1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CFG.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DebugInfo.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 #include <map> 36 using namespace llvm; 37 38 /// See comments in Cloning.h. 39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 40 ValueToValueMapTy &VMap, 41 const Twine &NameSuffix, Function *F, 42 ClonedCodeInfo *CodeInfo) { 43 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 44 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 45 46 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 47 48 // Loop over all instructions, and copy them over. 49 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 50 II != IE; ++II) { 51 Instruction *NewInst = II->clone(); 52 if (II->hasName()) 53 NewInst->setName(II->getName()+NameSuffix); 54 NewBB->getInstList().push_back(NewInst); 55 VMap[&*II] = NewInst; // Add instruction map to value. 56 57 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 58 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 59 if (isa<ConstantInt>(AI->getArraySize())) 60 hasStaticAllocas = true; 61 else 62 hasDynamicAllocas = true; 63 } 64 } 65 66 if (CodeInfo) { 67 CodeInfo->ContainsCalls |= hasCalls; 68 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 69 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 70 BB != &BB->getParent()->getEntryBlock(); 71 } 72 return NewBB; 73 } 74 75 // Clone OldFunc into NewFunc, transforming the old arguments into references to 76 // VMap values. 77 // 78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 79 ValueToValueMapTy &VMap, 80 bool ModuleLevelChanges, 81 SmallVectorImpl<ReturnInst*> &Returns, 82 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 83 ValueMapTypeRemapper *TypeMapper, 84 ValueMaterializer *Materializer) { 85 assert(NameSuffix && "NameSuffix cannot be null!"); 86 87 #ifndef NDEBUG 88 for (const Argument &I : OldFunc->args()) 89 assert(VMap.count(&I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 // Fix up the personality function that got copied over. 99 if (OldFunc->hasPersonalityFn()) 100 NewFunc->setPersonalityFn( 101 MapValue(OldFunc->getPersonalityFn(), VMap, 102 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 103 TypeMapper, Materializer)); 104 105 AttributeSet OldAttrs = OldFunc->getAttributes(); 106 // Clone any argument attributes that are present in the VMap. 107 for (const Argument &OldArg : OldFunc->args()) 108 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 109 AttributeSet attrs = 110 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 111 if (attrs.getNumSlots() > 0) 112 NewArg->addAttr(attrs); 113 } 114 115 NewFunc->setAttributes( 116 NewFunc->getAttributes() 117 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 118 OldAttrs.getRetAttributes()) 119 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 120 OldAttrs.getFnAttributes())); 121 122 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 123 OldFunc->getAllMetadata(MDs); 124 for (auto MD : MDs) 125 NewFunc->setMetadata( 126 MD.first, 127 MapMetadata(MD.second, VMap, 128 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 129 TypeMapper, Materializer)); 130 131 // Loop over all of the basic blocks in the function, cloning them as 132 // appropriate. Note that we save BE this way in order to handle cloning of 133 // recursive functions into themselves. 134 // 135 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 136 BI != BE; ++BI) { 137 const BasicBlock &BB = *BI; 138 139 // Create a new basic block and copy instructions into it! 140 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 141 142 // Add basic block mapping. 143 VMap[&BB] = CBB; 144 145 // It is only legal to clone a function if a block address within that 146 // function is never referenced outside of the function. Given that, we 147 // want to map block addresses from the old function to block addresses in 148 // the clone. (This is different from the generic ValueMapper 149 // implementation, which generates an invalid blockaddress when 150 // cloning a function.) 151 if (BB.hasAddressTaken()) { 152 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 153 const_cast<BasicBlock*>(&BB)); 154 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 155 } 156 157 // Note return instructions for the caller. 