1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37 
38 /// See comments in Cloning.h.
39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
40                                   ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo) {
43   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
44   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
45 
46   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
47 
48   // Loop over all instructions, and copy them over.
49   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
50        II != IE; ++II) {
51     Instruction *NewInst = II->clone();
52     if (II->hasName())
53       NewInst->setName(II->getName()+NameSuffix);
54     NewBB->getInstList().push_back(NewInst);
55     VMap[&*II] = NewInst; // Add instruction map to value.
56 
57     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
58     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
59       if (isa<ConstantInt>(AI->getArraySize()))
60         hasStaticAllocas = true;
61       else
62         hasDynamicAllocas = true;
63     }
64   }
65 
66   if (CodeInfo) {
67     CodeInfo->ContainsCalls          |= hasCalls;
68     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
69     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
70                                         BB != &BB->getParent()->getEntryBlock();
71   }
72   return NewBB;
73 }
74 
75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
76 // VMap values.
77 //
78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
79                              ValueToValueMapTy &VMap,
80                              bool ModuleLevelChanges,
81                              SmallVectorImpl<ReturnInst*> &Returns,
82                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
83                              ValueMapTypeRemapper *TypeMapper,
84                              ValueMaterializer *Materializer) {
85   assert(NameSuffix && "NameSuffix cannot be null!");
86 
87 #ifndef NDEBUG
88   for (const Argument &I : OldFunc->args())
89     assert(VMap.count(&I) && "No mapping from source argument specified!");
90 #endif
91 
92   // Copy all attributes other than those stored in the AttributeSet.  We need
93   // to remap the parameter indices of the AttributeSet.
94   AttributeSet NewAttrs = NewFunc->getAttributes();
95   NewFunc->copyAttributesFrom(OldFunc);
96   NewFunc->setAttributes(NewAttrs);
97 
98   // Fix up the personality function that got copied over.
99   if (OldFunc->hasPersonalityFn())
100     NewFunc->setPersonalityFn(
101         MapValue(OldFunc->getPersonalityFn(), VMap,
102                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
103                  TypeMapper, Materializer));
104 
105   AttributeSet OldAttrs = OldFunc->getAttributes();
106   // Clone any argument attributes that are present in the VMap.
107   for (const Argument &OldArg : OldFunc->args())
108     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
109       AttributeSet attrs =
110           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111       if (attrs.getNumSlots() > 0)
112         NewArg->addAttr(attrs);
113     }
114 
115   NewFunc->setAttributes(
116       NewFunc->getAttributes()
117           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
118                          OldAttrs.getRetAttributes())
119           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
120                          OldAttrs.getFnAttributes()));
121 
122   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
123   OldFunc->getAllMetadata(MDs);
124   for (auto MD : MDs)
125     NewFunc->setMetadata(
126         MD.first,
127         MapMetadata(MD.second, VMap,
128                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
129                     TypeMapper, Materializer));
130 
131   // Loop over all of the basic blocks in the function, cloning them as
132   // appropriate.  Note that we save BE this way in order to handle cloning of
133   // recursive functions into themselves.
134   //
135   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
136        BI != BE; ++BI) {
137     const BasicBlock &BB = *BI;
138 
139     // Create a new basic block and copy instructions into it!
140     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
141 
142     // Add basic block mapping.
143     VMap[&BB] = CBB;
144 
145     // It is only legal to clone a function if a block address within that
146     // function is never referenced outside of the function.  Given that, we
147     // want to map block addresses from the old function to block addresses in
148     // the clone. (This is different from the generic ValueMapper
149     // implementation, which generates an invalid blockaddress when
150     // cloning a function.)
151     if (BB.hasAddressTaken()) {
152       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
153                                               const_cast<BasicBlock*>(&BB));
154       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
155     }
156 
157     // Note return instructions for the caller.
158     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
159       Returns.push_back(RI);
160   }
161 
162   // Loop over all of the instructions in the function, fixing up operand
163   // references as we go.  This uses VMap to do all the hard work.
164   for (Function::iterator BB =
165            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
166                           BE = NewFunc->end();
167        BB != BE; ++BB)
168     // Loop over all instructions, fixing each one as we find it...
169     for (Instruction &II : *BB)
170       RemapInstruction(&II, VMap,
171                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
172                        TypeMapper, Materializer);
173 }
174 
175 // Clone the module-level debug info associated with OldFunc. The cloned data
176 // will point to NewFunc instead.
