1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CloneFunctionInto interface, which is used as the 10 // low-level function cloner. This is used by the CloneFunction and function 11 // inliner to do the dirty work of copying the body of a function around. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/ValueMapper.h" 37 #include <map> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "clone-function" 41 42 /// See comments in Cloning.h. 43 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, 44 const Twine &NameSuffix, Function *F, 45 ClonedCodeInfo *CodeInfo, 46 DebugInfoFinder *DIFinder) { 47 DenseMap<const MDNode *, MDNode *> Cache; 48 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 49 if (BB->hasName()) 50 NewBB->setName(BB->getName() + NameSuffix); 51 52 bool hasCalls = false, hasDynamicAllocas = false; 53 Module *TheModule = F ? F->getParent() : nullptr; 54 55 // Loop over all instructions, and copy them over. 56 for (const Instruction &I : *BB) { 57 if (DIFinder && TheModule) 58 DIFinder->processInstruction(*TheModule, I); 59 60 Instruction *NewInst = I.clone(); 61 if (I.hasName()) 62 NewInst->setName(I.getName() + NameSuffix); 63 NewBB->getInstList().push_back(NewInst); 64 VMap[&I] = NewInst; // Add instruction map to value. 65 66 hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); 67 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 68 if (!AI->isStaticAlloca()) { 69 hasDynamicAllocas = true; 70 } 71 } 72 } 73 74 if (CodeInfo) { 75 CodeInfo->ContainsCalls |= hasCalls; 76 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 77 } 78 return NewBB; 79 } 80 81 // Clone OldFunc into NewFunc, transforming the old arguments into references to 82 // VMap values. 83 // 84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 85 ValueToValueMapTy &VMap, 86 CloneFunctionChangeType Changes, 87 SmallVectorImpl<ReturnInst *> &Returns, 88 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 89 ValueMapTypeRemapper *TypeMapper, 90 ValueMaterializer *Materializer) { 91 assert(NameSuffix && "NameSuffix cannot be null!"); 92 93 #ifndef NDEBUG 94 for (const Argument &I : OldFunc->args()) 95 assert(VMap.count(&I) && "No mapping from source argument specified!"); 96 #endif 97 98 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; 99 100 // Copy all attributes other than those stored in the AttributeList. We need 101 // to remap the parameter indices of the AttributeList. 102 AttributeList NewAttrs = NewFunc->getAttributes(); 103 NewFunc->copyAttributesFrom(OldFunc); 104 NewFunc->setAttributes(NewAttrs); 105 106 // Fix up the personality function that got copied over. 107 if (OldFunc->hasPersonalityFn()) 108 NewFunc->setPersonalityFn( 109 MapValue(OldFunc->getPersonalityFn(), VMap, 110 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 111 TypeMapper, Materializer)); 112 113 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); 114 AttributeList OldAttrs = OldFunc->getAttributes(); 115 116 // Clone any argument attributes that are present in the VMap. 117 for (const Argument &OldArg : OldFunc->args()) { 118 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 119 NewArgAttrs[NewArg->getArgNo()] = 120 OldAttrs.getParamAttributes(OldArg.getArgNo()); 121 } 122 } 123 124 NewFunc->setAttributes( 125 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), 126 OldAttrs.getRetAttributes(), NewArgAttrs)); 127 128 // When we remap instructions within the same module, we want to avoid 129 // duplicating inlined DISubprograms, so record all subprograms we find as we 130 // duplicate instructions and then freeze them in the MD map. We also record 131 // information about dbg.value and dbg.declare to avoid duplicating the 132 // types. 133 Optional<DebugInfoFinder> DIFinder; 134 135 // Track the subprogram attachment that needs to be cloned to fine-tune the 136 // mapping within the same module. 137 DISubprogram *SPClonedWithinModule = nullptr; 138 if (Changes < CloneFunctionChangeType::DifferentModule) { 139 assert((NewFunc->getParent() == nullptr || 140 NewFunc->getParent() == OldFunc->getParent()) && 141 "Expected NewFunc to have the same parent, or no parent"); 142 143 // Need to find subprograms, types, and compile units. 144 DIFinder.emplace(); 145 146 SPClonedWithinModule = OldFunc->getSubprogram(); 147 } else { 148 assert((NewFunc->getParent() == nullptr || 149 NewFunc->getParent() != OldFunc->getParent()) && 150 "Set SameModule to true if the new function is in the same module"); 151 152 if (Changes == CloneFunctionChangeType::DifferentModule) { 153 assert(NewFunc->getParent() && 154 "Need parent of new function to maintain debug info invariants"); 155 156 // Need to find all the compile units. 