1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 11 // inserting a dummy basic block. This pass may be "required" by passes that 12 // cannot deal with critical edges. For this usage, the structure type is 13 // forward declared. This pass obviously invalidates the CFG, but can update 14 // dominator trees. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Utils/BreakCriticalEdges.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "break-crit-edges" 38 39 STATISTIC(NumBroken, "Number of blocks inserted"); 40 41 namespace { 42 struct BreakCriticalEdges : public FunctionPass { 43 static char ID; // Pass identification, replacement for typeid 44 BreakCriticalEdges() : FunctionPass(ID) { 45 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 46 } 47 48 bool runOnFunction(Function &F) override { 49 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 50 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 51 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 52 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 53 unsigned N = 54 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 55 NumBroken += N; 56 return N > 0; 57 } 58 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 AU.addPreserved<DominatorTreeWrapperPass>(); 61 AU.addPreserved<LoopInfoWrapperPass>(); 62 63 // No loop canonicalization guarantees are broken by this pass. 64 AU.addPreservedID(LoopSimplifyID); 65 } 66 }; 67 } 68 69 char BreakCriticalEdges::ID = 0; 70 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 71 "Break critical edges in CFG", false, false) 72 73 // Publicly exposed interface to pass... 74 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 75 FunctionPass *llvm::createBreakCriticalEdgesPass() { 76 return new BreakCriticalEdges(); 77 } 78 79 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F, 80 FunctionAnalysisManager &AM) { 81 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 82 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 83 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 84 NumBroken += N; 85 if (N == 0) 86 return PreservedAnalyses::all(); 87 PreservedAnalyses PA; 88 PA.preserve<DominatorTreeAnalysis>(); 89 PA.preserve<LoopAnalysis>(); 90 return PA; 91 } 92 93 //===----------------------------------------------------------------------===// 94 // Implementation of the external critical edge manipulation functions 95 //===----------------------------------------------------------------------===// 96 97 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new 98 /// exit block. This function inserts the new PHIs, as needed. Preds is a list 99 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is 100 /// the old loop exit, now the successor of SplitBB. 101 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 102 BasicBlock *SplitBB, 103 BasicBlock *DestBB) { 104 // SplitBB shouldn't have anything non-trivial in it yet. 105 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 106 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); 107 108 // For each PHI in the destination block. 109 for (PHINode &PN : DestBB->phis()) { 110 unsigned Idx = PN.getBasicBlockIndex(SplitBB); 111 Value *V = PN.getIncomingValue(Idx); 112 113 // If the input is a PHI which already satisfies LCSSA, don't create 114 // a new one. 115 if (const PHINode *VP = dyn_cast<PHINode>(V)) 116 if (VP->getParent() == SplitBB) 117 continue; 118 119 // Otherwise a new PHI is needed. Create one and populate it. 120 PHINode *NewPN = PHINode::Create( 121 PN.getType(), Preds.size(), "split", 122 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 123 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 124 NewPN->addIncoming(V, Preds[i]); 125 126 // Update the original PHI. 127 PN.setIncomingValue(Idx, NewPN); 128 } 129 } 130 131 BasicBlock * 132 llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, 133 const CriticalEdgeSplittingOptions &Options) { 134 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) 135 return nullptr; 136 137 assert(!isa<IndirectBrInst>(TI) && 138 "Cannot split critical edge from IndirectBrInst"); 139 140 BasicBlock *TIBB = TI->getParent(); 141 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 142 143 // Splitting the critical edge to a pad block is non-trivial. Don't do 144 // it in this generic function. 145 if (DestBB->isEHPad()) return nullptr; 146 147 // Create a new basic block, linking it into the CFG. 148 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 149 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 150 // Create our unconditional branch. 151 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 152 NewBI->setDebugLoc(TI->getDebugLoc()); 153 154 // Branch to the new block, breaking the edge. 155 TI->setSuccessor(SuccNum, NewBB); 156 157 // Insert the block into the function... right after the block TI lives in. 158 Function &F = *TIBB->getParent(); 159 Function::iterator FBBI = TIBB->getIterator(); 160 F.getBasicBlockList().insert(++FBBI, NewBB); 161 162 // If there are any PHI nodes in DestBB, we need to update them so that they 163 // merge incoming values from NewBB instead of from TIBB. 164 { 165 unsigned BBIdx = 0; 166 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 167 // We no longer enter through TIBB, now we come in through NewBB. 