1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/Support/CFG.h" 26 #include "llvm/Transforms/Utils/ValueMapper.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DebugInfo.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include <map> 31 using namespace llvm; 32 33 // CloneBasicBlock - See comments in Cloning.h 34 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 35 ValueToValueMapTy &VMap, 36 const Twine &NameSuffix, Function *F, 37 ClonedCodeInfo *CodeInfo) { 38 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); 39 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 40 41 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 42 43 // Loop over all instructions, and copy them over. 44 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 45 II != IE; ++II) { 46 Instruction *NewInst = II->clone(); 47 if (II->hasName()) 48 NewInst->setName(II->getName()+NameSuffix); 49 NewBB->getInstList().push_back(NewInst); 50 VMap[II] = NewInst; // Add instruction map to value. 51 52 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 53 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 54 if (isa<ConstantInt>(AI->getArraySize())) 55 hasStaticAllocas = true; 56 else 57 hasDynamicAllocas = true; 58 } 59 } 60 61 if (CodeInfo) { 62 CodeInfo->ContainsCalls |= hasCalls; 63 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator()); 64 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 65 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 66 BB != &BB->getParent()->getEntryBlock(); 67 } 68 return NewBB; 69 } 70 71 // Clone OldFunc into NewFunc, transforming the old arguments into references to 72 // VMap values. 73 // 74 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 75 ValueToValueMapTy &VMap, 76 bool ModuleLevelChanges, 77 SmallVectorImpl<ReturnInst*> &Returns, 78 const char *NameSuffix, ClonedCodeInfo *CodeInfo, 79 ValueMapTypeRemapper *TypeMapper) { 80 assert(NameSuffix && "NameSuffix cannot be null!"); 81 82 #ifndef NDEBUG 83 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 84 E = OldFunc->arg_end(); I != E; ++I) 85 assert(VMap.count(I) && "No mapping from source argument specified!"); 86 #endif 87 88 // Clone any attributes. 89 if (NewFunc->arg_size() == OldFunc->arg_size()) 90 NewFunc->copyAttributesFrom(OldFunc); 91 else { 92 //Some arguments were deleted with the VMap. Copy arguments one by one 93 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 94 E = OldFunc->arg_end(); I != E; ++I) 95 if (Argument* Anew = dyn_cast<Argument>(VMap[I])) 96 Anew->addAttr( OldFunc->getAttributes() 97 .getParamAttributes(I->getArgNo() + 1)); 98 NewFunc->setAttributes(NewFunc->getAttributes() 99 .addAttr(0, OldFunc->getAttributes() 100 .getRetAttributes())); 101 NewFunc->setAttributes(NewFunc->getAttributes() 102 .addAttr(~0, OldFunc->getAttributes() 103 .getFnAttributes())); 104 105 } 106 107 // Loop over all of the basic blocks in the function, cloning them as 108 // appropriate. Note that we save BE this way in order to handle cloning of 109 // recursive functions into themselves. 110 // 111 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 112 BI != BE; ++BI) { 113 const BasicBlock &BB = *BI; 114 115 // Create a new basic block and copy instructions into it! 116 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); 117 118 // Add basic block mapping. 119 VMap[&BB] = CBB; 120 121 // It is only legal to clone a function if a block address within that 122 // function is never referenced outside of the function. Given that, we 123 // want to map block addresses from the old function to block addresses in 124 // the clone. (This is different from the generic ValueMapper 125 // implementation, which generates an invalid blockaddress when 126 // cloning a function.) 127 if (BB.hasAddressTaken()) { 128 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 129 const_cast<BasicBlock*>(&BB)); 130 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); 131 } 132 133 // Note return instructions for the caller. 134 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 135 Returns.push_back(RI); 136 } 137 138 // Loop over all of the instructions in the function, fixing up operand 139 // references as we go. This uses VMap to do all the hard work. 140 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]), 141 BE = NewFunc->end(); BB != BE; ++BB) 142 // Loop over all instructions, fixing each one as we find it... 143 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 144 RemapInstruction(II, VMap, 145 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, 146 TypeMapper); 147 } 148 149 /// CloneFunction - Return a copy of the specified function, but without 150 /// embedding the function into another module. Also, any references specified 151 /// in the VMap are changed to refer to their mapped value instead of the 152 /// original one. If any of the arguments to the function are in the VMap, 153 /// the arguments are deleted from the resultant function. The VMap is 154 /// updated to include mappings from all of the instructions and basicblocks in 155 /// the function from their old to new values. 