1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Transforms/Utils/ValueMapper.h" 34 #include <map> 35 using namespace llvm; 36 37 // CloneBasicBlock - See comments in Cloning.h 38 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 39 ValueToValueMapTy &VMap, 40 const Twine &NameSuffix, Function *F, 41 ClonedCodeInfo *CodeInfo) { 42 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 43 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 44 45 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 46 47 // Loop over all instructions, and copy them over. 48 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 49 II != IE; ++II) { 50 Instruction *NewInst = II->clone(); 51 if (II->hasName()) 52 NewInst->setName(II->getName()+NameSuffix); 53 NewBB->getInstList().push_back(NewInst); 54 VMap[II] = NewInst; // Add instruction map to value. 55 56 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 57 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 58 if (isa<ConstantInt>(AI->getArraySize())) 59 hasStaticAllocas = true; 60 else 61 hasDynamicAllocas = true; 62 } 63 } 64 65 if (CodeInfo) { 66 CodeInfo->ContainsCalls |= hasCalls; 67 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 68 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 69 BB != &BB->getParent()->getEntryBlock(); 70 } 71 return NewBB; 72 } 73 74 // Clone OldFunc into NewFunc, transforming the old arguments into references to 75 // VMap values. 76 // 77 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 78 ValueToValueMapTy &VMap, 79 bool ModuleLevelChanges, 80 SmallVectorImpl<ReturnInst*> &Returns, 81 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 82 ValueMapTypeRemapper *TypeMapper, 83 ValueMaterializer *Materializer) { 84 assert(NameSuffix && "NameSuffix cannot be null!"); 85 86 #ifndef NDEBUG 87 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 88 E = OldFunc->arg_end(); I != E; ++I) 89 assert(VMap.count(I) && "No mapping from source argument specified!"); 90 #endif 91 92 // Copy all attributes other than those stored in the AttributeSet. We need 93 // to remap the parameter indices of the AttributeSet. 94 AttributeSet NewAttrs = NewFunc->getAttributes(); 95 NewFunc->copyAttributesFrom(OldFunc); 96 NewFunc->setAttributes(NewAttrs); 97 98 AttributeSet OldAttrs = OldFunc->getAttributes(); 99 // Clone any argument attributes that are present in the VMap. 100 for (const Argument &OldArg : OldFunc->args()) 101 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { 102 AttributeSet attrs = 103 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); 104 if (attrs.getNumSlots() > 0) 105 NewArg->addAttr(attrs); 106 } 107 108 NewFunc->setAttributes( 109 NewFunc->getAttributes() 110 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, 111 OldAttrs.getRetAttributes()) 112 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, 113 OldAttrs.getFnAttributes())); 114 115 // Loop over all of the basic blocks in the function, cloning them as 116 // appropriate. Note that we save BE this way in order to handle cloning of 117 // recursive functions into themselves. 118 // 119 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 120 BI != BE; ++BI) { 121 const BasicBlock &BB = *BI; 122 123 // Create a new basic block and copy instructions into it! 124 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 125 126 // Add basic block mapping. 127 VMap[&BB] = CBB; 128 129 // It is only legal to clone a function if a block address within that 130 // function is never referenced outside of the function. Given that, we 131 // want to map block addresses from the old function to block addresses in 132 // the clone. (This is different from the generic ValueMapper 133 // implementation, which generates an invalid blockaddress when 134 // cloning a function.) 135 if (BB.hasAddressTaken()) { 136 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 137 const_cast<BasicBlock*>(&BB)); 138 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 139 } 140 141 // Note return instructions for the caller. 