1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 11 // inserting a dummy basic block. This pass may be "required" by passes that 12 // cannot deal with critical edges. For this usage, the structure type is 13 // forward declared. This pass obviously invalidates the CFG, but can update 14 // dominator trees. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Utils/BreakCriticalEdges.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Transforms/Utils.h" 33 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 34 #include "llvm/Transforms/Utils/Cloning.h" 35 #include "llvm/Transforms/Utils/ValueMapper.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "break-crit-edges" 39 40 STATISTIC(NumBroken, "Number of blocks inserted"); 41 42 namespace { 43 struct BreakCriticalEdges : public FunctionPass { 44 static char ID; // Pass identification, replacement for typeid 45 BreakCriticalEdges() : FunctionPass(ID) { 46 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 47 } 48 49 bool runOnFunction(Function &F) override { 50 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 51 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 52 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 53 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 54 unsigned N = 55 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 56 NumBroken += N; 57 return N > 0; 58 } 59 60 void getAnalysisUsage(AnalysisUsage &AU) const override { 61 AU.addPreserved<DominatorTreeWrapperPass>(); 62 AU.addPreserved<LoopInfoWrapperPass>(); 63 64 // No loop canonicalization guarantees are broken by this pass. 65 AU.addPreservedID(LoopSimplifyID); 66 } 67 }; 68 } 69 70 char BreakCriticalEdges::ID = 0; 71 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 72 "Break critical edges in CFG", false, false) 73 74 // Publicly exposed interface to pass... 75 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 76 FunctionPass *llvm::createBreakCriticalEdgesPass() { 77 return new BreakCriticalEdges(); 78 } 79 80 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F, 81 FunctionAnalysisManager &AM) { 82 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 83 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 84 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 85 NumBroken += N; 86 if (N == 0) 87 return PreservedAnalyses::all(); 88 PreservedAnalyses PA; 89 PA.preserve<DominatorTreeAnalysis>(); 90 PA.preserve<LoopAnalysis>(); 91 return PA; 92 } 93 94 //===----------------------------------------------------------------------===// 95 // Implementation of the external critical edge manipulation functions 96 //===----------------------------------------------------------------------===// 97 98 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new 99 /// exit block. This function inserts the new PHIs, as needed. Preds is a list 100 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is 101 /// the old loop exit, now the successor of SplitBB. 102 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 103 BasicBlock *SplitBB, 104 BasicBlock *DestBB) { 105 // SplitBB shouldn't have anything non-trivial in it yet. 106 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 107 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); 108 109 // For each PHI in the destination block. 110 for (PHINode &PN : DestBB->phis()) { 111 unsigned Idx = PN.getBasicBlockIndex(SplitBB); 112 Value *V = PN.getIncomingValue(Idx); 113 114 // If the input is a PHI which already satisfies LCSSA, don't create 115 // a new one. 116 if (const PHINode *VP = dyn_cast<PHINode>(V)) 117 if (VP->getParent() == SplitBB) 118 continue; 119 120 // Otherwise a new PHI is needed. Create one and populate it. 121 PHINode *NewPN = PHINode::Create( 122 PN.getType(), Preds.size(), "split", 123 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 124 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 125 NewPN->addIncoming(V, Preds[i]); 126 127 // Update the original PHI. 128 PN.setIncomingValue(Idx, NewPN); 129 } 130 } 131 132 BasicBlock * 133 llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, 134 const CriticalEdgeSplittingOptions &Options) { 135 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) 136 return nullptr; 137 138 assert(!isa<IndirectBrInst>(TI) && 139 "Cannot split critical edge from IndirectBrInst"); 140 141 BasicBlock *TIBB = TI->getParent(); 142 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 143 144 // Splitting the critical edge to a pad block is non-trivial. Don't do 145 // it in this generic function. 146 if (DestBB->isEHPad()) return nullptr; 147 148 // Create a new basic block, linking it into the CFG. 149 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 150 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 151 // Create our unconditional branch. 152 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 153 NewBI->setDebugLoc(TI->getDebugLoc()); 154 155 // Branch to the new block, breaking the edge. 156 TI->setSuccessor(SuccNum, NewBB); 157 158 // Insert the block into the function... right after the block TI lives in. 159 Function &F = *TIBB->getParent(); 160 Function::iterator FBBI = TIBB->getIterator(); 161 F.getBasicBlockList().insert(++FBBI, NewBB); 162 163 // If there are any PHI nodes in DestBB, we need to update them so that they 164 // merge incoming values from NewBB instead of from TIBB. 165 { 166 unsigned BBIdx = 0; 167 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 168 // We no longer enter through TIBB, now we come in through NewBB. 