1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 10 // inserting a dummy basic block. This pass may be "required" by passes that 11 // cannot deal with critical edges. For this usage, the structure type is 12 // forward declared. This pass obviously invalidates the CFG, but can update 13 // dominator trees. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemorySSAUpdater.h" 26 #include "llvm/Analysis/PostDominators.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/InitializePasses.h" 31 #include "llvm/Transforms/Utils.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "break-crit-edges" 38 39 STATISTIC(NumBroken, "Number of blocks inserted"); 40 41 namespace { 42 struct BreakCriticalEdges : public FunctionPass { 43 static char ID; // Pass identification, replacement for typeid 44 BreakCriticalEdges() : FunctionPass(ID) { 45 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 46 } 47 48 bool runOnFunction(Function &F) override { 49 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 50 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 51 52 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 53 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 54 55 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 56 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 57 unsigned N = 58 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT)); 59 NumBroken += N; 60 return N > 0; 61 } 62 63 void getAnalysisUsage(AnalysisUsage &AU) const override { 64 AU.addPreserved<DominatorTreeWrapperPass>(); 65 AU.addPreserved<LoopInfoWrapperPass>(); 66 67 // No loop canonicalization guarantees are broken by this pass. 68 AU.addPreservedID(LoopSimplifyID); 69 } 70 }; 71 } 72 73 char BreakCriticalEdges::ID = 0; 74 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 75 "Break critical edges in CFG", false, false) 76 77 // Publicly exposed interface to pass... 78 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 79 FunctionPass *llvm::createBreakCriticalEdgesPass() { 80 return new BreakCriticalEdges(); 81 } 82 83 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F, 84 FunctionAnalysisManager &AM) { 85 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 86 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 87 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 88 NumBroken += N; 89 if (N == 0) 90 return PreservedAnalyses::all(); 91 PreservedAnalyses PA; 92 PA.preserve<DominatorTreeAnalysis>(); 93 PA.preserve<LoopAnalysis>(); 94 return PA; 95 } 96 97 //===----------------------------------------------------------------------===// 98 // Implementation of the external critical edge manipulation functions 99 //===----------------------------------------------------------------------===// 100 101 BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum, 102 const CriticalEdgeSplittingOptions &Options, 103 const Twine &BBName) { 104 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) 105 return nullptr; 106 107 return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName); 108 } 109 110 BasicBlock * 111 llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum, 112 const CriticalEdgeSplittingOptions &Options, 113 const Twine &BBName) { 114 assert(!isa<IndirectBrInst>(TI) && 115 "Cannot split critical edge from IndirectBrInst"); 116 117 BasicBlock *TIBB = TI->getParent(); 118 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 119 120 // Splitting the critical edge to a pad block is non-trivial. Don't do 121 // it in this generic function. 122 if (DestBB->isEHPad()) return nullptr; 123 124 if (Options.IgnoreUnreachableDests && 125 isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime())) 126 return nullptr; 127 128 auto *LI = Options.LI; 129 SmallVector<BasicBlock *, 4> LoopPreds; 130 // Check if extra modifications will be required to preserve loop-simplify 131 // form after splitting. If it would require splitting blocks with IndirectBr 132 // or CallBr terminators, bail out if preserving loop-simplify form is 133 // requested. 