1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
10 // inserting a dummy basic block.  This pass may be "required" by passes that
11 // cannot deal with critical edges.  For this usage, the structure type is
12 // forward declared.  This pass obviously invalidates the CFG, but can update
13 // dominator trees.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/PostDominators.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Transforms/Utils.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "break-crit-edges"
38 
39 STATISTIC(NumBroken, "Number of blocks inserted");
40 
41 namespace {
42   struct BreakCriticalEdges : public FunctionPass {
43     static char ID; // Pass identification, replacement for typeid
44     BreakCriticalEdges() : FunctionPass(ID) {
45       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
46     }
47 
48     bool runOnFunction(Function &F) override {
49       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
50       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
51 
52       auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
53       auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
54 
55       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
56       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
57       unsigned N =
58           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
59       NumBroken += N;
60       return N > 0;
61     }
62 
63     void getAnalysisUsage(AnalysisUsage &AU) const override {
64       AU.addPreserved<DominatorTreeWrapperPass>();
65       AU.addPreserved<LoopInfoWrapperPass>();
66 
67       // No loop canonicalization guarantees are broken by this pass.
68       AU.addPreservedID(LoopSimplifyID);
69     }
70   };
71 }
72 
73 char BreakCriticalEdges::ID = 0;
74 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
75                 "Break critical edges in CFG", false, false)
76 
77 // Publicly exposed interface to pass...
78 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
79 FunctionPass *llvm::createBreakCriticalEdgesPass() {
80   return new BreakCriticalEdges();
81 }
82 
83 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
84                                               FunctionAnalysisManager &AM) {
85   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
86   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
87   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
88   NumBroken += N;
89   if (N == 0)
90     return PreservedAnalyses::all();
91   PreservedAnalyses PA;
92   PA.preserve<DominatorTreeAnalysis>();
93   PA.preserve<LoopAnalysis>();
94   return PA;
95 }
96 
97 //===----------------------------------------------------------------------===//
98 //    Implementation of the external critical edge manipulation functions
99 //===----------------------------------------------------------------------===//
100 
101 BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
102                                     const CriticalEdgeSplittingOptions &Options,
103                                     const Twine &BBName) {
104   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
105     return nullptr;
106 
107   return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName);
108 }
109 
110 BasicBlock *
111 llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum,
112                              const CriticalEdgeSplittingOptions &Options,
113                              const Twine &BBName) {
114   assert(!isa<IndirectBrInst>(TI) &&
115          "Cannot split critical edge from IndirectBrInst");
116 
117   BasicBlock *TIBB = TI->getParent();
118   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
119 
120   // Splitting the critical edge to a pad block is non-trivial. Don't do
121   // it in this generic function.
122   if (DestBB->isEHPad()) return nullptr;
123 
124   if (Options.IgnoreUnreachableDests &&
125       isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
126     return nullptr;
127 
128   auto *LI = Options.LI;
129   SmallVector<BasicBlock *, 4> LoopPreds;
130   // Check if extra modifications will be required to preserve loop-simplify
131   // form after splitting. If it would require splitting blocks with IndirectBr
132   // or CallBr terminators, bail out if preserving loop-simplify form is
133   // requested.
134   if (LI) {
135     if (Loop *TIL = LI->getLoopFor(TIBB)) {
136 
137       // The only way that we can break LoopSimplify form by splitting a
138       // critical edge is if after the split there exists some edge from TIL to
139       // DestBB *and* the only edge into DestBB from outside of TIL is that of
140       // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
141       // is the new exit block and it has no non-loop predecessors. If the
142       // second isn't true, then DestBB was not in LoopSimplify form prior to
143       // the split as it had a non-loop predecessor. In both of these cases,
144       // the predecessor must be directly in TIL, not in a subloop, or again
145       // LoopSimplify doesn't hold.
146       for (BasicBlock *P : predecessors(DestBB)) {
147         if (P == TIBB)
148           continue; // The new block is known.
149         if (LI->getLoopFor(P) != TIL) {
150           // No need to re-simplify, it wasn't to start with.
151           LoopPreds.clear();
152           break;
153         }
154         LoopPreds.push_back(P);
155       }
156       // Loop-simplify form can be preserved, if we can split all in-loop
157       // predecessors.
158       if (any_of(LoopPreds, [](BasicBlock *Pred) {
159             const Instruction *T = Pred->getTerminator();
160             if (const auto *CBR = dyn_cast<CallBrInst>(T))
161               return CBR->getDefaultDest() != Pred;
162             return isa<IndirectBrInst>(T);
163           })) {
164         if (Options.PreserveLoopSimplify)
165           return nullptr;
166         LoopPreds.clear();
167       }
168     }
169   }
170 
171   // Create a new basic block, linking it into the CFG.
172   BasicBlock *NewBB = nullptr;
173   if (BBName.str() != "")
174     NewBB = BasicBlock::Create(TI->getContext(), BBName);
175   else
176     NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
177                                                      DestBB->getName() +
178                                                      "_crit_edge");
179   // Create our unconditional branch.