157 DIFinder.emplace(); 158 } 159 } 160 161 // Everything else beyond this point deals with function instructions, 162 // so if we are dealing with a function declaration, we're done. 163 if (OldFunc->isDeclaration()) 164 return; 165 166 // Loop over all of the basic blocks in the function, cloning them as 167 // appropriate. Note that we save BE this way in order to handle cloning of 168 // recursive functions into themselves. 169 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 170 BI != BE; ++BI) { 171 const BasicBlock &BB = *BI; 172 173 // Create a new basic block and copy instructions into it! 174 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, 175 DIFinder ? &*DIFinder : nullptr); 176 177 // Add basic block mapping. 178 VMap[&BB] = CBB; 179 180 // It is only legal to clone a function if a block address within that 181 // function is never referenced outside of the function. Given that, we 182 // want to map block addresses from the old function to block addresses in 183 // the clone. (This is different from the generic ValueMapper 184 // implementation, which generates an invalid blockaddress when 185 // cloning a function.) 186 if (BB.hasAddressTaken()) { 187 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 188 const_cast<BasicBlock*>(&BB)); 189 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 190 } 191 192 // Note return instructions for the caller. 193 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 194 Returns.push_back(RI); 195 } 196 197 if (Changes < CloneFunctionChangeType::DifferentModule && 198 (SPClonedWithinModule || DIFinder->subprogram_count() > 0)) { 199 // Turn on module-level changes, since we need to clone (some of) the 200 // debug info metadata. 201 // 202 // FIXME: Metadata effectively owned by a function should be made 203 // local, and only that local metadata should be cloned. 204 ModuleLevelChanges = true; 205 206 auto mapToSelfIfNew = [&VMap](MDNode *N) { 207 // Avoid clobbering an existing mapping. 208 (void)VMap.MD().try_emplace(N, N); 209 }; 210 211 // Avoid cloning what the subprogram references. 212 if (SPClonedWithinModule) { 213 mapToSelfIfNew(SPClonedWithinModule->getUnit()); 214 mapToSelfIfNew(SPClonedWithinModule->getType()); 215 mapToSelfIfNew(SPClonedWithinModule->getFile()); 216 } 217 218 // Avoid cloning other subprograms, compile units, and types. 219 for (DISubprogram *ISP : DIFinder->subprograms()) 220 if (ISP != SPClonedWithinModule) 221 mapToSelfIfNew(ISP); 222 223 for (DICompileUnit *CU : DIFinder->compile_units()) 224 mapToSelfIfNew(CU); 225 226 for (DIType *Type : DIFinder->types()) 227 mapToSelfIfNew(Type); 228 } 229 230 // Duplicate the metadata that is attached to the cloned function. 231 // Subprograms/CUs/types that were already mapped to themselves won't be 232 // duplicated. 233 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 234 OldFunc->getAllMetadata(MDs); 235 for (auto MD : MDs) { 236 NewFunc->addMetadata( 237 MD.first, 238 *MapMetadata(MD.second, VMap, 239 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 240 TypeMapper, Materializer)); 241 } 242 243 // Loop over all of the instructions in the function, fixing up operand 244 // references as we go. This uses VMap to do all the hard work. 245 for (Function::iterator BB = 246 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 247 BE = NewFunc->end(); 248 BB != BE; ++BB) 249 // Loop over all instructions, fixing each one as we find it... 250 for (Instruction &II : *BB) 251 RemapInstruction(&II, VMap, 252 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 253 TypeMapper, Materializer); 254 255 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the 256 // same module, the compile unit will already be listed (or not). When 257 // cloning a module, CloneModule() will handle creating the named metadata. 258 if (Changes != CloneFunctionChangeType::DifferentModule) 259 return; 260 261 // Update !llvm.dbg.cu with compile units added to the new module if this 262 // function is being cloned in isolation. 263 // 264 // FIXME: This is making global / module-level changes, which doesn't seem 265 // like the right encapsulation Consider dropping the requirement to update 266 // !llvm.dbg.cu (either obsoleting the node, or restricting it to 267 // non-discardable compile units) instead of discovering compile units by 268 // visiting the metadata attached to global values, which would allow this 269 // code to be deleted. Alternatively, perhaps give responsibility for this 270 // update to CloneFunctionInto's callers. 