134 if (LI) { 135 if (Loop *TIL = LI->getLoopFor(TIBB)) { 136 137 // The only way that we can break LoopSimplify form by splitting a 138 // critical edge is if after the split there exists some edge from TIL to 139 // DestBB *and* the only edge into DestBB from outside of TIL is that of 140 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 141 // is the new exit block and it has no non-loop predecessors. If the 142 // second isn't true, then DestBB was not in LoopSimplify form prior to 143 // the split as it had a non-loop predecessor. In both of these cases, 144 // the predecessor must be directly in TIL, not in a subloop, or again 145 // LoopSimplify doesn't hold. 146 for (BasicBlock *P : predecessors(DestBB)) { 147 if (P == TIBB) 148 continue; // The new block is known. 149 if (LI->getLoopFor(P) != TIL) { 150 // No need to re-simplify, it wasn't to start with. 151 LoopPreds.clear(); 152 break; 153 } 154 LoopPreds.push_back(P); 155 } 156 // Loop-simplify form can be preserved, if we can split all in-loop 157 // predecessors. 158 if (any_of(LoopPreds, [](BasicBlock *Pred) { 159 const Instruction *T = Pred->getTerminator(); 160 if (const auto *CBR = dyn_cast<CallBrInst>(T)) 161 return CBR->getDefaultDest() != Pred; 162 return isa<IndirectBrInst>(T); 163 })) { 164 if (Options.PreserveLoopSimplify) 165 return nullptr; 166 LoopPreds.clear(); 167 } 168 } 169 } 170 171 // Create a new basic block, linking it into the CFG. 172 BasicBlock *NewBB = nullptr; 173 if (BBName.str() != "") 174 NewBB = BasicBlock::Create(TI->getContext(), BBName); 175 else 176 NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." + 177 DestBB->getName() + 178 "_crit_edge"); 179 // Create our unconditional branch. 180 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 181 NewBI->setDebugLoc(TI->getDebugLoc()); 182 183 // Insert the block into the function... right after the block TI lives in. 184 Function &F = *TIBB->getParent(); 185 Function::iterator FBBI = TIBB->getIterator(); 186 F.getBasicBlockList().insert(++FBBI, NewBB); 187 188 // Branch to the new block, breaking the edge. 189 TI->setSuccessor(SuccNum, NewBB); 190 191 // If there are any PHI nodes in DestBB, we need to update them so that they 192 // merge incoming values from NewBB instead of from TIBB. 193 { 194 unsigned BBIdx = 0; 195 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 196 // We no longer enter through TIBB, now we come in through NewBB. 197 // Revector exactly one entry in the PHI node that used to come from 198 // TIBB to come from NewBB. 199 PHINode *PN = cast<PHINode>(I); 200 201 // Reuse the previous value of BBIdx if it lines up. In cases where we 202 // have multiple phi nodes with *lots* of predecessors, this is a speed 203 // win because we don't have to scan the PHI looking for TIBB. This 204 // happens because the BB list of PHI nodes are usually in the same 205 // order. 206 if (PN->getIncomingBlock(BBIdx) != TIBB) 207 BBIdx = PN->getBasicBlockIndex(TIBB); 208 PN->setIncomingBlock(BBIdx, NewBB); 209 } 210 } 211 212 // If there are any other edges from TIBB to DestBB, update those to go 213 // through the split block, making those edges non-critical as well (and 214 // reducing the number of phi entries in the DestBB if relevant). 215 if (Options.MergeIdenticalEdges) { 216 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 217 if (TI->getSuccessor(i) != DestBB) continue; 218 219 // Remove an entry for TIBB from DestBB phi nodes. 220 DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs); 221 222 // We found another edge to DestBB, go to NewBB instead. 223 TI->setSuccessor(i, NewBB); 224 } 225 } 226 227 // If we have nothing to update, just return. 228 auto *DT = Options.DT; 229 auto *PDT = Options.PDT; 230 auto *MSSAU = Options.MSSAU; 231 if (MSSAU) 232 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 233 DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges); 234 235 if (!DT && !PDT && !LI) 236 return NewBB; 237 238 if (DT || PDT) { 239 // Update the DominatorTree. 240 // ---> NewBB -----\ 241 // / V 242 // TIBB -------\\------> DestBB 243 // 244 // First, inform the DT about the new path from TIBB to DestBB via NewBB, 245 // then delete the old edge from TIBB to DestBB. By doing this in that order 246 // DestBB stays reachable in the DT the whole time and its subtree doesn't 247 // get disconnected. 