1 //===- CloneFunction.cpp - Clone a function into another function ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CloneFunctionInto interface, which is used as the 11 // low-level function cloner. This is used by the CloneFunction and function 12 // inliner to do the dirty work of copying the body of a function around. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Utils/Cloning.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Function.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Support/CFG.h" 25 #include "llvm/Support/Compiler.h" 26 #include "llvm/Transforms/Utils/ValueMapper.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DebugInfo.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include <map> 31 using namespace llvm; 32 33 // CloneBasicBlock - See comments in Cloning.h 34 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, 35 DenseMap<const Value*, Value*> &ValueMap, 36 const char *NameSuffix, Function *F, 37 ClonedCodeInfo *CodeInfo) { 38 BasicBlock *NewBB = BasicBlock::Create("", F); 39 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 40 41 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 42 43 // Loop over all instructions, and copy them over. 44 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); 45 II != IE; ++II) { 46 Instruction *NewInst = II->clone(BB->getContext()); 47 if (II->hasName()) 48 NewInst->setName(II->getName()+NameSuffix); 49 NewBB->getInstList().push_back(NewInst); 50 ValueMap[II] = NewInst; // Add instruction map to value. 51 52 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 53 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 54 if (isa<ConstantInt>(AI->getArraySize())) 55 hasStaticAllocas = true; 56 else 57 hasDynamicAllocas = true; 58 } 59 } 60 61 if (CodeInfo) { 62 CodeInfo->ContainsCalls |= hasCalls; 63 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator()); 64 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 65 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 66 BB != &BB->getParent()->getEntryBlock(); 67 } 68 return NewBB; 69 } 70 71 // Clone OldFunc into NewFunc, transforming the old arguments into references to 72 // ArgMap values. 73 // 74 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, 75 DenseMap<const Value*, Value*> &ValueMap, 76 std::vector<ReturnInst*> &Returns, 77 const char *NameSuffix, ClonedCodeInfo *CodeInfo) { 78 assert(NameSuffix && "NameSuffix cannot be null!"); 79 80 #ifndef NDEBUG 81 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 82 E = OldFunc->arg_end(); I != E; ++I) 83 assert(ValueMap.count(I) && "No mapping from source argument specified!"); 84 #endif 85 86 // Clone any attributes. 87 if (NewFunc->arg_size() == OldFunc->arg_size()) 88 NewFunc->copyAttributesFrom(OldFunc); 89 else { 90 //Some arguments were deleted with the ValueMap. Copy arguments one by one 91 for (Function::const_arg_iterator I = OldFunc->arg_begin(), 92 E = OldFunc->arg_end(); I != E; ++I) 93 if (Argument* Anew = dyn_cast<Argument>(ValueMap[I])) 94 Anew->addAttr( OldFunc->getAttributes() 95 .getParamAttributes(I->getArgNo() + 1)); 96 NewFunc->setAttributes(NewFunc->getAttributes() 97 .addAttr(0, OldFunc->getAttributes() 98 .getRetAttributes())); 99 NewFunc->setAttributes(NewFunc->getAttributes() 100 .addAttr(~0, OldFunc->getAttributes() 101 .getFnAttributes())); 102 103 } 104 105 // Loop over all of the basic blocks in the function, cloning them as 106 // appropriate. Note that we save BE this way in order to handle cloning of 107 // recursive functions into themselves. 108 // 109 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 110 BI != BE; ++BI) { 111 const BasicBlock &BB = *BI; 112 113 // Create a new basic block and copy instructions into it! 114 BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc, 115 CodeInfo); 116 ValueMap[&BB] = CBB; // Add basic block mapping. 