168 // Revector exactly one entry in the PHI node that used to come from 169 // TIBB to come from NewBB. 170 PHINode *PN = cast<PHINode>(I); 171 172 // Reuse the previous value of BBIdx if it lines up. In cases where we 173 // have multiple phi nodes with *lots* of predecessors, this is a speed 174 // win because we don't have to scan the PHI looking for TIBB. This 175 // happens because the BB list of PHI nodes are usually in the same 176 // order. 177 if (PN->getIncomingBlock(BBIdx) != TIBB) 178 BBIdx = PN->getBasicBlockIndex(TIBB); 179 PN->setIncomingBlock(BBIdx, NewBB); 180 } 181 } 182 183 // If there are any other edges from TIBB to DestBB, update those to go 184 // through the split block, making those edges non-critical as well (and 185 // reducing the number of phi entries in the DestBB if relevant). 186 if (Options.MergeIdenticalEdges) { 187 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 188 if (TI->getSuccessor(i) != DestBB) continue; 189 190 // Remove an entry for TIBB from DestBB phi nodes. 191 DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs); 192 193 // We found another edge to DestBB, go to NewBB instead. 194 TI->setSuccessor(i, NewBB); 195 } 196 } 197 198 // If we have nothing to update, just return. 199 auto *DT = Options.DT; 200 auto *LI = Options.LI; 201 if (!DT && !LI) 202 return NewBB; 203 204 if (DT) { 205 // Update the DominatorTree. 206 // ---> NewBB -----\ 207 // / V 208 // TIBB -------\\------> DestBB 209 // 210 // First, inform the DT about the new path from TIBB to DestBB via NewBB, 211 // then delete the old edge from TIBB to DestBB. By doing this in that order 212 // DestBB stays reachable in the DT the whole time and its subtree doesn't 213 // get disconnected. 214 SmallVector<DominatorTree::UpdateType, 3> Updates; 215 Updates.push_back({DominatorTree::Insert, TIBB, NewBB}); 216 Updates.push_back({DominatorTree::Insert, NewBB, DestBB}); 217 if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB)) 218 Updates.push_back({DominatorTree::Delete, TIBB, DestBB}); 219 220 DT->applyUpdates(Updates); 221 } 222 223 // Update LoopInfo if it is around. 224 if (LI) { 225 if (Loop *TIL = LI->getLoopFor(TIBB)) { 226 // If one or the other blocks were not in a loop, the new block is not 227 // either, and thus LI doesn't need to be updated. 228 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 229 if (TIL == DestLoop) { 230 // Both in the same loop, the NewBB joins loop. 231 DestLoop->addBasicBlockToLoop(NewBB, *LI); 232 } else if (TIL->contains(DestLoop)) { 233 // Edge from an outer loop to an inner loop. Add to the outer loop. 234 TIL->addBasicBlockToLoop(NewBB, *LI); 235 } else if (DestLoop->contains(TIL)) { 236 // Edge from an inner loop to an outer loop. Add to the outer loop. 237 DestLoop->addBasicBlockToLoop(NewBB, *LI); 238 } else { 239 // Edge from two loops with no containment relation. Because these 240 // are natural loops, we know that the destination block must be the 241 // header of its loop (adding a branch into a loop elsewhere would 242 // create an irreducible loop). 243 assert(DestLoop->getHeader() == DestBB && 244 "Should not create irreducible loops!"); 245 if (Loop *P = DestLoop->getParentLoop()) 246 P->addBasicBlockToLoop(NewBB, *LI); 247 } 248 } 249 250 // If TIBB is in a loop and DestBB is outside of that loop, we may need 251 // to update LoopSimplify form and LCSSA form. 252 if (!TIL->contains(DestBB)) { 253 assert(!TIL->contains(NewBB) && 254 "Split point for loop exit is contained in loop!"); 255 256 // Update LCSSA form in the newly created exit block. 257 if (Options.PreserveLCSSA) { 258 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 259 } 260 261 // The only that we can break LoopSimplify form by splitting a critical 262 // edge is if after the split there exists some edge from TIL to DestBB 263 // *and* the only edge into DestBB from outside of TIL is that of 264 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 265 // is the new exit block and it has no non-loop predecessors. If the 266 // second isn't true, then DestBB was not in LoopSimplify form prior to 267 // the split as it had a non-loop predecessor. In both of these cases, 268 // the predecessor must be directly in TIL, not in a subloop, or again 269 // LoopSimplify doesn't hold. 270 SmallVector<BasicBlock *, 4> LoopPreds; 271 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; 272 ++I) { 273 BasicBlock *P = *I; 274 if (P == NewBB) 275 continue; // The new block is known. 276 if (LI->getLoopFor(P) != TIL) { 277 // No need to re-simplify, it wasn't to start with. 278 LoopPreds.clear(); 279 break; 280 } 281 LoopPreds.push_back(P); 282 } 283 if (!LoopPreds.empty()) { 284 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); 285 BasicBlock *NewExitBB = SplitBlockPredecessors( 286 DestBB, LoopPreds, "split", DT, LI, Options.PreserveLCSSA); 287 if (Options.PreserveLCSSA) 288 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 289 } 290 } 291 } 292 } 293 294 return NewBB; 295 } 296 297 // Return the unique indirectbr predecessor of a block. This may return null 298 // even if such a predecessor exists, if it's not useful for splitting. 