext) {
1007   if (NoAliasDeclScopes.empty())
1008     return;
1009 
1010   DenseMap<MDNode *, MDNode *> ClonedScopes;
1011   LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1012                     << NoAliasDeclScopes.size() << " node(s)\n");
1013 
1014   cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1015   // Identify instructions using metadata that needs adaptation
1016   assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1017   auto ItStart = IStart->getIterator();
1018   auto ItEnd = IEnd->getIterator();
1019   ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1020   for (auto &I : llvm::make_range(ItStart, ItEnd))
1021     adaptNoAliasScopes(&I, ClonedScopes, Context);
1022 }
1023 
1024 void llvm::identifyNoAliasScopesToClone(
1025     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1026   for (BasicBlock *BB : BBs)
1027     for (Instruction &I : *BB)
1028       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1029         NoAliasDeclScopes.push_back(Decl->getScopeList());
1030 }
1031 
1032 void llvm::identifyNoAliasScopesToClone(
1033     BasicBlock::iterator Start, BasicBlock::iterator End,
1034     SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1035   for (Instruction &I : make_range(Start, End))
1036     if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1037       NoAliasDeclScopes.push_back(Decl->getScopeList());
1038 }
1039