158 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 159 Returns.push_back(RI); 160 } 161 162 // Loop over all of the instructions in the function, fixing up operand 163 // references as we go. This uses VMap to do all the hard work. 164 for (Function::iterator BB = 165 cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), 166 BE = NewFunc->end(); 167 BB != BE; ++BB) 168 // Loop over all instructions, fixing each one as we find it... 169 for (Instruction &II : *BB) 170 RemapInstruction(&II, VMap, 171 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 172 TypeMapper, Materializer); 173 } 174 175 // Clone the module-level debug info associated with OldFunc. The cloned data 176 // will point to NewFunc instead. 177 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 178 ValueToValueMapTy &VMap) { 179 if (const DISubprogram *OldSP = OldFunc->getSubprogram()) { 180 auto *NewSP = cast<DISubprogram>(MapMetadata(OldSP, VMap)); 181 // FIXME: There ought to be a better way to do this: ValueMapper 182 // will clone the distinct DICompileUnit. Use the original one 183 // instead. 184 NewSP->replaceUnit(OldSP->getUnit()); 185 NewFunc->setSubprogram(NewSP); 186 } 187 } 188 189 /// Return a copy of the specified function, but without 190 /// embedding the function into another module. Also, any references specified 191 /// in the VMap are changed to refer to their mapped value instead of the 192 /// original one. If any of the arguments to the function are in the VMap, 193 /// the arguments are deleted from the resultant function. The VMap is 194 /// updated to include mappings from all of the instructions and basicblocks in 195 /// the function from their old to new values. 196 /// 197 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 198 bool ModuleLevelChanges, 199 ClonedCodeInfo *CodeInfo) { 200 std::vector<Type*> ArgTypes; 201 202 // The user might be deleting arguments to the function by specifying them in 203 // the VMap. If so, we need to not add the arguments to the arg ty vector 204 // 205 for (const Argument &I : F->args()) 206 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? 207 ArgTypes.push_back(I.getType()); 208 209 // Create a new function type... 210 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 211 ArgTypes, F->getFunctionType()->isVarArg()); 212 213 // Create the new function... 214 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 215 216 // Loop over the arguments, copying the names of the mapped arguments over... 217 Function::arg_iterator DestI = NewF->arg_begin(); 218 for (const Argument & I : F->args()) 219 if (VMap.count(&I) == 0) { // Is this argument preserved? 220 DestI->setName(I.getName()); // Copy the name over... 221 VMap[&I] = &*DestI++; // Add mapping to VMap 222 } 223 224 if (ModuleLevelChanges) 225 CloneDebugInfoMetadata(NewF, F, VMap); 226 227 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 228 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 229 return NewF; 230 } 231 232 233 234 namespace { 235 /// This is a private class used to implement CloneAndPruneFunctionInto. 236 struct PruningFunctionCloner { 237 Function *NewFunc; 238 const Function *OldFunc; 239 ValueToValueMapTy &VMap; 240 bool ModuleLevelChanges; 241 const char *NameSuffix; 242 ClonedCodeInfo *CodeInfo; 243 244 public: 245 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 246 ValueToValueMapTy &valueMap, bool moduleLevelChanges, 247 const char *nameSuffix, ClonedCodeInfo *codeInfo) 248 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), 249 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), 250 CodeInfo(codeInfo) {} 251 252 /// The specified block is found to be reachable, clone it and 253 /// anything that it can reach. 254 void CloneBlock(const BasicBlock *BB, 255 BasicBlock::const_iterator StartingInst, 256 std::vector<const BasicBlock*> &ToClone); 257 }; 258 } 259 260 /// The specified block is found to be reachable, clone it and 261 /// anything that it can reach. 262 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 263 BasicBlock::const_iterator StartingInst, 264 std::vector<const BasicBlock*> &ToClone){ 265 WeakVH &BBEntry = VMap[BB]; 266 267 // Have we already cloned this block? 