299 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 300 // predecessors of BB. 301 static BasicBlock * 302 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 303 // If the block doesn't have any PHIs, we don't care about it, since there's 304 // no point in splitting it. 305 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 306 if (!PN) 307 return nullptr; 308 309 // Verify we have exactly one IBR predecessor. 310 // Conservatively bail out if one of the other predecessors is not a "regular" 311 // terminator (that is, not a switch or a br). 312 BasicBlock *IBB = nullptr; 313 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 314 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 315 TerminatorInst *PredTerm = PredBB->getTerminator(); 316 switch (PredTerm->getOpcode()) { 317 case Instruction::IndirectBr: 318 if (IBB) 319 return nullptr; 320 IBB = PredBB; 321 break; 322 case Instruction::Br: 323 case Instruction::Switch: 324 OtherPreds.push_back(PredBB); 325 continue; 326 default: 327 return nullptr; 328 } 329 } 330 331 return IBB; 332 } 333 334 bool llvm::SplitIndirectBrCriticalEdges(Function &F, 335 BranchProbabilityInfo *BPI, 336 BlockFrequencyInfo *BFI) { 337 // Check whether the function has any indirectbrs, and collect which blocks 338 // they may jump to. Since most functions don't have indirect branches, 339 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 340 SmallSetVector<BasicBlock *, 16> Targets; 341 for (auto &BB : F) { 342 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 343 if (!IBI) 344 continue; 345 346 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 347 Targets.insert(IBI->getSuccessor(Succ)); 348 } 349 350 if (Targets.empty()) 351 return false; 352 353 bool ShouldUpdateAnalysis = BPI && BFI; 354 bool Changed = false; 355 for (BasicBlock *Target : Targets) { 356 SmallVector<BasicBlock *, 16> OtherPreds; 357 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 358 // If we did not found an indirectbr, or the indirectbr is the only 359 // incoming edge, this isn't the kind of edge we're looking for. 360 if (!IBRPred || OtherPreds.empty()) 361 continue; 362 363 // Don't even think about ehpads/landingpads. 364 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 365 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 366 continue; 367 368 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 369 if (ShouldUpdateAnalysis) { 370 // Copy the BFI/BPI from Target to BodyBlock. 371 for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors(); 372 I < E; ++I) 373 BPI->setEdgeProbability(BodyBlock, I, 374 BPI->getEdgeProbability(Target, I)); 375 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency()); 376 } 377 // It's possible Target was its own successor through an indirectbr. 378 // In this case, the indirectbr now comes from BodyBlock. 379 if (IBRPred == Target) 380 IBRPred = BodyBlock; 381 382 // At this point Target only has PHIs, and BodyBlock has the rest of the 383 // block's body. Create a copy of Target that will be used by the "direct" 384 // preds. 385 ValueToValueMapTy VMap; 386 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 387 388 BlockFrequency BlockFreqForDirectSucc; 389 for (BasicBlock *Pred : OtherPreds) { 390 // If the target is a loop to itself, then the terminator of the split 391 // block (BodyBlock) needs to be updated. 392 BasicBlock *Src = Pred != Target ? Pred : BodyBlock; 393 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 394 if (ShouldUpdateAnalysis) 395 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) * 396 BPI->getEdgeProbability(Src, DirectSucc); 397 } 398 if (ShouldUpdateAnalysis) { 399 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency()); 400 BlockFrequency NewBlockFreqForTarget = 401 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc; 402 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency()); 403 BPI->eraseBlock(Target); 404 } 405 406 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 407 // they are clones, so the number of PHIs are the same. 408 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 409 // (b) Leave that as the only edge in the "Indirect" PHI. 410 // (c) Merge the two in the body block. 411 BasicBlock::iterator Indirect = Target->begin(), 412 End = Target->getFirstNonPHI()->getIterator(); 413 BasicBlock::iterator Direct = DirectSucc->begin(); 414 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 415 416 assert(&*End == Target->getTerminator() && 417 "Block was expected to only contain PHIs"); 418 419 while (Indirect != End) { 420 PHINode *DirPHI = cast<PHINode>(Direct); 421 PHINode *IndPHI = cast<PHINode>(Indirect); 422 423 // Now, clean up - the direct block shouldn't get the indirect value, 424 // and vice versa. 425 DirPHI->removeIncomingValue(IBRPred); 426 Direct++; 427 428 // Advance the pointer here, to avoid invalidation issues when the old 429 // PHI is erased. 430 Indirect++; 431 432 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 433 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 434 IBRPred); 435 436 // Create a PHI in the body block, to merge the direct and indirect 437 // predecessors. 438 PHINode *MergePHI = 439 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 440 MergePHI->addIncoming(NewIndPHI, Target); 441 MergePHI->addIncoming(DirPHI, DirectSucc); 442 443 IndPHI->replaceAllUsesWith(MergePHI); 444 IndPHI->eraseFromParent(); 445 } 446 447 Changed = true; 448 } 449 450 return Changed; 451 } 452