248 SmallVector<DominatorTree::UpdateType, 3> Updates; 249 Updates.push_back({DominatorTree::Insert, TIBB, NewBB}); 250 Updates.push_back({DominatorTree::Insert, NewBB, DestBB}); 251 if (!llvm::is_contained(successors(TIBB), DestBB)) 252 Updates.push_back({DominatorTree::Delete, TIBB, DestBB}); 253 254 if (DT) 255 DT->applyUpdates(Updates); 256 if (PDT) 257 PDT->applyUpdates(Updates); 258 } 259 260 // Update LoopInfo if it is around. 261 if (LI) { 262 if (Loop *TIL = LI->getLoopFor(TIBB)) { 263 // If one or the other blocks were not in a loop, the new block is not 264 // either, and thus LI doesn't need to be updated. 265 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 266 if (TIL == DestLoop) { 267 // Both in the same loop, the NewBB joins loop. 268 DestLoop->addBasicBlockToLoop(NewBB, *LI); 269 } else if (TIL->contains(DestLoop)) { 270 // Edge from an outer loop to an inner loop. Add to the outer loop. 271 TIL->addBasicBlockToLoop(NewBB, *LI); 272 } else if (DestLoop->contains(TIL)) { 273 // Edge from an inner loop to an outer loop. Add to the outer loop. 274 DestLoop->addBasicBlockToLoop(NewBB, *LI); 275 } else { 276 // Edge from two loops with no containment relation. Because these 277 // are natural loops, we know that the destination block must be the 278 // header of its loop (adding a branch into a loop elsewhere would 279 // create an irreducible loop). 280 assert(DestLoop->getHeader() == DestBB && 281 "Should not create irreducible loops!"); 282 if (Loop *P = DestLoop->getParentLoop()) 283 P->addBasicBlockToLoop(NewBB, *LI); 284 } 285 } 286 287 // If TIBB is in a loop and DestBB is outside of that loop, we may need 288 // to update LoopSimplify form and LCSSA form. 289 if (!TIL->contains(DestBB)) { 290 assert(!TIL->contains(NewBB) && 291 "Split point for loop exit is contained in loop!"); 292 293 // Update LCSSA form in the newly created exit block. 294 if (Options.PreserveLCSSA) { 295 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 296 } 297 298 if (!LoopPreds.empty()) { 299 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); 300 BasicBlock *NewExitBB = SplitBlockPredecessors( 301 DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 302 if (Options.PreserveLCSSA) 303 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 304 } 305 } 306 } 307 } 308 309 return NewBB; 310 } 311 312 // Return the unique indirectbr predecessor of a block. This may return null 313 // even if such a predecessor exists, if it's not useful for splitting. 314 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 315 // predecessors of BB. 316 static BasicBlock * 317 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 318 // Verify we have exactly one IBR predecessor. 319 // Conservatively bail out if one of the other predecessors is not a "regular" 320 // terminator (that is, not a switch or a br). 321 BasicBlock *IBB = nullptr; 322 for (BasicBlock *PredBB : predecessors(BB)) { 323 Instruction *PredTerm = PredBB->getTerminator(); 324 switch (PredTerm->getOpcode()) { 325 case Instruction::IndirectBr: 326 if (IBB) 327 return nullptr; 328 IBB = PredBB; 329 break; 330 case Instruction::Br: 331 case Instruction::Switch: 332 OtherPreds.push_back(PredBB); 333 continue; 334 default: 335 return nullptr; 336 } 337 } 338 339 return IBB; 340 } 341 342 bool llvm::SplitIndirectBrCriticalEdges(Function &F, 343 bool IgnoreBlocksWithoutPHI, 344 BranchProbabilityInfo *BPI, 345 BlockFrequencyInfo *BFI) { 346 // Check whether the function has any indirectbrs, and collect which blocks 347 // they may jump to. Since most functions don't have indirect branches, 348 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 349 SmallSetVector<BasicBlock *, 16> Targets; 350 for (auto &BB : F) { 351 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 352 if (!IBI) 353 continue; 354 355 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 356 Targets.insert(IBI->getSuccessor(Succ)); 357 } 358 359 if (Targets.empty()) 360 return false; 361 362 bool ShouldUpdateAnalysis = BPI && BFI; 363 bool Changed = false; 364 for (BasicBlock *Target : Targets) { 365 if (IgnoreBlocksWithoutPHI && Target->phis().empty()) 366 continue; 367 368 SmallVector<BasicBlock *, 16> OtherPreds; 369 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 370 // If we did not found an indirectbr, or the indirectbr is the only 371 // incoming edge, this isn't the kind of edge we're looking for. 372 if (!IBRPred || OtherPreds.empty()) 373 continue; 374 375 // Don't even think about ehpads/landingpads. 