268 if (BBEntry) return; 269 270 // Nope, clone it now. 271 BasicBlock *NewBB; 272 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 273 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 274 275 // It is only legal to clone a function if a block address within that 276 // function is never referenced outside of the function. Given that, we 277 // want to map block addresses from the old function to block addresses in 278 // the clone. (This is different from the generic ValueMapper 279 // implementation, which generates an invalid blockaddress when 280 // cloning a function.) 281 // 282 // Note that we don't need to fix the mapping for unreachable blocks; 283 // the default mapping there is safe. 284 if (BB->hasAddressTaken()) { 285 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 286 const_cast<BasicBlock*>(BB)); 287 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 288 } 289 290 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 291 292 // Loop over all instructions, and copy them over, DCE'ing as we go. This 293 // loop doesn't include the terminator. 294 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 295 II != IE; ++II) { 296 297 Instruction *NewInst = II->clone(); 298 299 // Eagerly remap operands to the newly cloned instruction, except for PHI 300 // nodes for which we defer processing until we update the CFG. 301 if (!isa<PHINode>(NewInst)) { 302 RemapInstruction(NewInst, VMap, 303 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 304 305 // If we can simplify this instruction to some other value, simply add 306 // a mapping to that value rather than inserting a new instruction into 307 // the basic block. 308 if (Value *V = 309 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { 310 // On the off-chance that this simplifies to an instruction in the old 311 // function, map it back into the new function. 312 if (Value *MappedV = VMap.lookup(V)) 313 V = MappedV; 314 315 VMap[&*II] = V; 316 delete NewInst; 317 continue; 318 } 319 } 320 321 if (II->hasName()) 322 NewInst->setName(II->getName()+NameSuffix); 323 VMap[&*II] = NewInst; // Add instruction map to value. 324 NewBB->getInstList().push_back(NewInst); 325 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 326 327 if (CodeInfo) 328 if (auto CS = ImmutableCallSite(&*II)) 329 if (CS.hasOperandBundles()) 330 CodeInfo->OperandBundleCallSites.push_back(NewInst); 331 332 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 333 if (isa<ConstantInt>(AI->getArraySize())) 334 hasStaticAllocas = true; 335 else 336 hasDynamicAllocas = true; 337 } 338 } 339 340 // Finally, clone over the terminator. 341 const TerminatorInst *OldTI = BB->getTerminator(); 342 bool TerminatorDone = false; 343 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 344 if (BI->isConditional()) { 345 // If the condition was a known constant in the callee... 346 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 347 // Or is a known constant in the caller... 348 if (!Cond) { 349 Value *V = VMap.lookup(BI->getCondition()); 350 Cond = dyn_cast_or_null<ConstantInt>(V); 351 } 352 353 // Constant fold to uncond branch! 354 if (Cond) { 355 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 356 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 357 ToClone.push_back(Dest); 358 TerminatorDone = true; 359 } 360 } 361 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 362 // If switching on a value known constant in the caller. 363 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 364 if (!Cond) { // Or known constant after constant prop in the callee... 365 Value *V = VMap.lookup(SI->getCondition()); 366 Cond = dyn_cast_or_null<ConstantInt>(V); 367 } 368 if (Cond) { // Constant fold to uncond branch! 369 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 370 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 371 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 372 ToClone.push_back(Dest); 373 TerminatorDone = true; 374 } 375 } 376 377 if (!TerminatorDone) { 378 Instruction *NewInst = OldTI->clone(); 379 if (OldTI->hasName()) 380 NewInst->setName(OldTI->getName()+NameSuffix); 381 NewBB->getInstList().push_back(NewInst); 382 VMap[OldTI] = NewInst; // Add instruction map to value. 383 384 if (CodeInfo) 385 if (auto CS = ImmutableCallSite(OldTI)) 386 if (CS.hasOperandBundles()) 387 CodeInfo->OperandBundleCallSites.push_back(NewInst); 388 389 // Recursively clone any reachable successor blocks. 