271 auto* NewModule = NewFunc->getParent(); 272 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); 273 // Avoid multiple insertions of the same DICompileUnit to NMD. 274 SmallPtrSet<const void *, 8> Visited; 275 for (auto *Operand : NMD->operands()) 276 Visited.insert(Operand); 277 for (auto *Unit : DIFinder->compile_units()) { 278 MDNode *MappedUnit = 279 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer); 280 if (Visited.insert(MappedUnit).second) 281 NMD->addOperand(MappedUnit); 282 } 283 } 284 285 /// Return a copy of the specified function and add it to that function's 286 /// module. Also, any references specified in the VMap are changed to refer to 287 /// their mapped value instead of the original one. If any of the arguments to 288 /// the function are in the VMap, the arguments are deleted from the resultant 289 /// function. The VMap is updated to include mappings from all of the 290 /// instructions and basicblocks in the function from their old to new values. 291 /// 292 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, 293 ClonedCodeInfo *CodeInfo) { 294 std::vector<Type*> ArgTypes; 295 296 // The user might be deleting arguments to the function by specifying them in 297 // the VMap. If so, we need to not add the arguments to the arg ty vector 298 // 299 for (const Argument &I : F->args()) 300 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 301 ArgTypes.push_back(I.getType()); 302 303 // Create a new function type... 304 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 305 ArgTypes, F->getFunctionType()->isVarArg()); 306 307 // Create the new function... 308 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), 309 F->getName(), F->getParent()); 310 311 // Loop over the arguments, copying the names of the mapped arguments over... 312 Function::arg_iterator DestI = NewF->arg_begin(); 313 for (const Argument & I : F->args()) 314 if (VMap.count(&I) == 0) { // Is this argument preserved? 315 DestI->setName(I.getName()); // Copy the name over... 316 VMap[&I] = &*DestI++; // Add mapping to VMap 317 } 318 319 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 320 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, 321 Returns, "", CodeInfo); 322 323 return NewF; 324 } 325 326 327 328 namespace { 329 /// This is a private class used to implement CloneAndPruneFunctionInto. 330 struct PruningFunctionCloner { 331 Function *NewFunc; 332 const Function *OldFunc; 333 ValueToValueMapTy &VMap; 334 bool ModuleLevelChanges; 335 const char *NameSuffix; 336 ClonedCodeInfo *CodeInfo; 337 338 public: 339 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 340 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 341 const char *nameSuffix, ClonedCodeInfo *codeInfo) 342 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 343 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 344 CodeInfo(codeInfo) {} 345 346 /// The specified block is found to be reachable, clone it and 347 /// anything that it can reach. 348 void CloneBlock(const BasicBlock *BB, 349 BasicBlock::const_iterator StartingInst, 350 std::vector<const BasicBlock*> &ToClone); 351 }; 352 } 353 354 /// The specified block is found to be reachable, clone it and 355 /// anything that it can reach. 356 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 357 BasicBlock::const_iterator StartingInst, 358 std::vector<const BasicBlock*> &ToClone){ 359 WeakTrackingVH &BBEntry = VMap[BB]; 360 361 // Have we already cloned this block? 362 if (BBEntry) return; 363 364 // Nope, clone it now. 365 BasicBlock *NewBB; 366 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 367 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 368 369 // It is only legal to clone a function if a block address within that 370 // function is never referenced outside of the function. Given that, we 371 // want to map block addresses from the old function to block addresses in 372 // the clone. (This is different from the generic ValueMapper 373 // implementation, which generates an invalid blockaddress when 374 // cloning a function.) 375 // 376 // Note that we don't need to fix the mapping for unreachable blocks; 377 // the default mapping there is safe. 378 if (BB->hasAddressTaken()) { 379 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 380 const_cast<BasicBlock*>(BB)); 381 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 382 } 383 384 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 385 386 // Loop over all instructions, and copy them over, DCE'ing as we go. This 387 // loop doesn't include the terminator. 388 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 389 II != IE; ++II) { 390 391 Instruction *NewInst = II->clone(); 392 393 // Eagerly remap operands to the newly cloned instruction, except for PHI 394 // nodes for which we defer processing until we update the CFG. 395 if (!isa<PHINode>(NewInst)) { 396 RemapInstruction(NewInst, VMap, 397 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 398 399 // If we can simplify this instruction to some other value, simply add 400 // a mapping to that value rather than inserting a new instruction into 401 // the basic block. 