177 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
178                                    ValueToValueMapTy &VMap) {
179   if (const DISubprogram *OldSP = OldFunc->getSubprogram()) {
180     auto *NewSP = cast<DISubprogram>(MapMetadata(OldSP, VMap));
181     // FIXME: There ought to be a better way to do this: ValueMapper
182     // will clone the distinct DICompileUnit. Use the original one
183     // instead.
184     NewSP->replaceUnit(OldSP->getUnit());
185     NewFunc->setSubprogram(NewSP);
186   }
187 }
188 
189 /// Return a copy of the specified function, but without
190 /// embedding the function into another module.  Also, any references specified
191 /// in the VMap are changed to refer to their mapped value instead of the
192 /// original one.  If any of the arguments to the function are in the VMap,
193 /// the arguments are deleted from the resultant function.  The VMap is
194 /// updated to include mappings from all of the instructions and basicblocks in
195 /// the function from their old to new values.
196 ///
197 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
198                               bool ModuleLevelChanges,
199                               ClonedCodeInfo *CodeInfo) {
200   std::vector<Type*> ArgTypes;
201 
202   // The user might be deleting arguments to the function by specifying them in
203   // the VMap.  If so, we need to not add the arguments to the arg ty vector
204   //
205   for (const Argument &I : F->args())
206     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
207       ArgTypes.push_back(I.getType());
208 
209   // Create a new function type...
210   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
211                                     ArgTypes, F->getFunctionType()->isVarArg());
212 
213   // Create the new function...
214   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
215 
216   // Loop over the arguments, copying the names of the mapped arguments over...
217   Function::arg_iterator DestI = NewF->arg_begin();
218   for (const Argument & I : F->args())
219     if (VMap.count(&I) == 0) {     // Is this argument preserved?
220       DestI->setName(I.getName()); // Copy the name over...
221       VMap[&I] = &*DestI++;        // Add mapping to VMap
222     }
223 
224   if (ModuleLevelChanges)
225     CloneDebugInfoMetadata(NewF, F, VMap);
226 
227   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
228   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
229   return NewF;
230 }
231 
232 
233 
234 namespace {
235   /// This is a private class used to implement CloneAndPruneFunctionInto.
236   struct PruningFunctionCloner {
237     Function *NewFunc;
238     const Function *OldFunc;
239     ValueToValueMapTy &VMap;
240     bool ModuleLevelChanges;
241     const char *NameSuffix;
242     ClonedCodeInfo *CodeInfo;
243 
244   public:
245     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
246                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
247                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
248         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
249           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
250           CodeInfo(codeInfo) {}
251 
252     /// The specified block is found to be reachable, clone it and
253     /// anything that it can reach.
254     void CloneBlock(const BasicBlock *BB,
255                     BasicBlock::const_iterator StartingInst,
256                     std::vector<const BasicBlock*> &ToClone);
257   };
258 }
259 
260 /// The specified block is found to be reachable, clone it and
261 /// anything that it can reach.
262 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
263                                        BasicBlock::const_iterator StartingInst,
264                                        std::vector<const BasicBlock*> &ToClone){
265   WeakVH &BBEntry = VMap[BB];
266 
267   // Have we already cloned this block?
268   if (BBEntry) return;
269 
270   // Nope, clone it now.
271   BasicBlock *NewBB;
272   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
273   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
274 
275   // It is only legal to clone a function if a block address within that
276   // function is never referenced outside of the function.  Given that, we
277   // want to map block addresses from the old function to block addresses in
278   // the clone. (This is different from the generic ValueMapper
279   // implementation, which generates an invalid blockaddress when
280   // cloning a function.)
281   //
282   // Note that we don't need to fix the mapping for unreachable blocks;
283   // the default mapping there is safe.
284   if (BB->hasAddressTaken()) {
285     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
286                                             const_cast<BasicBlock*>(BB));
287     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
288   }
289 
290   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
291 
292   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
293   // loop doesn't include the terminator.
294   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
295        II != IE; ++II) {
296 
297     Instruction *NewInst = II->clone();
298 
299     // Eagerly remap operands to the newly cloned instruction, except for PHI
300     // nodes for which we defer processing until we update the CFG.
301     if (!isa<PHINode>(NewInst)) {
302       RemapInstruction(NewInst, VMap,
303                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
304 
305       // If we can simplify this instruction to some other value, simply add
306       // a mapping to that value rather than inserting a new instruction into
307       // the basic block.
308       if (Value *V =
309               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
310         // On the off-chance that this simplifies to an instruction in the old
311         // function, map it back into the new function.