156 /// 157 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, 158 bool ModuleLevelChanges, 159 ClonedCodeInfo *CodeInfo) { 160 std::vector<Type*> ArgTypes; 161 162 // The user might be deleting arguments to the function by specifying them in 163 // the VMap. If so, we need to not add the arguments to the arg ty vector 164 // 165 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 166 I != E; ++I) 167 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? 168 ArgTypes.push_back(I->getType()); 169 170 // Create a new function type... 171 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), 172 ArgTypes, F->getFunctionType()->isVarArg()); 173 174 // Create the new function... 175 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 176 177 // Loop over the arguments, copying the names of the mapped arguments over... 178 Function::arg_iterator DestI = NewF->arg_begin(); 179 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 180 I != E; ++I) 181 if (VMap.count(I) == 0) { // Is this argument preserved? 182 DestI->setName(I->getName()); // Copy the name over... 183 VMap[I] = DestI++; // Add mapping to VMap 184 } 185 186 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. 187 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); 188 return NewF; 189 } 190 191 192 193 namespace { 194 /// PruningFunctionCloner - This class is a private class used to implement 195 /// the CloneAndPruneFunctionInto method. 196 struct PruningFunctionCloner { 197 Function *NewFunc; 198 const Function *OldFunc; 199 ValueToValueMapTy &VMap; 200 bool ModuleLevelChanges; 201 SmallVectorImpl<ReturnInst*> &Returns; 202 const char *NameSuffix; 203 ClonedCodeInfo *CodeInfo; 204 const TargetData *TD; 205 public: 206 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 207 ValueToValueMapTy &valueMap, 208 bool moduleLevelChanges, 209 SmallVectorImpl<ReturnInst*> &returns, 210 const char *nameSuffix, 211 ClonedCodeInfo *codeInfo, 212 const TargetData *td) 213 : NewFunc(newFunc), OldFunc(oldFunc), 214 VMap(valueMap), ModuleLevelChanges(moduleLevelChanges), 215 Returns(returns), NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) { 216 } 217 218 /// CloneBlock - The specified block is found to be reachable, clone it and 219 /// anything that it can reach. 220 void CloneBlock(const BasicBlock *BB, 221 std::vector<const BasicBlock*> &ToClone); 222 223 public: 224 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 225 /// mapping its operands through VMap if they are available. 226 Constant *ConstantFoldMappedInstruction(const Instruction *I); 227 }; 228 } 229 230 /// CloneBlock - The specified block is found to be reachable, clone it and 231 /// anything that it can reach. 232 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 233 std::vector<const BasicBlock*> &ToClone){ 234 TrackingVH<Value> &BBEntry = VMap[BB]; 235 236 // Have we already cloned this block? 237 if (BBEntry) return; 238 239 // Nope, clone it now. 240 BasicBlock *NewBB; 241 BBEntry = NewBB = BasicBlock::Create(BB->getContext()); 242 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 243 244 // It is only legal to clone a function if a block address within that 245 // function is never referenced outside of the function. Given that, we 246 // want to map block addresses from the old function to block addresses in 247 // the clone. (This is different from the generic ValueMapper 248 // implementation, which generates an invalid blockaddress when 249 // cloning a function.) 250 // 251 // Note that we don't need to fix the mapping for unreachable blocks; 252 // the default mapping there is safe. 253 if (BB->hasAddressTaken()) { 254 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), 255 const_cast<BasicBlock*>(BB)); 256 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); 257 } 258 259 260 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 261 262 // Loop over all instructions, and copy them over, DCE'ing as we go. This 263 // loop doesn't include the terminator. 264 for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end(); 265 II != IE; ++II) { 266 // If this instruction constant folds, don't bother cloning the instruction, 267 // instead, just add the constant to the value map. 268 if (Constant *C = ConstantFoldMappedInstruction(II)) { 269 VMap[II] = C; 270 continue; 271 } 272 273 Instruction *NewInst = II->clone(); 274 if (II->hasName()) 275 NewInst->setName(II->getName()+NameSuffix); 276 NewBB->getInstList().push_back(NewInst); 277 VMap[II] = NewInst; // Add instruction map to value. 278 279 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 280 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 281 if (isa<ConstantInt>(AI->getArraySize())) 282 hasStaticAllocas = true; 283 else 284 hasDynamicAllocas = true; 285 } 286 } 287 288 // Finally, clone over the terminator. 289 const TerminatorInst *OldTI = BB->getTerminator(); 290 bool TerminatorDone = false; 291 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 292 if (BI->isConditional()) { 293 // If the condition was a known constant in the callee... 294 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 295 // Or is a known constant in the caller... 296 if (Cond == 0) { 297 Value *V = VMap[BI->getCondition()]; 298 Cond = dyn_cast_or_null<ConstantInt>(V); 299 } 300 301 // Constant fold to uncond branch! 