402 if (Value *V = 403 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 404 // On the off-chance that this simplifies to an instruction in the old 405 // function, map it back into the new function. 406 if (NewFunc != OldFunc) 407 if (Value *MappedV = VMap.lookup(V)) 408 V = MappedV; 409 410 if (!NewInst->mayHaveSideEffects()) { 411 VMap[&*II] = V; 412 NewInst->deleteValue(); 413 continue; 414 } 415 } 416 } 417 418 if (II->hasName()) 419 NewInst->setName(II->getName()+NameSuffix); 420 VMap[&*II] = NewInst; // Add instruction map to value. 421 NewBB->getInstList().push_back(NewInst); 422 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 423 424 if (CodeInfo) 425 if (auto *CB = dyn_cast<CallBase>(&*II)) 426 if (CB->hasOperandBundles()) 427 CodeInfo->OperandBundleCallSites.push_back(NewInst); 428 429 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 430 if (isa<ConstantInt>(AI->getArraySize())) 431 hasStaticAllocas = true; 432 else 433 hasDynamicAllocas = true; 434 } 435 } 436 437 // Finally, clone over the terminator. 438 const Instruction *OldTI = BB->getTerminator(); 439 bool TerminatorDone = false; 440 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 441 if (BI->isConditional()) { 442 // If the condition was a known constant in the callee... 443 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 444 // Or is a known constant in the caller... 445 if (!Cond) { 446 Value *V = VMap.lookup(BI->getCondition()); 447 Cond = dyn_cast_or_null<ConstantInt>(V); 448 } 449 450 // Constant fold to uncond branch! 451 if (Cond) { 452 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 453 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 454 ToClone.push_back(Dest); 455 TerminatorDone = true; 456 } 457 } 458 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 459 // If switching on a value known constant in the caller. 460 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 461 if (!Cond) { // Or known constant after constant prop in the callee... 462 Value *V = VMap.lookup(SI->getCondition()); 463 Cond = dyn_cast_or_null<ConstantInt>(V); 464 } 465 if (Cond) { // Constant fold to uncond branch! 466 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); 467 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 468 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 469 ToClone.push_back(Dest); 470 TerminatorDone = true; 471 } 472 } 473 474 if (!TerminatorDone) { 475 Instruction *NewInst = OldTI->clone(); 476 if (OldTI->hasName()) 477 NewInst->setName(OldTI->getName()+NameSuffix); 478 NewBB->getInstList().push_back(NewInst); 479 VMap[OldTI] = NewInst; // Add instruction map to value. 480 481 if (CodeInfo) 482 if (auto *CB = dyn_cast<CallBase>(OldTI)) 483 if (CB->hasOperandBundles()) 484 CodeInfo->OperandBundleCallSites.push_back(NewInst); 485 486 // Recursively clone any reachable successor blocks. 487 append_range(ToClone, successors(BB->getTerminator())); 488 } 489 490 if (CodeInfo) { 491 CodeInfo->ContainsCalls |= hasCalls; 492 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 493 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 494 BB != &BB->getParent()->front(); 495 } 496 } 497 498 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 499 /// entire function. Instead it starts at an instruction provided by the caller 500 /// and copies (and prunes) only the code reachable from that instruction. 501 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 502 const Instruction *StartingInst, 503 ValueToValueMapTy &VMap, 504 bool ModuleLevelChanges, 505 SmallVectorImpl<ReturnInst *> &Returns, 506 const char *NameSuffix, 507 ClonedCodeInfo *CodeInfo) { 508 assert(NameSuffix && "NameSuffix cannot be null!"); 509 510 ValueMapTypeRemapper *TypeMapper = nullptr; 511 ValueMaterializer *Materializer = nullptr; 512 513 #ifndef NDEBUG 514 // If the cloning starts at the beginning of the function, verify that 515 // the function arguments are mapped. 516 if (!StartingInst) 517 for (const Argument &II : OldFunc->args()) 518 assert(VMap.count(&II) && "No mapping from source argument specified!"); 519 #endif 520 521 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 522 NameSuffix, CodeInfo); 523 const BasicBlock *StartingBB; 524 if (StartingInst) 525 StartingBB = StartingInst->getParent(); 526 else { 527 StartingBB = &OldFunc->getEntryBlock(); 528 StartingInst = &StartingBB->front(); 529 } 530 531 // Clone the entry block, and anything recursively reachable from it. 532 std::vector<const BasicBlock*> CloneWorklist; 533 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 534 while (!CloneWorklist.empty()) { 535 const BasicBlock *BB = CloneWorklist.back(); 536 CloneWorklist.pop_back(); 537 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 538 } 539 540 // Loop over all of the basic blocks in the old function. If the block was 541 // reachable, we have cloned it and the old block is now in the value map: 542 // insert it into the new function in the right order. If not, ignore it. 543 // 544 // Defer PHI resolution until rest of function is resolved. 