312         if (Value *MappedV = VMap.lookup(V))
313           V = MappedV;
314 
315         VMap[&*II] = V;
316         delete NewInst;
317         continue;
318       }
319     }
320 
321     if (II->hasName())
322       NewInst->setName(II->getName()+NameSuffix);
323     VMap[&*II] = NewInst; // Add instruction map to value.
324     NewBB->getInstList().push_back(NewInst);
325     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
326 
327     if (CodeInfo)
328       if (auto CS = ImmutableCallSite(&*II))
329         if (CS.hasOperandBundles())
330           CodeInfo->OperandBundleCallSites.push_back(NewInst);
331 
332     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
333       if (isa<ConstantInt>(AI->getArraySize()))
334         hasStaticAllocas = true;
335       else
336         hasDynamicAllocas = true;
337     }
338   }
339 
340   // Finally, clone over the terminator.
341   const TerminatorInst *OldTI = BB->getTerminator();
342   bool TerminatorDone = false;
343   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
344     if (BI->isConditional()) {
345       // If the condition was a known constant in the callee...
346       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
347       // Or is a known constant in the caller...
348       if (!Cond) {
349         Value *V = VMap.lookup(BI->getCondition());
350         Cond = dyn_cast_or_null<ConstantInt>(V);
351       }
352 
353       // Constant fold to uncond branch!
354       if (Cond) {
355         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
356         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
357         ToClone.push_back(Dest);
358         TerminatorDone = true;
359       }
360     }
361   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
362     // If switching on a value known constant in the caller.
363     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
364     if (!Cond) { // Or known constant after constant prop in the callee...
365       Value *V = VMap.lookup(SI->getCondition());
366       Cond = dyn_cast_or_null<ConstantInt>(V);
367     }
368     if (Cond) {     // Constant fold to uncond branch!
369       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
370       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
371       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
372       ToClone.push_back(Dest);
373       TerminatorDone = true;
374     }
375   }
376 
377   if (!TerminatorDone) {
378     Instruction *NewInst = OldTI->clone();
379     if (OldTI->hasName())
380       NewInst->setName(OldTI->getName()+NameSuffix);
381     NewBB->getInstList().push_back(NewInst);
382     VMap[OldTI] = NewInst;             // Add instruction map to value.
383 
384     if (CodeInfo)
385       if (auto CS = ImmutableCallSite(OldTI))
386         if (CS.hasOperandBundles())
387           CodeInfo->OperandBundleCallSites.push_back(NewInst);
388 
389     // Recursively clone any reachable successor blocks.
390     const TerminatorInst *TI = BB->getTerminator();
391     for (const BasicBlock *Succ : TI->successors())
392       ToClone.push_back(Succ);
393   }
394 
395   if (CodeInfo) {
396     CodeInfo->ContainsCalls          |= hasCalls;
397     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
398     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
399       BB != &BB->getParent()->front();
400   }
401 }
402 
403 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
404 /// entire function. Instead it starts at an instruction provided by the caller
405 /// and copies (and prunes) only the code reachable from that instruction.
406 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
407                                      const Instruction *StartingInst,
408                                      ValueToValueMapTy &VMap,
409                                      bool ModuleLevelChanges,
410                                      SmallVectorImpl<ReturnInst *> &Returns,
411                                      const char *NameSuffix,
412                                      ClonedCodeInfo *CodeInfo) {
413   assert(NameSuffix && "NameSuffix cannot be null!");
414 
415   ValueMapTypeRemapper *TypeMapper = nullptr;
416   ValueMaterializer *Materializer = nullptr;
417 
418 #ifndef NDEBUG
419   // If the cloning starts at the beginning of the function, verify that
420   // the function arguments are mapped.
421   if (!StartingInst)
422     for (const Argument &II : OldFunc->args())
423       assert(VMap.count(&II) && "No mapping from source argument specified!");
424 #endif
425 
426   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
427                             NameSuffix, CodeInfo);
428   const BasicBlock *StartingBB;
429   if (StartingInst)
430     StartingBB = StartingInst->getParent();
431   else {
432     StartingBB = &OldFunc->getEntryBlock();
433     StartingInst = &StartingBB->front();
434   }
435 
436   // Clone the entry block, and anything recursively reachable from it.
437   std::vector<const BasicBlock*> CloneWorklist;
438   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
439   while (!CloneWorklist.empty()) {
440     const BasicBlock *BB = CloneWorklist.back();
441     CloneWorklist.pop_back();
442     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
443   }
444 
445   // Loop over all of the basic blocks in the old function.  If the block was
446   // reachable, we have cloned it and the old block is now in the value map:
447   // insert it into the new function in the right order.  If not, ignore it.
448   //
449   // Defer PHI resolution until rest of function is resolved.