117 118 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) 119 Returns.push_back(RI); 120 } 121 122 // Loop over all of the instructions in the function, fixing up operand 123 // references as we go. This uses ValueMap to do all the hard work. 124 // 125 for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]), 126 BE = NewFunc->end(); BB != BE; ++BB) 127 // Loop over all instructions, fixing each one as we find it... 128 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) 129 RemapInstruction(II, ValueMap); 130 } 131 132 /// CloneFunction - Return a copy of the specified function, but without 133 /// embedding the function into another module. Also, any references specified 134 /// in the ValueMap are changed to refer to their mapped value instead of the 135 /// original one. If any of the arguments to the function are in the ValueMap, 136 /// the arguments are deleted from the resultant function. The ValueMap is 137 /// updated to include mappings from all of the instructions and basicblocks in 138 /// the function from their old to new values. 139 /// 140 Function *llvm::CloneFunction(const Function *F, 141 DenseMap<const Value*, Value*> &ValueMap, 142 ClonedCodeInfo *CodeInfo) { 143 std::vector<const Type*> ArgTypes; 144 145 // The user might be deleting arguments to the function by specifying them in 146 // the ValueMap. If so, we need to not add the arguments to the arg ty vector 147 // 148 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 149 I != E; ++I) 150 if (ValueMap.count(I) == 0) // Haven't mapped the argument to anything yet? 151 ArgTypes.push_back(I->getType()); 152 153 // Create a new function type... 154 FunctionType *FTy = 155 F->getContext().getFunctionType(F->getFunctionType()->getReturnType(), 156 ArgTypes, F->getFunctionType()->isVarArg()); 157 158 // Create the new function... 159 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); 160 161 // Loop over the arguments, copying the names of the mapped arguments over... 162 Function::arg_iterator DestI = NewF->arg_begin(); 163 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 164 I != E; ++I) 165 if (ValueMap.count(I) == 0) { // Is this argument preserved? 166 DestI->setName(I->getName()); // Copy the name over... 167 ValueMap[I] = DestI++; // Add mapping to ValueMap 168 } 169 170 std::vector<ReturnInst*> Returns; // Ignore returns cloned... 171 CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo); 172 return NewF; 173 } 174 175 176 177 namespace { 178 /// PruningFunctionCloner - This class is a private class used to implement 179 /// the CloneAndPruneFunctionInto method. 180 struct VISIBILITY_HIDDEN PruningFunctionCloner { 181 Function *NewFunc; 182 const Function *OldFunc; 183 DenseMap<const Value*, Value*> &ValueMap; 184 std::vector<ReturnInst*> &Returns; 185 const char *NameSuffix; 186 ClonedCodeInfo *CodeInfo; 187 const TargetData *TD; 188 Value *DbgFnStart; 189 public: 190 PruningFunctionCloner(Function *newFunc, const Function *oldFunc, 191 DenseMap<const Value*, Value*> &valueMap, 192 std::vector<ReturnInst*> &returns, 193 const char *nameSuffix, 194 ClonedCodeInfo *codeInfo, 195 const TargetData *td) 196 : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns), 197 NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) { 198 } 199 200 /// CloneBlock - The specified block is found to be reachable, clone it and 201 /// anything that it can reach. 202 void CloneBlock(const BasicBlock *BB, 203 std::vector<const BasicBlock*> &ToClone); 204 205 public: 206 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 207 /// mapping its operands through ValueMap if they are available. 208 Constant *ConstantFoldMappedInstruction(const Instruction *I); 209 }; 210 } 211 212 /// CloneBlock - The specified block is found to be reachable, clone it and 213 /// anything that it can reach. 214 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, 215 std::vector<const BasicBlock*> &ToClone){ 216 Value *&BBEntry = ValueMap[BB]; 217 218 // Have we already cloned this block? 219 if (BBEntry) return; 220 221 // Nope, clone it now. 222 BasicBlock *NewBB; 223 BBEntry = NewBB = BasicBlock::Create(); 224 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); 225 226 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; 227 228 // Loop over all instructions, and copy them over, DCE'ing as we go. This 229 // loop doesn't include the terminator. 