302 if (Cond) { 303 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 304 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 305 ToClone.push_back(Dest); 306 TerminatorDone = true; 307 } 308 } 309 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 310 // If switching on a value known constant in the caller. 311 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 312 if (Cond == 0) { // Or known constant after constant prop in the callee... 313 Value *V = VMap[SI->getCondition()]; 314 Cond = dyn_cast_or_null<ConstantInt>(V); 315 } 316 if (Cond) { // Constant fold to uncond branch! 317 BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond)); 318 VMap[OldTI] = BranchInst::Create(Dest, NewBB); 319 ToClone.push_back(Dest); 320 TerminatorDone = true; 321 } 322 } 323 324 if (!TerminatorDone) { 325 Instruction *NewInst = OldTI->clone(); 326 if (OldTI->hasName()) 327 NewInst->setName(OldTI->getName()+NameSuffix); 328 NewBB->getInstList().push_back(NewInst); 329 VMap[OldTI] = NewInst; // Add instruction map to value. 330 331 // Recursively clone any reachable successor blocks. 332 const TerminatorInst *TI = BB->getTerminator(); 333 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 334 ToClone.push_back(TI->getSuccessor(i)); 335 } 336 337 if (CodeInfo) { 338 CodeInfo->ContainsCalls |= hasCalls; 339 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI); 340 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 341 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 342 BB != &BB->getParent()->front(); 343 } 344 345 if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator())) 346 Returns.push_back(RI); 347 } 348 349 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 350 /// mapping its operands through VMap if they are available. 351 Constant *PruningFunctionCloner:: 352 ConstantFoldMappedInstruction(const Instruction *I) { 353 SmallVector<Constant*, 8> Ops; 354 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 355 if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i), 356 VMap, 357 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges))) 358 Ops.push_back(Op); 359 else 360 return 0; // All operands not constant! 361 362 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 363 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 364 TD); 365 366 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 367 if (!LI->isVolatile()) 368 return ConstantFoldLoadFromConstPtr(Ops[0], TD); 369 370 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD); 371 } 372 373 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, 374 /// except that it does some simple constant prop and DCE on the fly. The 375 /// effect of this is to copy significantly less code in cases where (for 376 /// example) a function call with constant arguments is inlined, and those 377 /// constant arguments cause a significant amount of code in the callee to be 378 /// dead. Since this doesn't produce an exact copy of the input, it can't be 379 /// used for things like CloneFunction or CloneModule. 380 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 381 ValueToValueMapTy &VMap, 382 bool ModuleLevelChanges, 383 SmallVectorImpl<ReturnInst*> &Returns, 384 const char *NameSuffix, 385 ClonedCodeInfo *CodeInfo, 386 const TargetData *TD, 387 Instruction *TheCall) { 388 assert(NameSuffix && "NameSuffix cannot be null!"); 389 390 #ifndef NDEBUG 391 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 392 E = OldFunc->arg_end(); II != E; ++II) 393 assert(VMap.count(II) && "No mapping from source argument specified!"); 394 #endif 395 396 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, 397 Returns, NameSuffix, CodeInfo, TD); 398 399 // Clone the entry block, and anything recursively reachable from it. 400 std::vector<const BasicBlock*> CloneWorklist; 401 CloneWorklist.push_back(&OldFunc->getEntryBlock()); 402 while (!CloneWorklist.empty()) { 403 const BasicBlock *BB = CloneWorklist.back(); 404 CloneWorklist.pop_back(); 405 PFC.CloneBlock(BB, CloneWorklist); 406 } 407 408 // Loop over all of the basic blocks in the old function. If the block was 409 // reachable, we have cloned it and the old block is now in the value map: 410 // insert it into the new function in the right order. If not, ignore it. 411 // 412 // Defer PHI resolution until rest of function is resolved. 413 SmallVector<const PHINode*, 16> PHIToResolve; 414 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 415 BI != BE; ++BI) { 416 Value *V = VMap[BI]; 417 BasicBlock *NewBB = cast_or_null<BasicBlock>(V); 418 if (NewBB == 0) continue; // Dead block. 419 420 // Add the new block to the new function. 421 NewFunc->getBasicBlockList().push_back(NewBB); 422 423 // Loop over all of the instructions in the block, fixing up operand 424 // references as we go. This uses VMap to do all the hard work. 425 // 426 BasicBlock::iterator I = NewBB->begin(); 427 428 DebugLoc TheCallDL; 429 if (TheCall) 430 TheCallDL = TheCall->getDebugLoc(); 431 432 // Handle PHI nodes specially, as we have to remove references to dead 433 // blocks. 434 if (PHINode *PN = dyn_cast<PHINode>(I)) { 435 // Skip over all PHI nodes, remembering them for later. 436 BasicBlock::const_iterator OldI = BI->begin(); 437 for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI) 438 PHIToResolve.push_back(cast<PHINode>(OldI)); 439 } 440 441 // Otherwise, remap the rest of the instructions normally. 