142 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 143 Returns.push_back(RI); 144 } 145 146 // Loop over all of the instructions in the function, fixing up operand 147 // references as we go. This uses VMap to do all the hard work. 148 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 149 BE = NewFunc->end(); BB != BE; ++BB) 150 // Loop over all instructions, fixing each one as we find it... 151 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 152 RemapInstruction(II, VMap, 153 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 154 TypeMapper, Materializer); 155 } 156 157 // Find the MDNode which corresponds to the DISubprogram data that described F. 158 static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) { 159 for (DISubprogram Subprogram : Finder.subprograms()) { 160 if (Subprogram.describes(F)) return Subprogram; 161 } 162 return nullptr; 163 } 164 165 // Add an operand to an existing MDNode. The new operand will be added at the 166 // back of the operand list. 167 static void AddOperand(DICompileUnit CU, DIArray SPs, Metadata *NewSP) { 168 SmallVector<Metadata *, 16> NewSPs; 169 NewSPs.reserve(SPs->getNumOperands() + 1); 170 for (unsigned I = 0, E = SPs->getNumOperands(); I != E; ++I) 171 NewSPs.push_back(SPs->getOperand(I)); 172 NewSPs.push_back(NewSP); 173 CU.replaceSubprograms(DIArray(MDNode::get(CU->getContext(), NewSPs))); 174 } 175 176 // Clone the module-level debug info associated with OldFunc. The cloned data 177 // will point to NewFunc instead. 178 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, 179 ValueToValueMapTy &VMap) { 180 DebugInfoFinder Finder; 181 Finder.processModule(*OldFunc->getParent()); 182 183 const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); 184 if (!OldSubprogramMDNode) return; 185 186 // Ensure that OldFunc appears in the map. 187 // (if it's already there it must point to NewFunc anyway) 188 VMap[OldFunc] = NewFunc; 189 DISubprogram NewSubprogram(MapMetadata(OldSubprogramMDNode, VMap)); 190 191 for (DICompileUnit CU : Finder.compile_units()) { 192 DIArray Subprograms(CU.getSubprograms()); 193 194 // If the compile unit's function list contains the old function, it should 195 // also contain the new one. 196 for (unsigned i = 0; i < Subprograms.getNumElements(); i++) { 197 if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) { 198 AddOperand(CU, Subprograms, NewSubprogram); 199 break; 200 } 201 } 202 } 203 } 204 205 /// CloneFunction - Return a copy of the specified function, but without 206 /// embedding the function into another module. Also, any references specified 207 /// in the VMap are changed to refer to their mapped value instead of the 208 /// original one. If any of the arguments to the function are in the VMap, 209 /// the arguments are deleted from the resultant function. The VMap is 210 /// updated to include mappings from all of the instructions and basicblocks in 211 /// the function from their old to new values. 212 /// 213 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 214 bool ModuleLevelChanges, 215 ClonedCodeInfo *CodeInfo) { 216 std::vector<Type*> ArgTypes; 217 218 // The user might be deleting arguments to the function by specifying them in 219 // the VMap. If so, we need to not add the arguments to the arg ty vector 220 // 221 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 222 I != E; ++I) 223 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 224 ArgTypes.push_back(I->getType()); 225 226 // Create a new function type... 227 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 228 ArgTypes, F->getFunctionType()->isVarArg()); 229 230 // Create the new function... 231 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 232 233 // Loop over the arguments, copying the names of the mapped arguments over... 234 Function::arg_iterator DestI = NewF->arg_begin(); 235 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 236 I != E; ++I) 237 if (VMap.count(I) == 0) { // Is this argument preserved? 238 DestI->setName(I->getName()); // Copy the name over... 239 VMap[I] = DestI++; // Add mapping to VMap 240 } 241 242 if (ModuleLevelChanges) 243 CloneDebugInfoMetadata(NewF, F, VMap); 244 245 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 246 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 247 return NewF; 248 } 249 250 251 252 namespace { 253 /// PruningFunctionCloner - This class is a private class used to implement 254 /// the CloneAndPruneFunctionInto method. 