230 for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end(); 231 II != IE; ++II) { 232 // If this instruction constant folds, don't bother cloning the instruction, 233 // instead, just add the constant to the value map. 234 if (Constant *C = ConstantFoldMappedInstruction(II)) { 235 ValueMap[II] = C; 236 continue; 237 } 238 239 // Do not clone llvm.dbg.region.end. It will be adjusted by the inliner. 240 if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) { 241 if (DbgFnStart == NULL) { 242 DISubprogram SP(cast<GlobalVariable>(DFSI->getSubprogram())); 243 if (SP.describes(BB->getParent())) 244 DbgFnStart = DFSI->getSubprogram(); 245 } 246 } 247 if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) { 248 if (DREIS->getContext() == DbgFnStart) 249 continue; 250 } 251 252 Instruction *NewInst = II->clone(BB->getContext()); 253 if (II->hasName()) 254 NewInst->setName(II->getName()+NameSuffix); 255 NewBB->getInstList().push_back(NewInst); 256 ValueMap[II] = NewInst; // Add instruction map to value. 257 258 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); 259 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 260 if (isa<ConstantInt>(AI->getArraySize())) 261 hasStaticAllocas = true; 262 else 263 hasDynamicAllocas = true; 264 } 265 } 266 267 // Finally, clone over the terminator. 268 const TerminatorInst *OldTI = BB->getTerminator(); 269 bool TerminatorDone = false; 270 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { 271 if (BI->isConditional()) { 272 // If the condition was a known constant in the callee... 273 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); 274 // Or is a known constant in the caller... 275 if (Cond == 0) 276 Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]); 277 278 // Constant fold to uncond branch! 279 if (Cond) { 280 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); 281 ValueMap[OldTI] = BranchInst::Create(Dest, NewBB); 282 ToClone.push_back(Dest); 283 TerminatorDone = true; 284 } 285 } 286 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { 287 // If switching on a value known constant in the caller. 288 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); 289 if (Cond == 0) // Or known constant after constant prop in the callee... 290 Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]); 291 if (Cond) { // Constant fold to uncond branch! 292 BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond)); 293 ValueMap[OldTI] = BranchInst::Create(Dest, NewBB); 294 ToClone.push_back(Dest); 295 TerminatorDone = true; 296 } 297 } 298 299 if (!TerminatorDone) { 300 Instruction *NewInst = OldTI->clone(BB->getContext()); 301 if (OldTI->hasName()) 302 NewInst->setName(OldTI->getName()+NameSuffix); 303 NewBB->getInstList().push_back(NewInst); 304 ValueMap[OldTI] = NewInst; // Add instruction map to value. 305 306 // Recursively clone any reachable successor blocks. 307 const TerminatorInst *TI = BB->getTerminator(); 308 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 309 ToClone.push_back(TI->getSuccessor(i)); 310 } 311 312 if (CodeInfo) { 313 CodeInfo->ContainsCalls |= hasCalls; 314 CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI); 315 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; 316 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 317 BB != &BB->getParent()->front(); 318 } 319 320 if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator())) 321 Returns.push_back(RI); 322 } 323 324 /// ConstantFoldMappedInstruction - Constant fold the specified instruction, 325 /// mapping its operands through ValueMap if they are available. 326 Constant *PruningFunctionCloner:: 327 ConstantFoldMappedInstruction(const Instruction *I) { 328 LLVMContext &Context = I->getContext(); 329 330 SmallVector<Constant*, 8> Ops; 331 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 332 if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i), 333 ValueMap, 334 Context))) 335 Ops.push_back(Op); 336 else 337 return 0; // All operands not constant! 