180   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
181   NewBI->setDebugLoc(TI->getDebugLoc());
182 
183   // Insert the block into the function... right after the block TI lives in.
184   Function &F = *TIBB->getParent();
185   Function::iterator FBBI = TIBB->getIterator();
186   F.getBasicBlockList().insert(++FBBI, NewBB);
187 
188   // Branch to the new block, breaking the edge.
189   TI->setSuccessor(SuccNum, NewBB);
190 
191   // If there are any PHI nodes in DestBB, we need to update them so that they
192   // merge incoming values from NewBB instead of from TIBB.
193   {
194     unsigned BBIdx = 0;
195     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
196       // We no longer enter through TIBB, now we come in through NewBB.
197       // Revector exactly one entry in the PHI node that used to come from
198       // TIBB to come from NewBB.
199       PHINode *PN = cast<PHINode>(I);
200 
201       // Reuse the previous value of BBIdx if it lines up.  In cases where we
202       // have multiple phi nodes with *lots* of predecessors, this is a speed
203       // win because we don't have to scan the PHI looking for TIBB.  This
204       // happens because the BB list of PHI nodes are usually in the same
205       // order.
206       if (PN->getIncomingBlock(BBIdx) != TIBB)
207         BBIdx = PN->getBasicBlockIndex(TIBB);
208       PN->setIncomingBlock(BBIdx, NewBB);
209     }
210   }
211 
212   // If there are any other edges from TIBB to DestBB, update those to go
213   // through the split block, making those edges non-critical as well (and
214   // reducing the number of phi entries in the DestBB if relevant).
215   if (Options.MergeIdenticalEdges) {
216     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
217       if (TI->getSuccessor(i) != DestBB) continue;
218 
219       // Remove an entry for TIBB from DestBB phi nodes.
220       DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
221 
222       // We found another edge to DestBB, go to NewBB instead.
223       TI->setSuccessor(i, NewBB);
224     }
225   }
226 
227   // If we have nothing to update, just return.
228   auto *DT = Options.DT;
229   auto *PDT = Options.PDT;
230   auto *MSSAU = Options.MSSAU;
231   if (MSSAU)
232     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
233         DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
234 
235   if (!DT && !PDT && !LI)
236     return NewBB;
237 
238   if (DT || PDT) {
239     // Update the DominatorTree.
240     //       ---> NewBB -----\
241     //      /                 V
242     //  TIBB -------\\------> DestBB
243     //
244     // First, inform the DT about the new path from TIBB to DestBB via NewBB,
245     // then delete the old edge from TIBB to DestBB. By doing this in that order
246     // DestBB stays reachable in the DT the whole time and its subtree doesn't
247     // get disconnected.
248     SmallVector<DominatorTree::UpdateType, 3> Updates;
249     Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
250     Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
251     if (!llvm::is_contained(successors(TIBB), DestBB))
252       Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
253 
254     if (DT)
255       DT->applyUpdates(Updates);
256     if (PDT)
257       PDT->applyUpdates(Updates);
258   }
259 
260   // Update LoopInfo if it is around.
261   if (LI) {
262     if (Loop *TIL = LI->getLoopFor(TIBB)) {
263       // If one or the other blocks were not in a loop, the new block is not
264       // either, and thus LI doesn't need to be updated.
265       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
266         if (TIL == DestLoop) {
267           // Both in the same loop, the NewBB joins loop.
268           DestLoop->addBasicBlockToLoop(NewBB, *LI);
269         } else if (TIL->contains(DestLoop)) {
270           // Edge from an outer loop to an inner loop.  Add to the outer loop.
271           TIL->addBasicBlockToLoop(NewBB, *LI);
272         } else if (DestLoop->contains(TIL)) {
273           // Edge from an inner loop to an outer loop.  Add to the outer loop.
274           DestLoop->addBasicBlockToLoop(NewBB, *LI);
275         } else {
276           // Edge from two loops with no containment relation.  Because these
277           // are natural loops, we know that the destination block must be the
278           // header of its loop (adding a branch into a loop elsewhere would
279           // create an irreducible loop).
280           assert(DestLoop->getHeader() == DestBB &&
281                  "Should not create irreducible loops!");
282           if (Loop *P = DestLoop->getParentLoop())
283             P->addBasicBlockToLoop(NewBB, *LI);
284         }
285       }
286 
287       // If TIBB is in a loop and DestBB is outside of that loop, we may need
288       // to update LoopSimplify form and LCSSA form.
289       if (!TIL->contains(DestBB)) {
290         assert(!TIL->contains(NewBB) &&
291                "Split point for loop exit is contained in loop!");
292 
293         // Update LCSSA form in the newly created exit block.
294         if (Options.PreserveLCSSA) {
295           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
296         }
297 
298         if (!LoopPreds.empty()) {
299           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
300           BasicBlock *NewExitBB = SplitBlockPredecessors(
301               DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
302           if (Options.PreserveLCSSA)
303             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
304         }
305       }
306     }
307   }
308 
309   return NewBB;
310 }
311 
312 // Return the unique indirectbr predecessor of a block. This may return null
313 // even if such a predecessor exists, if it's not useful for splitting.