255 struct PruningFunctionCloner { 256 Function *NewFunc; 257 const Function *OldFunc; 258 ValueToValueMapTy &VMap; 259 bool ModuleLevelChanges; 260 const char *NameSuffix; 261 ClonedCodeInfo *CodeInfo; 262 const DataLayout *DL; 263 CloningDirector *Director; 264 ValueMapTypeRemapper *TypeMapper; 265 ValueMaterializer *Materializer; 266 267 public: 268 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 269 ValueToValueMapTy &valueMap, 270 bool moduleLevelChanges, 271 const char *nameSuffix, 272 ClonedCodeInfo *codeInfo, 273 const DataLayout *DL, 274 CloningDirector *Director) 275 : NewFunc(newFunc), OldFunc(oldFunc), 276 VMap(valueMap), ModuleLevelChanges(moduleLevelChanges), 277 NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL), 278 Director(Director) { 279 // These are optional components. The Director may return null. 280 if (Director) { 281 TypeMapper = Director->getTypeRemapper(); 282 Materializer = Director->getValueMaterializer(); 283 } else { 284 TypeMapper = nullptr; 285 Materializer = nullptr; 286 } 287 } 288 289 /// CloneBlock - The specified block is found to be reachable, clone it and 290 /// anything that it can reach. 291 void CloneBlock(const BasicBlock *BB, 292 BasicBlock::const_iterator StartingInst, 293 std::vector<const BasicBlock*> &ToClone); 294 }; 295 } 296 297 /// CloneBlock - The specified block is found to be reachable, clone it and 298 /// anything that it can reach. 299 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 300 BasicBlock::const_iterator StartingInst, 301 std::vector<const BasicBlock*> &ToClone){ 302 WeakVH &BBEntry = VMap[BB]; 303 304 // Have we already cloned this block? 305 if (BBEntry) return; 306 307 // Nope, clone it now. 308 BasicBlock *NewBB; 309 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 310 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 311 312 // It is only legal to clone a function if a block address within that 313 // function is never referenced outside of the function. Given that, we 314 // want to map block addresses from the old function to block addresses in 315 // the clone. (This is different from the generic ValueMapper 316 // implementation, which generates an invalid blockaddress when 317 // cloning a function.) 318 // 319 // Note that we don't need to fix the mapping for unreachable blocks; 320 // the default mapping there is safe. 321 if (BB->hasAddressTaken()) { 322 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 323 const_cast<BasicBlock*>(BB)); 324 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 325 } 326 327 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 328 329 // Loop over all instructions, and copy them over, DCE'ing as we go. This 330 // loop doesn't include the terminator. 331 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); 332 II != IE; ++II) { 333 // If the "Director" remaps the instruction, don't clone it. 334 if (Director) { 335 CloningDirector::CloningAction Action 336 = Director->handleInstruction(VMap, II, NewBB); 337 // If the cloning director says stop, we want to stop everything, not 338 // just break out of the loop (which would cause the terminator to be 339 // cloned). The cloning director is responsible for inserting a proper 340 // terminator into the new basic block in this case. 341 if (Action == CloningDirector::StopCloningBB) 342 return; 343 // If the cloning director says skip, continue to the next instruction. 344 // In this case, the cloning director is responsible for mapping the 345 // skipped instruction to some value that is defined in the new 346 // basic block. 347 if (Action == CloningDirector::SkipInstruction) 348 continue; 349 } 350 351 Instruction *NewInst = II->clone(); 352 353 // Eagerly remap operands to the newly cloned instruction, except for PHI 354 // nodes for which we defer processing until we update the CFG. 355 if (!isa<PHINode>(NewInst)) { 356 RemapInstruction(NewInst, VMap, 357 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 358 TypeMapper, Materializer); 359 360 // If we can simplify this instruction to some other value, simply add 361 // a mapping to that value rather than inserting a new instruction into 362 // the basic block. 363 if (Value *V = SimplifyInstruction(NewInst, DL)) { 364 // On the off-chance that this simplifies to an instruction in the old 365 // function, map it back into the new function. 366 if (Value *MappedV = VMap.lookup(V)) 367 V = MappedV; 368 369 VMap[II] = V; 370 delete NewInst; 371 continue; 372 } 373 } 374 375 if (II->hasName()) 376 NewInst->setName(II->getName()+NameSuffix); 377 VMap[II] = NewInst; // Add instruction map to value. 