338 339 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 340 return ConstantFoldCompareInstOperands(CI->getPredicate(), 341 &Ops[0], Ops.size(), 342 Context, TD); 343 344 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 345 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) 346 if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr) 347 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 348 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 349 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), 350 CE, Context); 351 352 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0], 353 Ops.size(), Context, TD); 354 } 355 356 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, 357 /// except that it does some simple constant prop and DCE on the fly. The 358 /// effect of this is to copy significantly less code in cases where (for 359 /// example) a function call with constant arguments is inlined, and those 360 /// constant arguments cause a significant amount of code in the callee to be 361 /// dead. Since this doesn't produce an exact copy of the input, it can't be 362 /// used for things like CloneFunction or CloneModule. 363 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, 364 DenseMap<const Value*, Value*> &ValueMap, 365 std::vector<ReturnInst*> &Returns, 366 const char *NameSuffix, 367 ClonedCodeInfo *CodeInfo, 368 const TargetData *TD) { 369 assert(NameSuffix && "NameSuffix cannot be null!"); 370 LLVMContext &Context = OldFunc->getContext(); 371 372 #ifndef NDEBUG 373 for (Function::const_arg_iterator II = OldFunc->arg_begin(), 374 E = OldFunc->arg_end(); II != E; ++II) 375 assert(ValueMap.count(II) && "No mapping from source argument specified!"); 376 #endif 377 378 PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns, 379 NameSuffix, CodeInfo, TD); 380 381 // Clone the entry block, and anything recursively reachable from it. 382 std::vector<const BasicBlock*> CloneWorklist; 383 CloneWorklist.push_back(&OldFunc->getEntryBlock()); 384 while (!CloneWorklist.empty()) { 385 const BasicBlock *BB = CloneWorklist.back(); 386 CloneWorklist.pop_back(); 387 PFC.CloneBlock(BB, CloneWorklist); 388 } 389 390 // Loop over all of the basic blocks in the old function. If the block was 391 // reachable, we have cloned it and the old block is now in the value map: 392 // insert it into the new function in the right order. If not, ignore it. 393 // 394 // Defer PHI resolution until rest of function is resolved. 395 std::vector<const PHINode*> PHIToResolve; 396 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); 397 BI != BE; ++BI) { 398 BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]); 399 if (NewBB == 0) continue; // Dead block. 400 401 // Add the new block to the new function. 402 NewFunc->getBasicBlockList().push_back(NewBB); 403 404 // Loop over all of the instructions in the block, fixing up operand 405 // references as we go. This uses ValueMap to do all the hard work. 406 // 407 BasicBlock::iterator I = NewBB->begin(); 408 409 // Handle PHI nodes specially, as we have to remove references to dead 410 // blocks. 411 if (PHINode *PN = dyn_cast<PHINode>(I)) { 412 // Skip over all PHI nodes, remembering them for later. 413 BasicBlock::const_iterator OldI = BI->begin(); 414 for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI) 415 PHIToResolve.push_back(cast<PHINode>(OldI)); 416 } 417 418 // Otherwise, remap the rest of the instructions normally. 419 for (; I != NewBB->end(); ++I) 420 RemapInstruction(I, ValueMap); 421 } 422 423 // Defer PHI resolution until rest of function is resolved, PHI resolution 424 // requires the CFG to be up-to-date. 425 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { 426 const PHINode *OPN = PHIToResolve[phino]; 427 unsigned NumPreds = OPN->getNumIncomingValues(); 428 const BasicBlock *OldBB = OPN->getParent(); 429 BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]); 430 431 // Map operands for blocks that are live and remove operands for blocks 432 // that are dead. 433 for (; phino != PHIToResolve.size() && 434 PHIToResolve[phino]->getParent() == OldBB; ++phino) { 435 OPN = PHIToResolve[phino]; 436 PHINode *PN = cast<PHINode>(ValueMap[OPN]); 437 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { 438 if (BasicBlock *MappedBlock = 439 cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) { 440 Value *InVal = MapValue(PN->getIncomingValue(pred), 441 ValueMap, Context); 442 assert(InVal && "Unknown input value?"); 443 PN->setIncomingValue(pred, InVal); 444 PN->setIncomingBlock(pred, MappedBlock); 445 } else { 446 PN->removeIncomingValue(pred, false); 447 --pred, --e; // Revisit the next entry. 