169 // Revector exactly one entry in the PHI node that used to come from 170 // TIBB to come from NewBB. 171 PHINode *PN = cast<PHINode>(I); 172 173 // Reuse the previous value of BBIdx if it lines up. In cases where we 174 // have multiple phi nodes with *lots* of predecessors, this is a speed 175 // win because we don't have to scan the PHI looking for TIBB. This 176 // happens because the BB list of PHI nodes are usually in the same 177 // order. 178 if (PN->getIncomingBlock(BBIdx) != TIBB) 179 BBIdx = PN->getBasicBlockIndex(TIBB); 180 PN->setIncomingBlock(BBIdx, NewBB); 181 } 182 } 183 184 // If there are any other edges from TIBB to DestBB, update those to go 185 // through the split block, making those edges non-critical as well (and 186 // reducing the number of phi entries in the DestBB if relevant). 187 if (Options.MergeIdenticalEdges) { 188 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 189 if (TI->getSuccessor(i) != DestBB) continue; 190 191 // Remove an entry for TIBB from DestBB phi nodes. 192 DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs); 193 194 // We found another edge to DestBB, go to NewBB instead. 195 TI->setSuccessor(i, NewBB); 196 } 197 } 198 199 // If we have nothing to update, just return. 200 auto *DT = Options.DT; 201 auto *LI = Options.LI; 202 auto *MSSAU = Options.MSSAU; 203 if (MSSAU) 204 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 205 DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges); 206 207 if (!DT && !LI) 208 return NewBB; 209 210 if (DT) { 211 // Update the DominatorTree. 212 // ---> NewBB -----\ 213 // / V 214 // TIBB -------\\------> DestBB 215 // 216 // First, inform the DT about the new path from TIBB to DestBB via NewBB, 217 // then delete the old edge from TIBB to DestBB. By doing this in that order 218 // DestBB stays reachable in the DT the whole time and its subtree doesn't 219 // get disconnected. 220 SmallVector<DominatorTree::UpdateType, 3> Updates; 221 Updates.push_back({DominatorTree::Insert, TIBB, NewBB}); 222 Updates.push_back({DominatorTree::Insert, NewBB, DestBB}); 223 if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB)) 224 Updates.push_back({DominatorTree::Delete, TIBB, DestBB}); 225 226 DT->applyUpdates(Updates); 227 } 228 229 // Update LoopInfo if it is around. 230 if (LI) { 231 if (Loop *TIL = LI->getLoopFor(TIBB)) { 232 // If one or the other blocks were not in a loop, the new block is not 233 // either, and thus LI doesn't need to be updated. 234 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 235 if (TIL == DestLoop) { 236 // Both in the same loop, the NewBB joins loop. 237 DestLoop->addBasicBlockToLoop(NewBB, *LI); 238 } else if (TIL->contains(DestLoop)) { 239 // Edge from an outer loop to an inner loop. Add to the outer loop. 240 TIL->addBasicBlockToLoop(NewBB, *LI); 241 } else if (DestLoop->contains(TIL)) { 242 // Edge from an inner loop to an outer loop. Add to the outer loop. 243 DestLoop->addBasicBlockToLoop(NewBB, *LI); 244 } else { 245 // Edge from two loops with no containment relation. Because these 246 // are natural loops, we know that the destination block must be the 247 // header of its loop (adding a branch into a loop elsewhere would 248 // create an irreducible loop). 249 assert(DestLoop->getHeader() == DestBB && 250 "Should not create irreducible loops!"); 251 if (Loop *P = DestLoop->getParentLoop()) 252 P->addBasicBlockToLoop(NewBB, *LI); 253 } 254 } 255 256 // If TIBB is in a loop and DestBB is outside of that loop, we may need 257 // to update LoopSimplify form and LCSSA form. 258 if (!TIL->contains(DestBB)) { 259 assert(!TIL->contains(NewBB) && 260 "Split point for loop exit is contained in loop!"); 261 262 // Update LCSSA form in the newly created exit block. 263 if (Options.PreserveLCSSA) { 264 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 265 } 266 267 // The only that we can break LoopSimplify form by splitting a critical 268 // edge is if after the split there exists some edge from TIL to DestBB 269 // *and* the only edge into DestBB from outside of TIL is that of 270 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 271 // is the new exit block and it has no non-loop predecessors. If the 272 // second isn't true, then DestBB was not in LoopSimplify form prior to 273 // the split as it had a non-loop predecessor. In both of these cases, 274 // the predecessor must be directly in TIL, not in a subloop, or again 275 // LoopSimplify doesn't hold. 276 SmallVector<BasicBlock *, 4> LoopPreds; 277 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; 278 ++I) { 279 BasicBlock *P = *I; 280 if (P == NewBB) 281 continue; // The new block is known. 282 if (LI->getLoopFor(P) != TIL) { 283 // No need to re-simplify, it wasn't to start with. 284 LoopPreds.clear(); 285 break; 286 } 287 LoopPreds.push_back(P); 288 } 289 if (!LoopPreds.empty()) { 290 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); 291 BasicBlock *NewExitBB = SplitBlockPredecessors( 292 DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 293 if (Options.PreserveLCSSA) 294 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 295 } 296 } 297 } 298 } 299 300 return NewBB; 301 } 302 303 // Return the unique indirectbr predecessor of a block. This may return null 304 // even if such a predecessor exists, if it's not useful for splitting. 