376 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 377 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 378 continue; 379 380 // Remember edge probabilities if needed. 381 SmallVector<BranchProbability, 4> EdgeProbabilities; 382 if (ShouldUpdateAnalysis) { 383 EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors()); 384 for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors(); 385 I < E; ++I) 386 EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I)); 387 BPI->eraseBlock(Target); 388 } 389 390 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 391 if (ShouldUpdateAnalysis) { 392 // Copy the BFI/BPI from Target to BodyBlock. 393 BPI->setEdgeProbability(BodyBlock, EdgeProbabilities); 394 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency()); 395 } 396 // It's possible Target was its own successor through an indirectbr. 397 // In this case, the indirectbr now comes from BodyBlock. 398 if (IBRPred == Target) 399 IBRPred = BodyBlock; 400 401 // At this point Target only has PHIs, and BodyBlock has the rest of the 402 // block's body. Create a copy of Target that will be used by the "direct" 403 // preds. 404 ValueToValueMapTy VMap; 405 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 406 407 BlockFrequency BlockFreqForDirectSucc; 408 for (BasicBlock *Pred : OtherPreds) { 409 // If the target is a loop to itself, then the terminator of the split 410 // block (BodyBlock) needs to be updated. 411 BasicBlock *Src = Pred != Target ? Pred : BodyBlock; 412 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 413 if (ShouldUpdateAnalysis) 414 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) * 415 BPI->getEdgeProbability(Src, DirectSucc); 416 } 417 if (ShouldUpdateAnalysis) { 418 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency()); 419 BlockFrequency NewBlockFreqForTarget = 420 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc; 421 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency()); 422 } 423 424 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 425 // they are clones, so the number of PHIs are the same. 426 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 427 // (b) Leave that as the only edge in the "Indirect" PHI. 428 // (c) Merge the two in the body block. 429 BasicBlock::iterator Indirect = Target->begin(), 430 End = Target->getFirstNonPHI()->getIterator(); 431 BasicBlock::iterator Direct = DirectSucc->begin(); 432 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 433 434 assert(&*End == Target->getTerminator() && 435 "Block was expected to only contain PHIs"); 436 437 while (Indirect != End) { 438 PHINode *DirPHI = cast<PHINode>(Direct); 439 PHINode *IndPHI = cast<PHINode>(Indirect); 440 441 // Now, clean up - the direct block shouldn't get the indirect value, 442 // and vice versa. 443 DirPHI->removeIncomingValue(IBRPred); 444 Direct++; 445 446 // Advance the pointer here, to avoid invalidation issues when the old 447 // PHI is erased. 448 Indirect++; 449 450 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 451 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 452 IBRPred); 453 454 // Create a PHI in the body block, to merge the direct and indirect 455 // predecessors. 456 PHINode *MergePHI = 457 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 458 MergePHI->addIncoming(NewIndPHI, Target); 459 MergePHI->addIncoming(DirPHI, DirectSucc); 460 461 IndPHI->replaceAllUsesWith(MergePHI); 462 IndPHI->eraseFromParent(); 463 } 464 465 Changed = true; 466 } 467 468 return Changed; 469 } 470