390 const TerminatorInst *TI = BB->getTerminator(); 391 for (const BasicBlock *Succ : TI->successors()) 392 ToClone.push_back(Succ); 393 } 394 395 if (CodeInfo) { 396 CodeInfo->ContainsCalls |= hasCalls; 397 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 398 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 399 BB != &BB->getParent()->front(); 400 } 401 } 402 403 /// This works like CloneAndPruneFunctionInto, except that it does not clone the 404 /// entire function. Instead it starts at an instruction provided by the caller 405 /// and copies (and prunes) only the code reachable from that instruction. 406 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 407 const Instruction *StartingInst, 408 ValueToValueMapTy &VMap, 409 bool ModuleLevelChanges, 410 SmallVectorImpl<ReturnInst *> &Returns, 411 const char *NameSuffix, 412 ClonedCodeInfo *CodeInfo) { 413 assert(NameSuffix && "NameSuffix cannot be null!"); 414 415 ValueMapTypeRemapper *TypeMapper = nullptr; 416 ValueMaterializer *Materializer = nullptr; 417 418 #ifndef NDEBUG 419 // If the cloning starts at the beginning of the function, verify that 420 // the function arguments are mapped. 421 if (!StartingInst) 422 for (const Argument &II : OldFunc->args()) 423 assert(VMap.count(&II) && "No mapping from source argument specified!"); 424 #endif 425 426 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 427 NameSuffix, CodeInfo); 428 const BasicBlock *StartingBB; 429 if (StartingInst) 430 StartingBB = StartingInst->getParent(); 431 else { 432 StartingBB = &OldFunc->getEntryBlock(); 433 StartingInst = &StartingBB->front(); 434 } 435 436 // Clone the entry block, and anything recursively reachable from it. 437 std::vector<const BasicBlock*> CloneWorklist; 438 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); 439 while (!CloneWorklist.empty()) { 440 const BasicBlock *BB = CloneWorklist.back(); 441 CloneWorklist.pop_back(); 442 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 443 } 444 445 // Loop over all of the basic blocks in the old function. If the block was 446 // reachable, we have cloned it and the old block is now in the value map: 447 // insert it into the new function in the right order. If not, ignore it. 448 // 449 // Defer PHI resolution until rest of function is resolved. 450 SmallVector<const PHINode*, 16> PHIToResolve; 451 for (const BasicBlock &BI : *OldFunc) { 452 Value *V = VMap.lookup(&BI); 453 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 454 if (!NewBB) continue; // Dead block. 455 456 // Add the new block to the new function. 457 NewFunc->getBasicBlockList().push_back(NewBB); 458 459 // Handle PHI nodes specially, as we have to remove references to dead 460 // blocks. 461 for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) { 462 // PHI nodes may have been remapped to non-PHI nodes by the caller or 463 // during the cloning process. 464 if (const PHINode *PN = dyn_cast<PHINode>(I)) { 465 if (isa<PHINode>(VMap[PN])) 466 PHIToResolve.push_back(PN); 467 else 468 break; 469 } else { 470 break; 471 } 472 } 473 474 // Finally, remap the terminator instructions, as those can't be remapped 475 // until all BBs are mapped. 476 RemapInstruction(NewBB->getTerminator(), VMap, 477 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 478 TypeMapper, Materializer); 479 } 480 481 // Defer PHI resolution until rest of function is resolved, PHI resolution 482 // requires the CFG to be up-to-date. 483 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 484 const PHINode *OPN = PHIToResolve[phino]; 485 unsigned NumPreds = OPN->getNumIncomingValues(); 486 const BasicBlock *OldBB = OPN->getParent(); 487 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 488 489 // Map operands for blocks that are live and remove operands for blocks 490 // that are dead. 491 for (; phino != PHIToResolve.size() && 492 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 493 OPN = PHIToResolve[phino]; 494 PHINode *PN = cast<PHINode>(VMap[OPN]); 495 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 496 Value *V = VMap.lookup(PN->getIncomingBlock(pred)); 497 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 498 Value *InVal = MapValue(PN->getIncomingValue(pred), 499 VMap, 500 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 501 assert(InVal && "Unknown input value?"); 502 PN->setIncomingValue(pred, InVal); 503 PN->setIncomingBlock(pred, MappedBlock); 504 } else { 505 PN->removeIncomingValue(pred, false); 506 --pred; // Revisit the next entry. 