305 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 306 // predecessors of BB. 307 static BasicBlock * 308 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 309 // If the block doesn't have any PHIs, we don't care about it, since there's 310 // no point in splitting it. 311 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 312 if (!PN) 313 return nullptr; 314 315 // Verify we have exactly one IBR predecessor. 316 // Conservatively bail out if one of the other predecessors is not a "regular" 317 // terminator (that is, not a switch or a br). 318 BasicBlock *IBB = nullptr; 319 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 320 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 321 TerminatorInst *PredTerm = PredBB->getTerminator(); 322 switch (PredTerm->getOpcode()) { 323 case Instruction::IndirectBr: 324 if (IBB) 325 return nullptr; 326 IBB = PredBB; 327 break; 328 case Instruction::Br: 329 case Instruction::Switch: 330 OtherPreds.push_back(PredBB); 331 continue; 332 default: 333 return nullptr; 334 } 335 } 336 337 return IBB; 338 } 339 340 bool llvm::SplitIndirectBrCriticalEdges(Function &F, 341 BranchProbabilityInfo *BPI, 342 BlockFrequencyInfo *BFI) { 343 // Check whether the function has any indirectbrs, and collect which blocks 344 // they may jump to. Since most functions don't have indirect branches, 345 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 346 SmallSetVector<BasicBlock *, 16> Targets; 347 for (auto &BB : F) { 348 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 349 if (!IBI) 350 continue; 351 352 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 353 Targets.insert(IBI->getSuccessor(Succ)); 354 } 355 356 if (Targets.empty()) 357 return false; 358 359 bool ShouldUpdateAnalysis = BPI && BFI; 360 bool Changed = false; 361 for (BasicBlock *Target : Targets) { 362 SmallVector<BasicBlock *, 16> OtherPreds; 363 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 364 // If we did not found an indirectbr, or the indirectbr is the only 365 // incoming edge, this isn't the kind of edge we're looking for. 366 if (!IBRPred || OtherPreds.empty()) 367 continue; 368 369 // Don't even think about ehpads/landingpads. 370 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 371 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 372 continue; 373 374 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 375 if (ShouldUpdateAnalysis) { 376 // Copy the BFI/BPI from Target to BodyBlock. 377 for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors(); 378 I < E; ++I) 379 BPI->setEdgeProbability(BodyBlock, I, 380 BPI->getEdgeProbability(Target, I)); 381 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency()); 382 } 383 // It's possible Target was its own successor through an indirectbr. 384 // In this case, the indirectbr now comes from BodyBlock. 385 if (IBRPred == Target) 386 IBRPred = BodyBlock; 387 388 // At this point Target only has PHIs, and BodyBlock has the rest of the 389 // block's body. Create a copy of Target that will be used by the "direct" 390 // preds. 391 ValueToValueMapTy VMap; 392 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 393 394 BlockFrequency BlockFreqForDirectSucc; 395 for (BasicBlock *Pred : OtherPreds) { 396 // If the target is a loop to itself, then the terminator of the split 397 // block (BodyBlock) needs to be updated. 398 BasicBlock *Src = Pred != Target ? Pred : BodyBlock; 399 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 400 if (ShouldUpdateAnalysis) 401 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) * 402 BPI->getEdgeProbability(Src, DirectSucc); 403 } 404 if (ShouldUpdateAnalysis) { 405 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency()); 406 BlockFrequency NewBlockFreqForTarget = 407 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc; 408 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency()); 409 BPI->eraseBlock(Target); 410 } 411 412 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 413 // they are clones, so the number of PHIs are the same. 414 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 415 // (b) Leave that as the only edge in the "Indirect" PHI. 416 // (c) Merge the two in the body block. 417 BasicBlock::iterator Indirect = Target->begin(), 418 End = Target->getFirstNonPHI()->getIterator(); 419 BasicBlock::iterator Direct = DirectSucc->begin(); 420 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 421 422 assert(&*End == Target->getTerminator() && 423 "Block was expected to only contain PHIs"); 424 425 while (Indirect != End) { 426 PHINode *DirPHI = cast<PHINode>(Direct); 427 PHINode *IndPHI = cast<PHINode>(Indirect); 428 429 // Now, clean up - the direct block shouldn't get the indirect value, 430 // and vice versa. 431 DirPHI->removeIncomingValue(IBRPred); 432 Direct++; 433 434 // Advance the pointer here, to avoid invalidation issues when the old 435 // PHI is erased. 436 Indirect++; 437 438 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 439 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 440 IBRPred); 441 442 // Create a PHI in the body block, to merge the direct and indirect 443 // predecessors. 444 PHINode *MergePHI = 445 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 446 MergePHI->addIncoming(NewIndPHI, Target); 447 MergePHI->addIncoming(DirPHI, DirectSucc); 448 449 IndPHI->replaceAllUsesWith(MergePHI); 450 IndPHI->eraseFromParent(); 451 } 452 453 Changed = true; 454 } 455 456 return Changed; 457 } 458