1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37 
38 /// See comments in Cloning.h.
39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
40                                   ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo) {
43   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
44   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
45 
46   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
47 
48   // Loop over all instructions, and copy them over.
49   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
50        II != IE; ++II) {
51     Instruction *NewInst = II->clone();
52     if (II->hasName())
53       NewInst->setName(II->getName()+NameSuffix);
54     NewBB->getInstList().push_back(NewInst);
55     VMap[&*II] = NewInst; // Add instruction map to value.
56 
57     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
58     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
59       if (isa<ConstantInt>(AI->getArraySize()))
60         hasStaticAllocas = true;
61       else
62         hasDynamicAllocas = true;
63     }
64   }
65 
66   if (CodeInfo) {
67     CodeInfo->ContainsCalls          |= hasCalls;
68     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
69     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
70                                         BB != &BB->getParent()->getEntryBlock();
71   }
72   return NewBB;
73 }
74 
75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
76 // VMap values.
77 //
78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
79                              ValueToValueMapTy &VMap,
80                              bool ModuleLevelChanges,
81                              SmallVectorImpl<ReturnInst*> &Returns,
82                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
83                              ValueMapTypeRemapper *TypeMapper,
84                              ValueMaterializer *Materializer) {
85   assert(NameSuffix && "NameSuffix cannot be null!");
86 
87 #ifndef NDEBUG
88   for (const Argument &I : OldFunc->args())
89     assert(VMap.count(&I) && "No mapping from source argument specified!");
90 #endif
91 
92   // Copy all attributes other than those stored in the AttributeSet.  We need
93   // to remap the parameter indices of the AttributeSet.
94   AttributeSet NewAttrs = NewFunc->getAttributes();
95   NewFunc->copyAttributesFrom(OldFunc);
96   NewFunc->setAttributes(NewAttrs);
97 
98   // Fix up the personality function that got copied over.
99   if (OldFunc->hasPersonalityFn())
100     NewFunc->setPersonalityFn(
101         MapValue(OldFunc->getPersonalityFn(), VMap,
102                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
103                  TypeMapper, Materializer));
104 
105   AttributeSet OldAttrs = OldFunc->getAttributes();
106   // Clone any argument attributes that are present in the VMap.
107   for (const Argument &OldArg : OldFunc->args())
108     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
109       AttributeSet attrs =
110           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111       if (attrs.getNumSlots() > 0)
112         NewArg->addAttr(attrs);
113     }
114 
115   NewFunc->setAttributes(
116       NewFunc->getAttributes()
117           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
118                          OldAttrs.getRetAttributes())
119           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
120                          OldAttrs.getFnAttributes()));
121 
122   // Loop over all of the basic blocks in the function, cloning them as
123   // appropriate.  Note that we save BE this way in order to handle cloning of
124   // recursive functions into themselves.
125   //
126   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
127        BI != BE; ++BI) {
128     const BasicBlock &BB = *BI;
129 
130     // Create a new basic block and copy instructions into it!
131     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
132 
133     // Add basic block mapping.
134     VMap[&BB] = CBB;
135 
136     // It is only legal to clone a function if a block address within that
137     // function is never referenced outside of the function.  Given that, we
138     // want to map block addresses from the old function to block addresses in
139     // the clone. (This is different from the generic ValueMapper
140     // implementation, which generates an invalid blockaddress when
141     // cloning a function.)
142     if (BB.hasAddressTaken()) {
143       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
144                                               const_cast<BasicBlock*>(&BB));
145       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
146     }
147 
148     // Note return instructions for the caller.
149     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
150       Returns.push_back(RI);
151   }
152 
153   // Loop over all of the instructions in the function, fixing up operand
154   // references as we go.  This uses VMap to do all the hard work.
155   for (Function::iterator BB =
156            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
157                           BE = NewFunc->end();
158        BB != BE; ++BB)
159     // Loop over all instructions, fixing each one as we find it...
160     for (Instruction &II : *BB)
161       RemapInstruction(&II, VMap,
162                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
163                        TypeMapper, Materializer);
164 }
165 
166 // Find the MDNode which corresponds to the subprogram data that described F.