545 SmallVector<const PHINode*, 16> PHIToResolve; 546 for (const BasicBlock &BI : *OldFunc) { 547 Value *V = VMap.lookup(&BI); 548 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 549 if (!NewBB) continue; // Dead block. 550 551 // Add the new block to the new function. 552 NewFunc->getBasicBlockList().push_back(NewBB); 553 554 // Handle PHI nodes specially, as we have to remove references to dead 555 // blocks. 556 for (const PHINode &PN : BI.phis()) { 557 // PHI nodes may have been remapped to non-PHI nodes by the caller or 558 // during the cloning process. 559 if (isa<PHINode>(VMap[&PN])) 560 PHIToResolve.push_back(&PN); 561 else 562 break; 563 } 564 565 // Finally, remap the terminator instructions, as those can't be remapped 566 // until all BBs are mapped. 567 RemapInstruction(NewBB->getTerminator(), VMap, 568 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 569 TypeMapper, Materializer); 570 } 571 572 // Defer PHI resolution until rest of function is resolved, PHI resolution 573 // requires the CFG to be up-to-date. 574 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 575 const PHINode *OPN = PHIToResolve[phino]; 576 unsigned NumPreds = OPN->getNumIncomingValues(); 577 const BasicBlock *OldBB = OPN->getParent(); 578 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 579 580 // Map operands for blocks that are live and remove operands for blocks 581 // that are dead. 582 for (; phino != PHIToResolve.size() && 583 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 584 OPN = PHIToResolve[phino]; 585 PHINode *PN = cast<PHINode>(VMap[OPN]); 586 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 587 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 588 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 589 Value *InVal = MapValue(PN->getIncomingValue(pred), 590 VMap, 591 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 592 assert(InVal && "Unknown input value?"); 593 PN->setIncomingValue(pred, InVal); 594 PN->setIncomingBlock(pred, MappedBlock); 595 } else { 596 PN->removeIncomingValue(pred, false); 597 --pred; // Revisit the next entry. 598 --e; 599 } 600 } 601 } 602 603 // The loop above has removed PHI entries for those blocks that are dead 604 // and has updated others. However, if a block is live (i.e. copied over) 605 // but its terminator has been changed to not go to this block, then our 606 // phi nodes will have invalid entries. Update the PHI nodes in this 607 // case. 608 PHINode *PN = cast<PHINode>(NewBB->begin()); 609 NumPreds = pred_size(NewBB); 610 if (NumPreds != PN->getNumIncomingValues()) { 611 assert(NumPreds < PN->getNumIncomingValues()); 612 // Count how many times each predecessor comes to this block. 613 std::map<BasicBlock*, unsigned> PredCount; 614 for (BasicBlock *Pred : predecessors(NewBB)) 615 --PredCount[Pred]; 616 617 // Figure out how many entries to remove from each PHI. 618 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 619 ++PredCount[PN->getIncomingBlock(i)]; 620 621 // At this point, the excess predecessor entries are positive in the 622 // map. Loop over all of the PHIs and remove excess predecessor 623 // entries. 624 BasicBlock::iterator I = NewBB->begin(); 625 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 626 for (const auto &PCI : PredCount) { 627 BasicBlock *Pred = PCI.first; 628 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) 629 PN->removeIncomingValue(Pred, false); 630 } 631 } 632 } 633 634 // If the loops above have made these phi nodes have 0 or 1 operand, 635 // replace them with undef or the input value. We must do this for 636 // correctness, because 0-operand phis are not valid. 637 PN = cast<PHINode>(NewBB->begin()); 638 if (PN->getNumIncomingValues() == 0) { 639 BasicBlock::iterator I = NewBB->begin(); 640 BasicBlock::const_iterator OldI = OldBB->begin(); 641 while ((PN = dyn_cast<PHINode>(I++))) { 642 Value *NV = UndefValue::get(PN->getType()); 643 PN->replaceAllUsesWith(NV); 644 assert(VMap[&*OldI] == PN && "VMap mismatch"); 645 VMap[&*OldI] = NV; 646 PN->eraseFromParent(); 647 ++OldI; 648 } 649 } 650 } 651 652 // Make a second pass over the PHINodes now that all of them have been 653 // remapped into the new function, simplifying the PHINode and performing any 654 // recursive simplifications exposed. This will transparently update the 655 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce 656 // two PHINodes, the iteration over the old PHIs remains valid, and the 657 // mapping will just map us to the new node (which may not even be a PHI 658 // node). 