507 --e; 508 } 509 } 510 } 511 512 // The loop above has removed PHI entries for those blocks that are dead 513 // and has updated others. However, if a block is live (i.e. copied over) 514 // but its terminator has been changed to not go to this block, then our 515 // phi nodes will have invalid entries. Update the PHI nodes in this 516 // case. 517 PHINode *PN = cast<PHINode>(NewBB->begin()); 518 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 519 if (NumPreds != PN->getNumIncomingValues()) { 520 assert(NumPreds < PN->getNumIncomingValues()); 521 // Count how many times each predecessor comes to this block. 522 std::map<BasicBlock*, unsigned> PredCount; 523 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 524 PI != E; ++PI) 525 --PredCount[*PI]; 526 527 // Figure out how many entries to remove from each PHI. 528 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 529 ++PredCount[PN->getIncomingBlock(i)]; 530 531 // At this point, the excess predecessor entries are positive in the 532 // map. Loop over all of the PHIs and remove excess predecessor 533 // entries. 534 BasicBlock::iterator I = NewBB->begin(); 535 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 536 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 537 E = PredCount.end(); PCI != E; ++PCI) { 538 BasicBlock *Pred = PCI->first; 539 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 540 PN->removeIncomingValue(Pred, false); 541 } 542 } 543 } 544 545 // If the loops above have made these phi nodes have 0 or 1 operand, 546 // replace them with undef or the input value. We must do this for 547 // correctness, because 0-operand phis are not valid. 548 PN = cast<PHINode>(NewBB->begin()); 549 if (PN->getNumIncomingValues() == 0) { 550 BasicBlock::iterator I = NewBB->begin(); 551 BasicBlock::const_iterator OldI = OldBB->begin(); 552 while ((PN = dyn_cast<PHINode>(I++))) { 553 Value *NV = UndefValue::get(PN->getType()); 554 PN->replaceAllUsesWith(NV); 555 assert(VMap[&*OldI] == PN && "VMap mismatch"); 556 VMap[&*OldI] = NV; 557 PN->eraseFromParent(); 558 ++OldI; 559 } 560 } 561 } 562 563 // Make a second pass over the PHINodes now that all of them have been 564 // remapped into the new function, simplifying the PHINode and performing any 565 // recursive simplifications exposed. This will transparently update the 566 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 567 // two PHINodes, the iteration over the old PHIs remains valid, and the 568 // mapping will just map us to the new node (which may not even be a PHI 569 // node). 570 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 571 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 572 recursivelySimplifyInstruction(PN); 573 574 // Now that the inlined function body has been fully constructed, go through 575 // and zap unconditional fall-through branches. This happens all the time when 576 // specializing code: code specialization turns conditional branches into 577 // uncond branches, and this code folds them. 578 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); 579 Function::iterator I = Begin; 580 while (I != NewFunc->end()) { 581 // Check if this block has become dead during inlining or other 582 // simplifications. Note that the first block will appear dead, as it has 583 // not yet been wired up properly. 584 if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || 585 I->getSinglePredecessor() == &*I)) { 586 BasicBlock *DeadBB = &*I++; 587 DeleteDeadBlock(DeadBB); 588 continue; 589 } 590 591 // We need to simplify conditional branches and switches with a constant 592 // operand. We try to prune these out when cloning, but if the 593 // simplification required looking through PHI nodes, those are only 594 // available after forming the full basic block. That may leave some here, 595 // and we still want to prune the dead code as early as possible. 