167 static DISubprogram *FindSubprogram(const Function *F,
168                                     DebugInfoFinder &Finder) {
169   for (DISubprogram *Subprogram : Finder.subprograms()) {
170     if (Subprogram->describes(F))
171       return Subprogram;
172   }
173   return nullptr;
174 }
175 
176 // Add an operand to an existing MDNode. The new operand will be added at the
177 // back of the operand list.
178 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs,
179                        Metadata *NewSP) {
180   SmallVector<Metadata *, 16> NewSPs;
181   NewSPs.reserve(SPs.size() + 1);
182   for (auto *SP : SPs)
183     NewSPs.push_back(SP);
184   NewSPs.push_back(NewSP);
185   CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
186 }
187 
188 // Clone the module-level debug info associated with OldFunc. The cloned data
189 // will point to NewFunc instead.
190 void llvm::CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
191                                   ValueToValueMapTy &VMap) {
192   DebugInfoFinder Finder;
193   Finder.processModule(*OldFunc->getParent());
194 
195   const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
196   if (!OldSubprogramMDNode) return;
197 
198   auto *NewSubprogram =
199       cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
200   NewFunc->setSubprogram(NewSubprogram);
201 
202   for (auto *CU : Finder.compile_units()) {
203     auto Subprograms = CU->getSubprograms();
204     // If the compile unit's function list contains the old function, it should
205     // also contain the new one.
206     for (auto *SP : Subprograms) {
207       if (SP == OldSubprogramMDNode) {
208         AddOperand(CU, Subprograms, NewSubprogram);
209         break;
210       }
211     }
212   }
213 }
214 
215 /// Return a copy of the specified function, but without
216 /// embedding the function into another module.  Also, any references specified
217 /// in the VMap are changed to refer to their mapped value instead of the
218 /// original one.  If any of the arguments to the function are in the VMap,
219 /// the arguments are deleted from the resultant function.  The VMap is
220 /// updated to include mappings from all of the instructions and basicblocks in
221 /// the function from their old to new values.
222 ///
223 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
224                               bool ModuleLevelChanges,
225                               ClonedCodeInfo *CodeInfo) {
226   std::vector<Type*> ArgTypes;
227 
228   // The user might be deleting arguments to the function by specifying them in
229   // the VMap.  If so, we need to not add the arguments to the arg ty vector
230   //
231   for (const Argument &I : F->args())
232     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
233       ArgTypes.push_back(I.getType());
234 
235   // Create a new function type...
236   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
237                                     ArgTypes, F->getFunctionType()->isVarArg());
238 
239   // Create the new function...
240   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
241 
242   // Loop over the arguments, copying the names of the mapped arguments over...
243   Function::arg_iterator DestI = NewF->arg_begin();
244   for (const Argument & I : F->args())
245     if (VMap.count(&I) == 0) {     // Is this argument preserved?
246       DestI->setName(I.getName()); // Copy the name over...
247       VMap[&I] = &*DestI++;        // Add mapping to VMap
248     }
249 
250   if (ModuleLevelChanges)
251     CloneDebugInfoMetadata(NewF, F, VMap);
252 
253   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
254   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
255   return NewF;
256 }
257 
258 
259 
260 namespace {
261   /// This is a private class used to implement CloneAndPruneFunctionInto.
262   struct PruningFunctionCloner {
263     Function *NewFunc;
264     const Function *OldFunc;
265     ValueToValueMapTy &VMap;
266     bool ModuleLevelChanges;
267     const char *NameSuffix;
268     ClonedCodeInfo *CodeInfo;
269 
270   public:
271     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
272                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
273                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
274         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
275           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
276           CodeInfo(codeInfo) {}
277 
278     /// The specified block is found to be reachable, clone it and
279     /// anything that it can reach.
280     void CloneBlock(const BasicBlock *BB,
281                     BasicBlock::const_iterator StartingInst,
282                     std::vector<const BasicBlock *> &ToClone,
283                     BlockCloningFunctor Ftor = nullptr);
284   };
285 }
286 
287 /// The specified block is found to be reachable, clone it and
288 /// anything that it can reach.