659 const DataLayout &DL = NewFunc->getParent()->getDataLayout(); 660 SmallSetVector<const Value *, 8> Worklist; 661 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 662 if (isa<PHINode>(VMap[PHIToResolve[Idx]])) 663 Worklist.insert(PHIToResolve[Idx]); 664 665 // Note that we must test the size on each iteration, the worklist can grow. 666 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 667 const Value *OrigV = Worklist[Idx]; 668 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); 669 if (!I) 670 continue; 671 672 // Skip over non-intrinsic callsites, we don't want to remove any nodes from 673 // the CGSCC. 674 CallBase *CB = dyn_cast<CallBase>(I); 675 if (CB && CB->getCalledFunction() && 676 !CB->getCalledFunction()->isIntrinsic()) 677 continue; 678 679 // See if this instruction simplifies. 680 Value *SimpleV = SimplifyInstruction(I, DL); 681 if (!SimpleV) 682 continue; 683 684 // Stash away all the uses of the old instruction so we can check them for 685 // recursive simplifications after a RAUW. This is cheaper than checking all 686 // uses of To on the recursive step in most cases. 687 for (const User *U : OrigV->users()) 688 Worklist.insert(cast<Instruction>(U)); 689 690 // Replace the instruction with its simplified value. 691 I->replaceAllUsesWith(SimpleV); 692 693 // If the original instruction had no side effects, remove it. 694 if (isInstructionTriviallyDead(I)) 695 I->eraseFromParent(); 696 else 697 VMap[OrigV] = I; 698 } 699 700 // Now that the inlined function body has been fully constructed, go through 701 // and zap unconditional fall-through branches. This happens all the time when 702 // specializing code: code specialization turns conditional branches into 703 // uncond branches, and this code folds them. 704 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 705 Function::iterator I = Begin; 706 while (I != NewFunc->end()) { 707 // We need to simplify conditional branches and switches with a constant 708 // operand. We try to prune these out when cloning, but if the 709 // simplification required looking through PHI nodes, those are only 710 // available after forming the full basic block. That may leave some here, 711 // and we still want to prune the dead code as early as possible. 712 // 713 // Do the folding before we check if the block is dead since we want code 714 // like 715 // bb: 716 // br i1 undef, label %bb, label %bb 717 // to be simplified to 718 // bb: 719 // br label %bb 720 // before we call I->getSinglePredecessor(). 721 ConstantFoldTerminator(&*I); 722 723 // Check if this block has become dead during inlining or other 724 // simplifications. Note that the first block will appear dead, as it has 725 // not yet been wired up properly. 726 if (I != Begin && (pred_empty(&*I) || I->getSinglePredecessor() == &*I)) { 727 BasicBlock *DeadBB = &*I++; 728 DeleteDeadBlock(DeadBB); 729 continue; 730 } 731 732 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 733 if (!BI || BI->isConditional()) { ++I; continue; } 734 735 BasicBlock *Dest = BI->getSuccessor(0); 736 if (!Dest->getSinglePredecessor()) { 737 ++I; continue; 738 } 739 740 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 741 // above should have zapped all of them.. 742 assert(!isa<PHINode>(Dest->begin())); 743 744 // We know all single-entry PHI nodes in the inlined function have been 745 // removed, so we just need to splice the blocks. 746 BI->eraseFromParent(); 747 748 // Make all PHI nodes that referred to Dest now refer to I as their source. 749 Dest->replaceAllUsesWith(&*I); 750 751 // Move all the instructions in the succ to the pred. 752 I->getInstList().splice(I->end(), Dest->getInstList()); 753 754 // Remove the dest block. 755 Dest->eraseFromParent(); 756 757 // Do not increment I, iteratively merge all things this block branches to. 758 } 759 760 // Make a final pass over the basic blocks from the old function to gather 761 // any return instructions which survived folding. We have to do this here 762 // because we can iteratively remove and merge returns above. 763 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 764 E = NewFunc->end(); 765 I != E; ++I) 766 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 767 Returns.push_back(RI); 768 } 769 770 771 /// This works exactly like CloneFunctionInto, 772 /// except that it does some simple constant prop and DCE on the fly. The 773 /// effect of this is to copy significantly less code in cases where (for 774 /// example) a function call with constant arguments is inlined, and those 775 /// constant arguments cause a significant amount of code in the callee to be 776 /// dead. Since this doesn't produce an exact copy of the input, it can't be 777 /// used for things like CloneFunction or CloneModule. 