596 ConstantFoldTerminator(&*I); 597 598 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 599 if (!BI || BI->isConditional()) { ++I; continue; } 600 601 BasicBlock *Dest = BI->getSuccessor(0); 602 if (!Dest->getSinglePredecessor()) { 603 ++I; continue; 604 } 605 606 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 607 // above should have zapped all of them.. 608 assert(!isa<PHINode>(Dest->begin())); 609 610 // We know all single-entry PHI nodes in the inlined function have been 611 // removed, so we just need to splice the blocks. 612 BI->eraseFromParent(); 613 614 // Make all PHI nodes that referred to Dest now refer to I as their source. 615 Dest->replaceAllUsesWith(&*I); 616 617 // Move all the instructions in the succ to the pred. 618 I->getInstList().splice(I->end(), Dest->getInstList()); 619 620 // Remove the dest block. 621 Dest->eraseFromParent(); 622 623 // Do not increment I, iteratively merge all things this block branches to. 624 } 625 626 // Make a final pass over the basic blocks from the old function to gather 627 // any return instructions which survived folding. We have to do this here 628 // because we can iteratively remove and merge returns above. 629 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), 630 E = NewFunc->end(); 631 I != E; ++I) 632 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 633 Returns.push_back(RI); 634 } 635 636 637 /// This works exactly like CloneFunctionInto, 638 /// except that it does some simple constant prop and DCE on the fly. The 639 /// effect of this is to copy significantly less code in cases where (for 640 /// example) a function call with constant arguments is inlined, and those 641 /// constant arguments cause a significant amount of code in the callee to be 642 /// dead. Since this doesn't produce an exact copy of the input, it can't be 643 /// used for things like CloneFunction or CloneModule. 644 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 645 ValueToValueMapTy &VMap, 646 bool ModuleLevelChanges, 647 SmallVectorImpl<ReturnInst*> &Returns, 648 const char *NameSuffix, 649 ClonedCodeInfo *CodeInfo, 650 Instruction *TheCall) { 651 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, 652 ModuleLevelChanges, Returns, NameSuffix, CodeInfo); 653 } 654 655 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap. 656 void llvm::remapInstructionsInBlocks( 657 const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { 658 // Rewrite the code to refer to itself. 659 for (auto *BB : Blocks) 660 for (auto &Inst : *BB) 661 RemapInstruction(&Inst, VMap, 662 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 663 } 664 665 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p 666 /// Blocks. 667 /// 668 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block 669 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. 670 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, 671 Loop *OrigLoop, ValueToValueMapTy &VMap, 672 const Twine &NameSuffix, LoopInfo *LI, 673 DominatorTree *DT, 674 SmallVectorImpl<BasicBlock *> &Blocks) { 675 Function *F = OrigLoop->getHeader()->getParent(); 676 Loop *ParentLoop = OrigLoop->getParentLoop(); 677 678 Loop *NewLoop = new Loop(); 679 if (ParentLoop) 680 ParentLoop->addChildLoop(NewLoop); 681 else 682 LI->addTopLevelLoop(NewLoop); 683 684 BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); 685 assert(OrigPH && "No preheader"); 686 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); 687 // To rename the loop PHIs. 688 VMap[OrigPH] = NewPH; 689 Blocks.push_back(NewPH); 690 691 // Update LoopInfo. 692 if (ParentLoop) 693 ParentLoop->addBasicBlockToLoop(NewPH, *LI); 694 695 // Update DominatorTree. 696 DT->addNewBlock(NewPH, LoopDomBB); 697 698 for (BasicBlock *BB : OrigLoop->getBlocks()) { 699 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); 700 VMap[BB] = NewBB; 701 702 // Update LoopInfo. 703 NewLoop->addBasicBlockToLoop(NewBB, *LI); 704 705 // Update DominatorTree. 706 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); 707 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); 708 709 Blocks.push_back(NewBB); 710 } 711 712 // Move them physically from the end of the block list. 713 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 714 NewPH); 715 F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), 716 NewLoop->getHeader()->getIterator(), F->end()); 717 718 return NewLoop; 719 } 720