442 for (; I != NewBB->end(); ++I) 443 RemapInstruction(I, VMap, 444 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 445 } 446 447 // Defer PHI resolution until rest of function is resolved, PHI resolution 448 // requires the CFG to be up-to-date. 449 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 450 const PHINode *OPN = PHIToResolve[phino]; 451 unsigned NumPreds = OPN->getNumIncomingValues(); 452 const BasicBlock *OldBB = OPN->getParent(); 453 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); 454 455 // Map operands for blocks that are live and remove operands for blocks 456 // that are dead. 457 for (; phino != PHIToResolve.size() && 458 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 459 OPN = PHIToResolve[phino]; 460 PHINode *PN = cast<PHINode>(VMap[OPN]); 461 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 462 Value *V = VMap[PN->getIncomingBlock(pred)]; 463 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { 464 Value *InVal = MapValue(PN->getIncomingValue(pred), 465 VMap, 466 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); 467 assert(InVal && "Unknown input value?"); 468 PN->setIncomingValue(pred, InVal); 469 PN->setIncomingBlock(pred, MappedBlock); 470 } else { 471 PN->removeIncomingValue(pred, false); 472 --pred, --e; // Revisit the next entry. 473 } 474 } 475 } 476 477 // The loop above has removed PHI entries for those blocks that are dead 478 // and has updated others. However, if a block is live (i.e. copied over) 479 // but its terminator has been changed to not go to this block, then our 480 // phi nodes will have invalid entries. Update the PHI nodes in this 481 // case. 482 PHINode *PN = cast<PHINode>(NewBB->begin()); 483 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 484 if (NumPreds != PN->getNumIncomingValues()) { 485 assert(NumPreds < PN->getNumIncomingValues()); 486 // Count how many times each predecessor comes to this block. 487 std::map<BasicBlock*, unsigned> PredCount; 488 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 489 PI != E; ++PI) 490 --PredCount[*PI]; 491 492 // Figure out how many entries to remove from each PHI. 493 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 494 ++PredCount[PN->getIncomingBlock(i)]; 495 496 // At this point, the excess predecessor entries are positive in the 497 // map. Loop over all of the PHIs and remove excess predecessor 498 // entries. 499 BasicBlock::iterator I = NewBB->begin(); 500 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 501 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 502 E = PredCount.end(); PCI != E; ++PCI) { 503 BasicBlock *Pred = PCI->first; 504 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 505 PN->removeIncomingValue(Pred, false); 506 } 507 } 508 } 509 510 // If the loops above have made these phi nodes have 0 or 1 operand, 511 // replace them with undef or the input value. We must do this for 512 // correctness, because 0-operand phis are not valid. 513 PN = cast<PHINode>(NewBB->begin()); 514 if (PN->getNumIncomingValues() == 0) { 515 BasicBlock::iterator I = NewBB->begin(); 516 BasicBlock::const_iterator OldI = OldBB->begin(); 517 while ((PN = dyn_cast<PHINode>(I++))) { 518 Value *NV = UndefValue::get(PN->getType()); 519 PN->replaceAllUsesWith(NV); 520 assert(VMap[OldI] == PN && "VMap mismatch"); 521 VMap[OldI] = NV; 522 PN->eraseFromParent(); 523 ++OldI; 524 } 525 } 526 // NOTE: We cannot eliminate single entry phi nodes here, because of 527 // VMap. Single entry phi nodes can have multiple VMap entries 528 // pointing at them. Thus, deleting one would require scanning the VMap 529 // to update any entries in it that would require that. This would be 530 // really slow. 531 } 532 533 // Now that the inlined function body has been fully constructed, go through 534 // and zap unconditional fall-through branches. This happen all the time when 535 // specializing code: code specialization turns conditional branches into 536 // uncond branches, and this code folds them. 537 Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]); 538 while (I != NewFunc->end()) { 539 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 540 if (!BI || BI->isConditional()) { ++I; continue; } 541 542 // Note that we can't eliminate uncond branches if the destination has 543 // single-entry PHI nodes. Eliminating the single-entry phi nodes would 544 // require scanning the VMap to update any entries that point to the phi 545 // node. 546 BasicBlock *Dest = BI->getSuccessor(0); 547 if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) { 548 ++I; continue; 549 } 550 551 // We know all single-entry PHI nodes in the inlined function have been 552 // removed, so we just need to splice the blocks. 553 BI->eraseFromParent(); 554 555 // Make all PHI nodes that referred to Dest now refer to I as their source. 556 Dest->replaceAllUsesWith(I); 557 558 // Move all the instructions in the succ to the pred. 559 I->getInstList().splice(I->end(), Dest->getInstList()); 560 561 // Remove the dest block. 562 Dest->eraseFromParent(); 563 564 // Do not increment I, iteratively merge all things this block branches to. 565 } 566 } 567