289 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
290                                        BasicBlock::const_iterator StartingInst,
291                                        std::vector<const BasicBlock *> &ToClone,
292                                        BlockCloningFunctor Ftor) {
293   WeakVH &BBEntry = VMap[BB];
294 
295   // Have we already cloned this block?
296   if (BBEntry) return;
297 
298   // Nope, clone it now.
299   BasicBlock *NewBB;
300   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
301   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
302 
303   // It is only legal to clone a function if a block address within that
304   // function is never referenced outside of the function.  Given that, we
305   // want to map block addresses from the old function to block addresses in
306   // the clone. (This is different from the generic ValueMapper
307   // implementation, which generates an invalid blockaddress when
308   // cloning a function.)
309   //
310   // Note that we don't need to fix the mapping for unreachable blocks;
311   // the default mapping there is safe.
312   if (BB->hasAddressTaken()) {
313     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
314                                             const_cast<BasicBlock*>(BB));
315     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
316   }
317 
318   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
319 
320   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
321   // loop doesn't include the terminator.
322   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
323        II != IE; ++II) {
324 
325     Instruction *NewInst = II->clone();
326 
327     // Eagerly remap operands to the newly cloned instruction, except for PHI
328     // nodes for which we defer processing until we update the CFG.
329     if (!isa<PHINode>(NewInst)) {
330       RemapInstruction(NewInst, VMap,
331                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
332 
333       // If we can simplify this instruction to some other value, simply add
334       // a mapping to that value rather than inserting a new instruction into
335       // the basic block.
336       if (Value *V =
337               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
338         // On the off-chance that this simplifies to an instruction in the old
339         // function, map it back into the new function.
340         if (Value *MappedV = VMap.lookup(V))
341           V = MappedV;
342 
343         VMap[&*II] = V;
344         delete NewInst;
345         continue;
346       }
347     }
348 
349     if (II->hasName())
350       NewInst->setName(II->getName()+NameSuffix);
351     VMap[&*II] = NewInst; // Add instruction map to value.
352     NewBB->getInstList().push_back(NewInst);
353     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
354 
355     if (CodeInfo)
356       if (auto CS = ImmutableCallSite(&*II))
357         if (CS.hasOperandBundles())
358           CodeInfo->OperandBundleCallSites.push_back(NewInst);
359 
360     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
361       if (isa<ConstantInt>(AI->getArraySize()))
362         hasStaticAllocas = true;
363       else
364         hasDynamicAllocas = true;
365     }
366   }
367 
368   // Finally, clone over the terminator.
369   const TerminatorInst *OldTI = BB->getTerminator();
370   bool TerminatorDone = false;
371   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
372     if (BI->isConditional()) {
373       // If the condition was a known constant in the callee...
374       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
375       // Or is a known constant in the caller...
376       if (!Cond) {
377         Value *V = VMap[BI->getCondition()];
378         Cond = dyn_cast_or_null<ConstantInt>(V);
379       }
380 
381       // Constant fold to uncond branch!
382       if (Cond) {
383         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
384         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
385         ToClone.push_back(Dest);
386         TerminatorDone = true;
387       }
388     }
389   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
390     // If switching on a value known constant in the caller.
391     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
392     if (!Cond) { // Or known constant after constant prop in the callee...
393       Value *V = VMap[SI->getCondition()];
394       Cond = dyn_cast_or_null<ConstantInt>(V);
395     }
396     if (Cond) {     // Constant fold to uncond branch!
397       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
398       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
399       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
400       ToClone.push_back(Dest);
401       TerminatorDone = true;
402     }
403   }
404 
405   if (!TerminatorDone) {
406     Instruction *NewInst = OldTI->clone();
407     if (OldTI->hasName())
408       NewInst->setName(OldTI->getName()+NameSuffix);
409     NewBB->getInstList().push_back(NewInst);
410     VMap[OldTI] = NewInst;             // Add instruction map to value.
411 
412     if (CodeInfo)
413       if (auto CS = ImmutableCallSite(OldTI))
414         if (CS.hasOperandBundles())
415           CodeInfo->OperandBundleCallSites.push_back(NewInst);
416 
417     // Recursively clone any reachable successor blocks.