450   SmallVector<const PHINode*, 16> PHIToResolve;
451   for (const BasicBlock &BI : *OldFunc) {
452     Value *V = VMap.lookup(&BI);
453     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
454     if (!NewBB) continue;  // Dead block.
455 
456     // Add the new block to the new function.
457     NewFunc->getBasicBlockList().push_back(NewBB);
458 
459     // Handle PHI nodes specially, as we have to remove references to dead
460     // blocks.
461     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
462       // PHI nodes may have been remapped to non-PHI nodes by the caller or
463       // during the cloning process.
464       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
465         if (isa<PHINode>(VMap[PN]))
466           PHIToResolve.push_back(PN);
467         else
468           break;
469       } else {
470         break;
471       }
472     }
473 
474     // Finally, remap the terminator instructions, as those can't be remapped
475     // until all BBs are mapped.
476     RemapInstruction(NewBB->getTerminator(), VMap,
477                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
478                      TypeMapper, Materializer);
479   }
480 
481   // Defer PHI resolution until rest of function is resolved, PHI resolution
482   // requires the CFG to be up-to-date.
483   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
484     const PHINode *OPN = PHIToResolve[phino];
485     unsigned NumPreds = OPN->getNumIncomingValues();
486     const BasicBlock *OldBB = OPN->getParent();
487     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
488 
489     // Map operands for blocks that are live and remove operands for blocks
490     // that are dead.
491     for (; phino != PHIToResolve.size() &&
492          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
493       OPN = PHIToResolve[phino];
494       PHINode *PN = cast<PHINode>(VMap[OPN]);
495       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
496         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
497         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
498           Value *InVal = MapValue(PN->getIncomingValue(pred),
499                                   VMap,
500                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
501           assert(InVal && "Unknown input value?");
502           PN->setIncomingValue(pred, InVal);
503           PN->setIncomingBlock(pred, MappedBlock);
504         } else {
505           PN->removeIncomingValue(pred, false);
506           --pred;  // Revisit the next entry.
507           --e;
508         }
509       }
510     }
511 
512     // The loop above has removed PHI entries for those blocks that are dead
513     // and has updated others.  However, if a block is live (i.e. copied over)
514     // but its terminator has been changed to not go to this block, then our
515     // phi nodes will have invalid entries.  Update the PHI nodes in this
516     // case.
517     PHINode *PN = cast<PHINode>(NewBB->begin());
518     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
519     if (NumPreds != PN->getNumIncomingValues()) {
520       assert(NumPreds < PN->getNumIncomingValues());
521       // Count how many times each predecessor comes to this block.
522       std::map<BasicBlock*, unsigned> PredCount;
523       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
524            PI != E; ++PI)
525         --PredCount[*PI];
526 
527       // Figure out how many entries to remove from each PHI.
528       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
529         ++PredCount[PN->getIncomingBlock(i)];
530 
531       // At this point, the excess predecessor entries are positive in the
532       // map.  Loop over all of the PHIs and remove excess predecessor
533       // entries.
534       BasicBlock::iterator I = NewBB->begin();
535       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
536         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
537              E = PredCount.end(); PCI != E; ++PCI) {
538           BasicBlock *Pred     = PCI->first;
539           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
540             PN->removeIncomingValue(Pred, false);
541         }
542       }
543     }
544 
545     // If the loops above have made these phi nodes have 0 or 1 operand,
546     // replace them with undef or the input value.  We must do this for
547     // correctness, because 0-operand phis are not valid.
548     PN = cast<PHINode>(NewBB->begin());
549     if (PN->getNumIncomingValues() == 0) {
550       BasicBlock::iterator I = NewBB->begin();
551       BasicBlock::const_iterator OldI = OldBB->begin();
552       while ((PN = dyn_cast<PHINode>(I++))) {
553         Value *NV = UndefValue::get(PN->getType());
554         PN->replaceAllUsesWith(NV);
555         assert(VMap[&*OldI] == PN && "VMap mismatch");
556         VMap[&*OldI] = NV;
557         PN->eraseFromParent();
558         ++OldI;
559       }
560     }
561   }
562 
563   // Make a second pass over the PHINodes now that all of them have been
564   // remapped into the new function, simplifying the PHINode and performing any
565   // recursive simplifications exposed. This will transparently update the
566   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
567   // two PHINodes, the iteration over the old PHIs remains valid, and the
568   // mapping will just map us to the new node (which may not even be a PHI
569   // node).
570   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
571     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
572       recursivelySimplifyInstruction(PN);
573 
574   // Now that the inlined function body has been fully constructed, go through
575   // and zap unconditional fall-through branches. This happens all the time when
576   // specializing code: code specialization turns conditional branches into
577   // uncond branches, and this code folds them.