778 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 779 ValueToValueMapTy &VMap, 780 bool ModuleLevelChanges, 781 SmallVectorImpl<ReturnInst*> &Returns, 782 const char *NameSuffix, 783 ClonedCodeInfo *CodeInfo, 784 Instruction *TheCall) { 785 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 786 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 787 } 788 789 /// Remaps instructions in \p Blocks using the mapping in \p VMap. 790 void llvm::remapInstructionsInBlocks( 791 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 792 // Rewrite the code to refer to itself. 793 for (auto *BB : Blocks) 794 for (auto &Inst : *BB) 795 RemapInstruction(&Inst, VMap, 796 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 797 } 798 799 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 800 /// Blocks. 801 /// 802 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 803 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 804 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 805 Loop *OrigLoop, ValueToValueMapTy &VMap, 806 const Twine &NameSuffix, LoopInfo *LI, 807 DominatorTree *DT, 808 SmallVectorImpl<BasicBlock *> &Blocks) { 809 Function *F = OrigLoop->getHeader()->getParent(); 810 Loop *ParentLoop = OrigLoop->getParentLoop(); 811 DenseMap<Loop *, Loop *> LMap; 812 813 Loop *NewLoop = LI->AllocateLoop(); 814 LMap[OrigLoop] = NewLoop; 815 if (ParentLoop) 816 ParentLoop->addChildLoop(NewLoop); 817 else 818 LI->addTopLevelLoop(NewLoop); 819 820 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 821 assert(OrigPH && "No preheader"); 822 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 823 // To rename the loop PHIs. 824 VMap[OrigPH] = NewPH; 825 Blocks.push_back(NewPH); 826 827 // Update LoopInfo. 828 if (ParentLoop) 829 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 830 831 // Update DominatorTree. 832 DT->addNewBlock(NewPH, LoopDomBB); 833 834 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { 835 Loop *&NewLoop = LMap[CurLoop]; 836 if (!NewLoop) { 837 NewLoop = LI->AllocateLoop(); 838 839 // Establish the parent/child relationship. 840 Loop *OrigParent = CurLoop->getParentLoop(); 841 assert(OrigParent && "Could not find the original parent loop"); 842 Loop *NewParentLoop = LMap[OrigParent]; 843 assert(NewParentLoop && "Could not find the new parent loop"); 844 845 NewParentLoop->addChildLoop(NewLoop); 846 } 847 } 848 849 for (BasicBlock *BB : OrigLoop->getBlocks()) { 850 Loop *CurLoop = LI->getLoopFor(BB); 851 Loop *&NewLoop = LMap[CurLoop]; 852 assert(NewLoop && "Expecting new loop to be allocated"); 853 854 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 855 VMap[BB] = NewBB; 856 857 // Update LoopInfo. 858 NewLoop->addBasicBlockToLoop(NewBB, *LI); 859 860 // Add DominatorTree node. After seeing all blocks, update to correct 861 // IDom. 862 DT->addNewBlock(NewBB, NewPH); 863 864 Blocks.push_back(NewBB); 865 } 866 867 for (BasicBlock *BB : OrigLoop->getBlocks()) { 868 // Update loop headers. 869 Loop *CurLoop = LI->getLoopFor(BB); 870 if (BB == CurLoop->getHeader()) 871 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); 872 873 // Update DominatorTree. 874 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 875 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), 876 cast<BasicBlock>(VMap[IDomBB])); 877 } 878 879 // Move them physically from the end of the block list. 880 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 881 NewPH); 882 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 883 NewLoop->getHeader()->getIterator(), F->end()); 884 885 return NewLoop; 886 } 887 888 /// Duplicate non-Phi instructions from the beginning of block up to 889 /// StopAt instruction into a split block between BB and its predecessor. 890 BasicBlock *llvm::DuplicateInstructionsInSplitBetween( 891 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, 892 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { 893 894 assert(count(successors(PredBB), BB) == 1 && 895 "There must be a single edge between PredBB and BB!"); 896 // We are going to have to map operands from the original BB block to the new 897 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 898 // account for entry from PredBB. 