418     const TerminatorInst *TI = BB->getTerminator();
419     for (const BasicBlock *Succ : TI->successors())
420       ToClone.push_back(Succ);
421   }
422 
423   if (CodeInfo) {
424     CodeInfo->ContainsCalls          |= hasCalls;
425     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
426     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
427       BB != &BB->getParent()->front();
428   }
429   // Call Ftor to tell BB has been cloned to NewBB
430   if (Ftor)
431     Ftor(BB, NewBB);
432 }
433 
434 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
435 /// entire function. Instead it starts at an instruction provided by the caller
436 /// and copies (and prunes) only the code reachable from that instruction.
437 void llvm::CloneAndPruneIntoFromInst(
438     Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst,
439     ValueToValueMapTy &VMap, bool ModuleLevelChanges,
440     SmallVectorImpl<ReturnInst *> &Returns, const char *NameSuffix,
441     ClonedCodeInfo *CodeInfo, BlockCloningFunctor Ftor) {
442   assert(NameSuffix && "NameSuffix cannot be null!");
443 
444   ValueMapTypeRemapper *TypeMapper = nullptr;
445   ValueMaterializer *Materializer = nullptr;
446 
447 #ifndef NDEBUG
448   // If the cloning starts at the beginning of the function, verify that
449   // the function arguments are mapped.
450   if (!StartingInst)
451     for (const Argument &II : OldFunc->args())
452       assert(VMap.count(&II) && "No mapping from source argument specified!");
453 #endif
454 
455   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
456                             NameSuffix, CodeInfo);
457   const BasicBlock *StartingBB;
458   if (StartingInst)
459     StartingBB = StartingInst->getParent();
460   else {
461     StartingBB = &OldFunc->getEntryBlock();
462     StartingInst = &StartingBB->front();
463   }
464 
465   // Clone the entry block, and anything recursively reachable from it.
466   std::vector<const BasicBlock*> CloneWorklist;
467   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist, Ftor);
468   while (!CloneWorklist.empty()) {
469     const BasicBlock *BB = CloneWorklist.back();
470     CloneWorklist.pop_back();
471     PFC.CloneBlock(BB, BB->begin(), CloneWorklist, Ftor);
472   }
473 
474   // Loop over all of the basic blocks in the old function.  If the block was
475   // reachable, we have cloned it and the old block is now in the value map:
476   // insert it into the new function in the right order.  If not, ignore it.
477   //
478   // Defer PHI resolution until rest of function is resolved.
479   SmallVector<const PHINode*, 16> PHIToResolve;
480   for (const BasicBlock &BI : *OldFunc) {
481     Value *V = VMap[&BI];
482     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
483     if (!NewBB) continue;  // Dead block.
484 
485     // Add the new block to the new function.
486     NewFunc->getBasicBlockList().push_back(NewBB);
487 
488     // Handle PHI nodes specially, as we have to remove references to dead
489     // blocks.
490     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
491       // PHI nodes may have been remapped to non-PHI nodes by the caller or
492       // during the cloning process.
493       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
494         if (isa<PHINode>(VMap[PN]))
495           PHIToResolve.push_back(PN);
496         else
497           break;
498       } else {
499         break;
500       }
501     }
502 
503     // Finally, remap the terminator instructions, as those can't be remapped
504     // until all BBs are mapped.
505     RemapInstruction(NewBB->getTerminator(), VMap,
506                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
507                      TypeMapper, Materializer);
508   }
509 
510   // Defer PHI resolution until rest of function is resolved, PHI resolution
511   // requires the CFG to be up-to-date.
512   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
513     const PHINode *OPN = PHIToResolve[phino];
514     unsigned NumPreds = OPN->getNumIncomingValues();
515     const BasicBlock *OldBB = OPN->getParent();
516     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
517 
518     // Map operands for blocks that are live and remove operands for blocks
519     // that are dead.