378 NewBB->getInstList().push_back(NewInst); 379 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 380 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 381 if (isa<ConstantInt>(AI->getArraySize())) 382 hasStaticAllocas = true; 383 else 384 hasDynamicAllocas = true; 385 } 386 } 387 388 // Finally, clone over the terminator. 389 const TerminatorInst *OldTI = BB->getTerminator(); 390 bool TerminatorDone = false; 391 if (Director) { 392 CloningDirector::CloningAction Action 393 = Director->handleInstruction(VMap, OldTI, NewBB); 394 // If the cloning director says stop, we want to stop everything, not 395 // just break out of the loop (which would cause the terminator to be 396 // cloned). The cloning director is responsible for inserting a proper 397 // terminator into the new basic block in this case. 398 if (Action == CloningDirector::StopCloningBB) 399 return; 400 assert(Action != CloningDirector::SkipInstruction && 401 "SkipInstruction is not valid for terminators."); 402 } 403 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 404 if (BI->isConditional()) { 405 // If the condition was a known constant in the callee... 406 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 407 // Or is a known constant in the caller... 408 if (!Cond) { 409 Value *V = VMap[BI->getCondition()]; 410 Cond = dyn_cast_or_null<ConstantInt>(V); 411 } 412 413 // Constant fold to uncond branch! 414 if (Cond) { 415 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 416 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 417 ToClone.push_back(Dest); 418 TerminatorDone = true; 419 } 420 } 421 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 422 // If switching on a value known constant in the caller. 423 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 424 if (!Cond) { // Or known constant after constant prop in the callee... 425 Value *V = VMap[SI->getCondition()]; 426 Cond = dyn_cast_or_null<ConstantInt>(V); 427 } 428 if (Cond) { // Constant fold to uncond branch! 429 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); 430 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); 431 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 432 ToClone.push_back(Dest); 433 TerminatorDone = true; 434 } 435 } 436 437 if (!TerminatorDone) { 438 Instruction *NewInst = OldTI->clone(); 439 if (OldTI->hasName()) 440 NewInst->setName(OldTI->getName()+NameSuffix); 441 NewBB->getInstList().push_back(NewInst); 442 VMap[OldTI] = NewInst; // Add instruction map to value. 443 444 // Recursively clone any reachable successor blocks. 445 const TerminatorInst *TI = BB->getTerminator(); 446 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 447 ToClone.push_back(TI->getSuccessor(i)); 448 } 449 450 if (CodeInfo) { 451 CodeInfo->ContainsCalls |= hasCalls; 452 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 453 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 454 BB != &BB->getParent()->front(); 455 } 456 } 457 458 /// CloneAndPruneIntoFromInst - This works like CloneAndPruneFunctionInto, except 459 /// that it does not clone the entire function. Instead it starts at an 460 /// instruction provided by the caller and copies (and prunes) only the code 461 /// reachable from that instruction. 462 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, 463 const Instruction *StartingInst, 464 ValueToValueMapTy &VMap, 465 bool ModuleLevelChanges, 466 SmallVectorImpl<ReturnInst *> &Returns, 467 const char *NameSuffix, 468 ClonedCodeInfo *CodeInfo, 469 const DataLayout *DL, 470 CloningDirector *Director) { 471 assert(NameSuffix && "NameSuffix cannot be null!"); 472 473 ValueMapTypeRemapper *TypeMapper = nullptr; 474 ValueMaterializer *Materializer = nullptr; 475 476 if (Director) { 477 TypeMapper = Director->getTypeRemapper(); 478 Materializer = Director->getValueMaterializer(); 479 } 480 481 #ifndef NDEBUG 482 // If the cloning starts at the begining of the function, verify that 483 // the function arguments are mapped. 