899 BasicBlock::iterator BI = BB->begin(); 900 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 901 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 902 903 BasicBlock *NewBB = SplitEdge(PredBB, BB); 904 NewBB->setName(PredBB->getName() + ".split"); 905 Instruction *NewTerm = NewBB->getTerminator(); 906 907 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge 908 // in the update set here. 909 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, 910 {DominatorTree::Insert, PredBB, NewBB}, 911 {DominatorTree::Insert, NewBB, BB}}); 912 913 // Clone the non-phi instructions of BB into NewBB, keeping track of the 914 // mapping and using it to remap operands in the cloned instructions. 915 // Stop once we see the terminator too. This covers the case where BB's 916 // terminator gets replaced and StopAt == BB's terminator. 917 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { 918 Instruction *New = BI->clone(); 919 New->setName(BI->getName()); 920 New->insertBefore(NewTerm); 921 ValueMapping[&*BI] = New; 922 923 // Remap operands to patch up intra-block references. 924 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 925 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 926 auto I = ValueMapping.find(Inst); 927 if (I != ValueMapping.end()) 928 New->setOperand(i, I->second); 929 } 930 } 931 932 return NewBB; 933 } 934 935 void llvm::cloneNoAliasScopes( 936 ArrayRef<MDNode *> NoAliasDeclScopes, 937 DenseMap<MDNode *, MDNode *> &ClonedScopes, 938 StringRef Ext, LLVMContext &Context) { 939 MDBuilder MDB(Context); 940 941 for (auto *ScopeList : NoAliasDeclScopes) { 942 for (auto &MDOperand : ScopeList->operands()) { 943 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) { 944 AliasScopeNode SNANode(MD); 945 946 std::string Name; 947 auto ScopeName = SNANode.getName(); 948 if (!ScopeName.empty()) 949 Name = (Twine(ScopeName) + ":" + Ext).str(); 950 else 951 Name = std::string(Ext); 952 953 MDNode *NewScope = MDB.createAnonymousAliasScope( 954 const_cast<MDNode *>(SNANode.getDomain()), Name); 955 ClonedScopes.insert(std::make_pair(MD, NewScope)); 956 } 957 } 958 } 959 } 960 961 void llvm::adaptNoAliasScopes( 962 Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes, 963 LLVMContext &Context) { 964 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { 965 bool NeedsReplacement = false; 966 SmallVector<Metadata *, 8> NewScopeList; 967 for (auto &MDOp : ScopeList->operands()) { 968 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) { 969 if (auto *NewMD = ClonedScopes.lookup(MD)) { 970 NewScopeList.push_back(NewMD); 971 NeedsReplacement = true; 972 continue; 973 } 974 NewScopeList.push_back(MD); 975 } 976 } 977 if (NeedsReplacement) 978 return MDNode::get(Context, NewScopeList); 979 return nullptr; 980 }; 981 982 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) 983 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) 984 Decl->setScopeList(NewScopeList); 985 986 auto replaceWhenNeeded = [&](unsigned MD_ID) { 987 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID)) 988 if (auto *NewScopeList = CloneScopeList(CSNoAlias)) 989 I->setMetadata(MD_ID, NewScopeList); 990 }; 991 replaceWhenNeeded(LLVMContext::MD_noalias); 992 replaceWhenNeeded(LLVMContext::MD_alias_scope); 993 } 994 995 void llvm::cloneAndAdaptNoAliasScopes( 996 ArrayRef<MDNode *> NoAliasDeclScopes, 997 ArrayRef<BasicBlock *> NewBlocks, LLVMContext &Context, StringRef Ext) { 998 if (NoAliasDeclScopes.empty()) 999 return; 1000 1001 DenseMap<MDNode *, MDNode *> ClonedScopes; 1002 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1003 << NoAliasDeclScopes.size() << " node(s)\n"); 1004 1005 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1006 // Identify instructions using metadata that needs adaptation 1007 for (BasicBlock *NewBlock : NewBlocks) 1008 for (Instruction &I : *NewBlock) 1009 adaptNoAliasScopes(&I, ClonedScopes, Context); 1010 } 1011 1012 void llvm::cloneAndAdaptNoAliasScopes( 1013 ArrayRef<MDNode *> NoAliasDeclScopes, Instruction *IStart, 1014 Instruction *IEnd, LLVMContext &Context, StringRef Ext) { 1015 if (NoAliasDeclScopes.empty()) 1016 return; 1017 1018 DenseMap<MDNode *, MDNode *> ClonedScopes; 1019 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " 1020 << NoAliasDeclScopes.size() << " node(s)\n"); 1021 1022 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); 1023 // Identify instructions using metadata that needs adaptation 1024 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?"); 1025 auto ItStart = IStart->getIterator(); 1026 auto ItEnd = IEnd->getIterator(); 1027 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range 1028 for (auto &I : llvm::make_range(ItStart, ItEnd)) 1029 adaptNoAliasScopes(&I, ClonedScopes, Context); 1030 } 1031 1032 void llvm::identifyNoAliasScopesToClone( 1033 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { 1034 for (BasicBlock *BB : BBs) 1035 for (Instruction &I : *BB) 1036 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 1037 NoAliasDeclScopes.push_back(Decl->getScopeList()); 1038 } 1039