520     for (; phino != PHIToResolve.size() &&
521          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
522       OPN = PHIToResolve[phino];
523       PHINode *PN = cast<PHINode>(VMap[OPN]);
524       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
525         Value *V = VMap[PN->getIncomingBlock(pred)];
526         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
527           Value *InVal = MapValue(PN->getIncomingValue(pred),
528                                   VMap,
529                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
530           assert(InVal && "Unknown input value?");
531           PN->setIncomingValue(pred, InVal);
532           PN->setIncomingBlock(pred, MappedBlock);
533         } else {
534           PN->removeIncomingValue(pred, false);
535           --pred;  // Revisit the next entry.
536           --e;
537         }
538       }
539     }
540 
541     // The loop above has removed PHI entries for those blocks that are dead
542     // and has updated others.  However, if a block is live (i.e. copied over)
543     // but its terminator has been changed to not go to this block, then our
544     // phi nodes will have invalid entries.  Update the PHI nodes in this
545     // case.
546     PHINode *PN = cast<PHINode>(NewBB->begin());
547     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
548     if (NumPreds != PN->getNumIncomingValues()) {
549       assert(NumPreds < PN->getNumIncomingValues());
550       // Count how many times each predecessor comes to this block.
551       std::map<BasicBlock*, unsigned> PredCount;
552       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
553            PI != E; ++PI)
554         --PredCount[*PI];
555 
556       // Figure out how many entries to remove from each PHI.
557       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
558         ++PredCount[PN->getIncomingBlock(i)];
559 
560       // At this point, the excess predecessor entries are positive in the
561       // map.  Loop over all of the PHIs and remove excess predecessor
562       // entries.
563       BasicBlock::iterator I = NewBB->begin();
564       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
565         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
566              E = PredCount.end(); PCI != E; ++PCI) {
567           BasicBlock *Pred     = PCI->first;
568           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
569             PN->removeIncomingValue(Pred, false);
570         }
571       }
572     }
573 
574     // If the loops above have made these phi nodes have 0 or 1 operand,
575     // replace them with undef or the input value.  We must do this for
576     // correctness, because 0-operand phis are not valid.
577     PN = cast<PHINode>(NewBB->begin());
578     if (PN->getNumIncomingValues() == 0) {
579       BasicBlock::iterator I = NewBB->begin();
580       BasicBlock::const_iterator OldI = OldBB->begin();
581       while ((PN = dyn_cast<PHINode>(I++))) {
582         Value *NV = UndefValue::get(PN->getType());
583         PN->replaceAllUsesWith(NV);
584         assert(VMap[&*OldI] == PN && "VMap mismatch");
585         VMap[&*OldI] = NV;
586         PN->eraseFromParent();
587         ++OldI;
588       }
589     }
590   }
591 
592   // Make a second pass over the PHINodes now that all of them have been
593   // remapped into the new function, simplifying the PHINode and performing any
594   // recursive simplifications exposed. This will transparently update the
595   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
596   // two PHINodes, the iteration over the old PHIs remains valid, and the
597   // mapping will just map us to the new node (which may not even be a PHI
598   // node).
599   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
600     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
601       recursivelySimplifyInstruction(PN);
602 
603   // Now that the inlined function body has been fully constructed, go through
604   // and zap unconditional fall-through branches. This happens all the time when
605   // specializing code: code specialization turns conditional branches into
606   // uncond branches, and this code folds them.
607   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
608   Function::iterator I = Begin;
609   while (I != NewFunc->end()) {
610     // Check if this block has become dead during inlining or other
611     // simplifications. Note that the first block will appear dead, as it has
612     // not yet been wired up properly.
613     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
614                        I->getSinglePredecessor() == &*I)) {
615       BasicBlock *DeadBB = &*I++;
616       DeleteDeadBlock(DeadBB);
617       continue;
618     }
619 
620     // We need to simplify conditional branches and switches with a constant
621     // operand. We try to prune these out when cloning, but if the
622     // simplification required looking through PHI nodes, those are only
623     // available after forming the full basic block. That may leave some here,
624     // and we still want to prune the dead code as early as possible.