484 if (!StartingInst) 485 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 486 E = OldFunc->arg_end(); II != E; ++II) 487 assert(VMap.count(II) && "No mapping from source argument specified!"); 488 #endif 489 490 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 491 NameSuffix, CodeInfo, DL, Director); 492 const BasicBlock *StartingBB; 493 if (StartingInst) 494 StartingBB = StartingInst->getParent(); 495 else { 496 StartingBB = &OldFunc->getEntryBlock(); 497 StartingInst = StartingBB->begin(); 498 } 499 500 // Clone the entry block, and anything recursively reachable from it. 501 std::vector<const BasicBlock*> CloneWorklist; 502 PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist); 503 while (!CloneWorklist.empty()) { 504 const BasicBlock *BB = CloneWorklist.back(); 505 CloneWorklist.pop_back(); 506 PFC.CloneBlock(BB, BB->begin(), CloneWorklist); 507 } 508 509 // Loop over all of the basic blocks in the old function. If the block was 510 // reachable, we have cloned it and the old block is now in the value map: 511 // insert it into the new function in the right order. If not, ignore it. 512 // 513 // Defer PHI resolution until rest of function is resolved. 514 SmallVector<const PHINode*, 16> PHIToResolve; 515 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 516 BI != BE; ++BI) { 517 Value *V = VMap[BI]; 518 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 519 if (!NewBB) continue; // Dead block. 520 521 // Add the new block to the new function. 522 NewFunc->getBasicBlockList().push_back(NewBB); 523 524 // Handle PHI nodes specially, as we have to remove references to dead 525 // blocks. 526 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) 527 if (const PHINode *PN = dyn_cast<PHINode>(I)) 528 PHIToResolve.push_back(PN); 529 else 530 break; 531 532 // Finally, remap the terminator instructions, as those can't be remapped 533 // until all BBs are mapped. 534 RemapInstruction(NewBB->getTerminator(), VMap, 535 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 536 TypeMapper, Materializer); 537 } 538 539 // Defer PHI resolution until rest of function is resolved, PHI resolution 540 // requires the CFG to be up-to-date. 541 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 542 const PHINode *OPN = PHIToResolve[phino]; 543 unsigned NumPreds = OPN->getNumIncomingValues(); 544 const BasicBlock *OldBB = OPN->getParent(); 545 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 546 547 // Map operands for blocks that are live and remove operands for blocks 548 // that are dead. 549 for (; phino != PHIToResolve.size() && 550 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 551 OPN = PHIToResolve[phino]; 552 PHINode *PN = cast<PHINode>(VMap[OPN]); 553 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 554 Value *V = VMap[PN->getIncomingBlock(pred)]; 555 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 556 Value *InVal = MapValue(PN->getIncomingValue(pred), 557 VMap, 558 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 559 assert(InVal && "Unknown input value?"); 560 PN->setIncomingValue(pred, InVal); 561 PN->setIncomingBlock(pred, MappedBlock); 562 } else { 563 PN->removeIncomingValue(pred, false); 564 --pred, --e; // Revisit the next entry. 565 } 566 } 567 } 568 569 // The loop above has removed PHI entries for those blocks that are dead 570 // and has updated others. However, if a block is live (i.e. copied over) 571 // but its terminator has been changed to not go to this block, then our 572 // phi nodes will have invalid entries. Update the PHI nodes in this 573 // case. 574 PHINode *PN = cast<PHINode>(NewBB->begin()); 575 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 576 if (NumPreds != PN->getNumIncomingValues()) { 577 assert(NumPreds < PN->getNumIncomingValues()); 578 // Count how many times each predecessor comes to this block. 579 std::map<BasicBlock*, unsigned> PredCount; 580 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 581 PI != E; ++PI) 582 --PredCount[*PI]; 583 584 // Figure out how many entries to remove from each PHI. 585 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 586 ++PredCount[PN->getIncomingBlock(i)]; 587 588 // At this point, the excess predecessor entries are positive in the 589 // map. Loop over all of the PHIs and remove excess predecessor 590 // entries. 591 BasicBlock::iterator I = NewBB->begin(); 592 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 593 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 594 E = PredCount.end(); PCI != E; ++PCI) { 595 BasicBlock *Pred = PCI->first; 596 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 597 PN->removeIncomingValue(Pred, false); 598 } 599 } 600 } 601 602 // If the loops above have made these phi nodes have 0 or 1 operand, 603 // replace them with undef or the input value. We must do this for 604 // correctness, because 0-operand phis are not valid. 