448 } 449 } 450 } 451 452 // The loop above has removed PHI entries for those blocks that are dead 453 // and has updated others. However, if a block is live (i.e. copied over) 454 // but its terminator has been changed to not go to this block, then our 455 // phi nodes will have invalid entries. Update the PHI nodes in this 456 // case. 457 PHINode *PN = cast<PHINode>(NewBB->begin()); 458 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); 459 if (NumPreds != PN->getNumIncomingValues()) { 460 assert(NumPreds < PN->getNumIncomingValues()); 461 // Count how many times each predecessor comes to this block. 462 std::map<BasicBlock*, unsigned> PredCount; 463 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); 464 PI != E; ++PI) 465 --PredCount[*PI]; 466 467 // Figure out how many entries to remove from each PHI. 468 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 469 ++PredCount[PN->getIncomingBlock(i)]; 470 471 // At this point, the excess predecessor entries are positive in the 472 // map. Loop over all of the PHIs and remove excess predecessor 473 // entries. 474 BasicBlock::iterator I = NewBB->begin(); 475 for (; (PN = dyn_cast<PHINode>(I)); ++I) { 476 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(), 477 E = PredCount.end(); PCI != E; ++PCI) { 478 BasicBlock *Pred = PCI->first; 479 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) 480 PN->removeIncomingValue(Pred, false); 481 } 482 } 483 } 484 485 // If the loops above have made these phi nodes have 0 or 1 operand, 486 // replace them with undef or the input value. We must do this for 487 // correctness, because 0-operand phis are not valid. 488 PN = cast<PHINode>(NewBB->begin()); 489 if (PN->getNumIncomingValues() == 0) { 490 BasicBlock::iterator I = NewBB->begin(); 491 BasicBlock::const_iterator OldI = OldBB->begin(); 492 while ((PN = dyn_cast<PHINode>(I++))) { 493 Value *NV = OldFunc->getContext().getUndef(PN->getType()); 494 PN->replaceAllUsesWith(NV); 495 assert(ValueMap[OldI] == PN && "ValueMap mismatch"); 496 ValueMap[OldI] = NV; 497 PN->eraseFromParent(); 498 ++OldI; 499 } 500 } 501 // NOTE: We cannot eliminate single entry phi nodes here, because of 502 // ValueMap. Single entry phi nodes can have multiple ValueMap entries 503 // pointing at them. Thus, deleting one would require scanning the ValueMap 504 // to update any entries in it that would require that. This would be 505 // really slow. 506 } 507 508 // Now that the inlined function body has been fully constructed, go through 509 // and zap unconditional fall-through branches. This happen all the time when 510 // specializing code: code specialization turns conditional branches into 511 // uncond branches, and this code folds them. 512 Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]); 513 while (I != NewFunc->end()) { 514 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); 515 if (!BI || BI->isConditional()) { ++I; continue; } 516 517 // Note that we can't eliminate uncond branches if the destination has 518 // single-entry PHI nodes. Eliminating the single-entry phi nodes would 519 // require scanning the ValueMap to update any entries that point to the phi 520 // node. 521 BasicBlock *Dest = BI->getSuccessor(0); 522 if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) { 523 ++I; continue; 524 } 525 526 // We know all single-entry PHI nodes in the inlined function have been 527 // removed, so we just need to splice the blocks. 528 BI->eraseFromParent(); 529 530 // Move all the instructions in the succ to the pred. 531 I->getInstList().splice(I->end(), Dest->getInstList()); 532 533 // Make all PHI nodes that referred to Dest now refer to I as their source. 534 Dest->replaceAllUsesWith(I); 535 536 // Remove the dest block. 537 Dest->eraseFromParent(); 538 539 // Do not increment I, iteratively merge all things this block branches to. 540 } 541 } 542