625     ConstantFoldTerminator(&*I);
626 
627     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
628     if (!BI || BI->isConditional()) { ++I; continue; }
629 
630     BasicBlock *Dest = BI->getSuccessor(0);
631     if (!Dest->getSinglePredecessor()) {
632       ++I; continue;
633     }
634 
635     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
636     // above should have zapped all of them..
637     assert(!isa<PHINode>(Dest->begin()));
638 
639     // We know all single-entry PHI nodes in the inlined function have been
640     // removed, so we just need to splice the blocks.
641     BI->eraseFromParent();
642 
643     // Make all PHI nodes that referred to Dest now refer to I as their source.
644     Dest->replaceAllUsesWith(&*I);
645 
646     // Move all the instructions in the succ to the pred.
647     I->getInstList().splice(I->end(), Dest->getInstList());
648 
649     // Remove the dest block.
650     Dest->eraseFromParent();
651 
652     // Do not increment I, iteratively merge all things this block branches to.
653   }
654 
655   // Make a final pass over the basic blocks from the old function to gather
656   // any return instructions which survived folding. We have to do this here
657   // because we can iteratively remove and merge returns above.
658   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
659                           E = NewFunc->end();
660        I != E; ++I)
661     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
662       Returns.push_back(RI);
663 }
664 
665 
666 /// This works exactly like CloneFunctionInto,
667 /// except that it does some simple constant prop and DCE on the fly.  The
668 /// effect of this is to copy significantly less code in cases where (for
669 /// example) a function call with constant arguments is inlined, and those
670 /// constant arguments cause a significant amount of code in the callee to be
671 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
672 /// used for things like CloneFunction or CloneModule.
673 void llvm::CloneAndPruneFunctionInto(
674     Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
675     bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
676     const char *NameSuffix, ClonedCodeInfo *CodeInfo, Instruction *TheCall,
677     BlockCloningFunctor Ftor) {
678   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
679                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
680                             Ftor);
681 }
682 
683 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
684 void llvm::remapInstructionsInBlocks(
685     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
686   // Rewrite the code to refer to itself.
687   for (auto *BB : Blocks)
688     for (auto &Inst : *BB)
689       RemapInstruction(&Inst, VMap,
690                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
691 }
692 
693 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
694 /// Blocks.
695 ///
696 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
697 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
698 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
699                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
700                                    const Twine &NameSuffix, LoopInfo *LI,
701                                    DominatorTree *DT,
702                                    SmallVectorImpl<BasicBlock *> &Blocks) {
703   Function *F = OrigLoop->getHeader()->getParent();
704   Loop *ParentLoop = OrigLoop->getParentLoop();
705 
706   Loop *NewLoop = new Loop();
707   if (ParentLoop)
708     ParentLoop->addChildLoop(NewLoop);
709   else
710     LI->addTopLevelLoop(NewLoop);
711 
712   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
713   assert(OrigPH && "No preheader");
714   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
715   // To rename the loop PHIs.
716   VMap[OrigPH] = NewPH;
717   Blocks.push_back(NewPH);
718 
719   // Update LoopInfo.
720   if (ParentLoop)
721     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
722 
723   // Update DominatorTree.
724   DT->addNewBlock(NewPH, LoopDomBB);
725 
726   for (BasicBlock *BB : OrigLoop->getBlocks()) {
727     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
728     VMap[BB] = NewBB;
729 
730     // Update LoopInfo.
731     NewLoop->addBasicBlockToLoop(NewBB, *LI);
732 
733     // Update DominatorTree.
734     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
735     DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
736 
737     Blocks.push_back(NewBB);
738   }
739 
740   // Move them physically from the end of the block list.
741   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
742                                 NewPH);
743   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
744                                 NewLoop->getHeader()->getIterator(), F->end());
745 
746   return NewLoop;
747 }
748