605 PN = cast<PHINode>(NewBB->begin()); 606 if (PN->getNumIncomingValues() == 0) { 607 BasicBlock::iterator I = NewBB->begin(); 608 BasicBlock::const_iterator OldI = OldBB->begin(); 609 while ((PN = dyn_cast<PHINode>(I++))) { 610 Value *NV = UndefValue::get(PN->getType()); 611 PN->replaceAllUsesWith(NV); 612 assert(VMap[OldI] == PN && "VMap mismatch"); 613 VMap[OldI] = NV; 614 PN->eraseFromParent(); 615 ++OldI; 616 } 617 } 618 } 619 620 // Make a second pass over the PHINodes now that all of them have been 621 // remapped into the new function, simplifying the PHINode and performing any 622 // recursive simplifications exposed. This will transparently update the 623 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce 624 // two PHINodes, the iteration over the old PHIs remains valid, and the 625 // mapping will just map us to the new node (which may not even be a PHI 626 // node). 627 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) 628 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]])) 629 recursivelySimplifyInstruction(PN, DL); 630 631 // Now that the inlined function body has been fully constructed, go through 632 // and zap unconditional fall-through branches. This happen all the time when 633 // specializing code: code specialization turns conditional branches into 634 // uncond branches, and this code folds them. 635 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]); 636 Function::iterator I = Begin; 637 while (I != NewFunc->end()) { 638 // Check if this block has become dead during inlining or other 639 // simplifications. Note that the first block will appear dead, as it has 640 // not yet been wired up properly. 641 if (I != Begin && (pred_begin(I) == pred_end(I) || 642 I->getSinglePredecessor() == I)) { 643 BasicBlock *DeadBB = I++; 644 DeleteDeadBlock(DeadBB); 645 continue; 646 } 647 648 // We need to simplify conditional branches and switches with a constant 649 // operand. We try to prune these out when cloning, but if the 650 // simplification required looking through PHI nodes, those are only 651 // available after forming the full basic block. That may leave some here, 652 // and we still want to prune the dead code as early as possible. 653 ConstantFoldTerminator(I); 654 655 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 656 if (!BI || BI->isConditional()) { ++I; continue; } 657 658 BasicBlock *Dest = BI->getSuccessor(0); 659 if (!Dest->getSinglePredecessor()) { 660 ++I; continue; 661 } 662 663 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify 664 // above should have zapped all of them.. 665 assert(!isa<PHINode>(Dest->begin())); 666 667 // We know all single-entry PHI nodes in the inlined function have been 668 // removed, so we just need to splice the blocks. 669 BI->eraseFromParent(); 670 671 // Make all PHI nodes that referred to Dest now refer to I as their source. 672 Dest->replaceAllUsesWith(I); 673 674 // Move all the instructions in the succ to the pred. 675 I->getInstList().splice(I->end(), Dest->getInstList()); 676 677 // Remove the dest block. 678 Dest->eraseFromParent(); 679 680 // Do not increment I, iteratively merge all things this block branches to. 681 } 682 683 // Make a final pass over the basic blocks from theh old function to gather 684 // any return instructions which survived folding. We have to do this here 685 // because we can iteratively remove and merge returns above. 686 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]), 687 E = NewFunc->end(); 688 I != E; ++I) 689 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) 690 Returns.push_back(RI); 691 } 692 693 694 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, 695 /// except that it does some simple constant prop and DCE on the fly. The 696 /// effect of this is to copy significantly less code in cases where (for 697 /// example) a function call with constant arguments is inlined, and those 698 /// constant arguments cause a significant amount of code in the callee to be 699 /// dead. Since this doesn't produce an exact copy of the input, it can't be 700 /// used for things like CloneFunction or CloneModule. 701 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 702 ValueToValueMapTy &VMap, 703 bool ModuleLevelChanges, 704 SmallVectorImpl<ReturnInst*> &Returns, 705 const char *NameSuffix, 706 ClonedCodeInfo *CodeInfo, 707 const DataLayout *DL, 708 Instruction *TheCall) { 709 CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), 710 VMap, ModuleLevelChanges, Returns, NameSuffix, 711 CodeInfo, DL, nullptr); 712 } 713