578   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
579   Function::iterator I = Begin;
580   while (I != NewFunc->end()) {
581     // Check if this block has become dead during inlining or other
582     // simplifications. Note that the first block will appear dead, as it has
583     // not yet been wired up properly.
584     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
585                        I->getSinglePredecessor() == &*I)) {
586       BasicBlock *DeadBB = &*I++;
587       DeleteDeadBlock(DeadBB);
588       continue;
589     }
590 
591     // We need to simplify conditional branches and switches with a constant
592     // operand. We try to prune these out when cloning, but if the
593     // simplification required looking through PHI nodes, those are only
594     // available after forming the full basic block. That may leave some here,
595     // and we still want to prune the dead code as early as possible.
596     ConstantFoldTerminator(&*I);
597 
598     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
599     if (!BI || BI->isConditional()) { ++I; continue; }
600 
601     BasicBlock *Dest = BI->getSuccessor(0);
602     if (!Dest->getSinglePredecessor()) {
603       ++I; continue;
604     }
605 
606     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
607     // above should have zapped all of them..
608     assert(!isa<PHINode>(Dest->begin()));
609 
610     // We know all single-entry PHI nodes in the inlined function have been
611     // removed, so we just need to splice the blocks.
612     BI->eraseFromParent();
613 
614     // Make all PHI nodes that referred to Dest now refer to I as their source.
615     Dest->replaceAllUsesWith(&*I);
616 
617     // Move all the instructions in the succ to the pred.
618     I->getInstList().splice(I->end(), Dest->getInstList());
619 
620     // Remove the dest block.
621     Dest->eraseFromParent();
622 
623     // Do not increment I, iteratively merge all things this block branches to.
624   }
625 
626   // Make a final pass over the basic blocks from the old function to gather
627   // any return instructions which survived folding. We have to do this here
628   // because we can iteratively remove and merge returns above.
629   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
630                           E = NewFunc->end();
631        I != E; ++I)
632     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
633       Returns.push_back(RI);
634 }
635 
636 
637 /// This works exactly like CloneFunctionInto,
638 /// except that it does some simple constant prop and DCE on the fly.  The
639 /// effect of this is to copy significantly less code in cases where (for
640 /// example) a function call with constant arguments is inlined, and those
641 /// constant arguments cause a significant amount of code in the callee to be
642 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
643 /// used for things like CloneFunction or CloneModule.
644 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
645                                      ValueToValueMapTy &VMap,
646                                      bool ModuleLevelChanges,
647                                      SmallVectorImpl<ReturnInst*> &Returns,
648                                      const char *NameSuffix,
649                                      ClonedCodeInfo *CodeInfo,
650                                      Instruction *TheCall) {
651   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
652                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
653 }
654 
655 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
656 void llvm::remapInstructionsInBlocks(
657     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
658   // Rewrite the code to refer to itself.
659   for (auto *BB : Blocks)
660     for (auto &Inst : *BB)
661       RemapInstruction(&Inst, VMap,
662                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
663 }
664 
665 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
666 /// Blocks.
667 ///
668 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
669 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
670 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
671                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
672                                    const Twine &NameSuffix, LoopInfo *LI,
673                                    DominatorTree *DT,
674                                    SmallVectorImpl<BasicBlock *> &Blocks) {
675   Function *F = OrigLoop->getHeader()->getParent();
676   Loop *ParentLoop = OrigLoop->getParentLoop();
677 
678   Loop *NewLoop = new Loop();
679   if (ParentLoop)
680     ParentLoop->addChildLoop(NewLoop);
681   else
682     LI->addTopLevelLoop(NewLoop);
683 
684   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
685   assert(OrigPH && "No preheader");
686   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
687   // To rename the loop PHIs.
688   VMap[OrigPH] = NewPH;
689   Blocks.push_back(NewPH);
690 
691   // Update LoopInfo.
692   if (ParentLoop)
693     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
694 
695   // Update DominatorTree.
696   DT->addNewBlock(NewPH, LoopDomBB);
697 
698   for (BasicBlock *BB : OrigLoop->getBlocks()) {
699     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
700     VMap[BB] = NewBB;
701 
702     // Update LoopInfo.
703     NewLoop->addBasicBlockToLoop(NewBB, *LI);
704 
705     // Update DominatorTree.
706     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
707     DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
708 
709     Blocks.push_back(NewBB);
710   }
711 
712   // Move them physically from the end of the block list.
713   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
714                                 NewPH);
715   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
716                                 NewLoop->getHeader()->getIterator(), F->end());
717 
718   return NewLoop;
719 }
720