314 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
315 // predecessors of BB.
316 static BasicBlock *
317 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
318   // Verify we have exactly one IBR predecessor.
319   // Conservatively bail out if one of the other predecessors is not a "regular"
320   // terminator (that is, not a switch or a br).
321   BasicBlock *IBB = nullptr;
322   for (BasicBlock *PredBB : predecessors(BB)) {
323     Instruction *PredTerm = PredBB->getTerminator();
324     switch (PredTerm->getOpcode()) {
325     case Instruction::IndirectBr:
326       if (IBB)
327         return nullptr;
328       IBB = PredBB;
329       break;
330     case Instruction::Br:
331     case Instruction::Switch:
332       OtherPreds.push_back(PredBB);
333       continue;
334     default:
335       return nullptr;
336     }
337   }
338 
339   return IBB;
340 }
341 
342 bool llvm::SplitIndirectBrCriticalEdges(Function &F,
343                                         bool IgnoreBlocksWithoutPHI,
344                                         BranchProbabilityInfo *BPI,
345                                         BlockFrequencyInfo *BFI) {
346   // Check whether the function has any indirectbrs, and collect which blocks
347   // they may jump to. Since most functions don't have indirect branches,
348   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
349   SmallSetVector<BasicBlock *, 16> Targets;
350   for (auto &BB : F) {
351     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
352     if (!IBI)
353       continue;
354 
355     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
356       Targets.insert(IBI->getSuccessor(Succ));
357   }
358 
359   if (Targets.empty())
360     return false;
361 
362   bool ShouldUpdateAnalysis = BPI && BFI;
363   bool Changed = false;
364   for (BasicBlock *Target : Targets) {
365     if (IgnoreBlocksWithoutPHI && Target->phis().empty())
366       continue;
367 
368     SmallVector<BasicBlock *, 16> OtherPreds;
369     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
370     // If we did not found an indirectbr, or the indirectbr is the only
371     // incoming edge, this isn't the kind of edge we're looking for.
372     if (!IBRPred || OtherPreds.empty())
373       continue;
374 
375     // Don't even think about ehpads/landingpads.
376     Instruction *FirstNonPHI = Target->getFirstNonPHI();
377     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
378       continue;
379 
380     // Remember edge probabilities if needed.
381     SmallVector<BranchProbability, 4> EdgeProbabilities;
382     if (ShouldUpdateAnalysis) {
383       EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
384       for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
385            I < E; ++I)
386         EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
387       BPI->eraseBlock(Target);
388     }
389 
390     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
391     if (ShouldUpdateAnalysis) {
392       // Copy the BFI/BPI from Target to BodyBlock.
393       BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
394       BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
395     }
396     // It's possible Target was its own successor through an indirectbr.
397     // In this case, the indirectbr now comes from BodyBlock.
398     if (IBRPred == Target)
399       IBRPred = BodyBlock;
400 
401     // At this point Target only has PHIs, and BodyBlock has the rest of the
402     // block's body. Create a copy of Target that will be used by the "direct"
403     // preds.
404     ValueToValueMapTy VMap;
405     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
406 
407     BlockFrequency BlockFreqForDirectSucc;
408     for (BasicBlock *Pred : OtherPreds) {
409       // If the target is a loop to itself, then the terminator of the split
410       // block (BodyBlock) needs to be updated.
411       BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
412       Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
413       if (ShouldUpdateAnalysis)
414         BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
415             BPI->getEdgeProbability(Src, DirectSucc);
416     }
417     if (ShouldUpdateAnalysis) {
418       BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
419       BlockFrequency NewBlockFreqForTarget =
420           BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
421       BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
422     }
423 
424     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
425     // they are clones, so the number of PHIs are the same.
426     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
427     // (b) Leave that as the only edge in the "Indirect" PHI.
428     // (c) Merge the two in the body block.
429     BasicBlock::iterator Indirect = Target->begin(),
430                          End = Target->getFirstNonPHI()->getIterator();
431     BasicBlock::iterator Direct = DirectSucc->begin();
432     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
433 
434     assert(&*End == Target->getTerminator() &&
435            "Block was expected to only contain PHIs");
436 
437     while (Indirect != End) {
438       PHINode *DirPHI = cast<PHINode>(Direct);
439       PHINode *IndPHI = cast<PHINode>(Indirect);
440 
441       // Now, clean up - the direct block shouldn't get the indirect value,
442       // and vice versa.
443       DirPHI->removeIncomingValue(IBRPred);
444       Direct++;
445 
446       // Advance the pointer here, to avoid invalidation issues when the old
447       // PHI is erased.
448       Indirect++;
449 
450       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
451       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
452                              IBRPred);
453 
454       // Create a PHI in the body block, to merge the direct and indirect
455       // predecessors.
456       PHINode *MergePHI =
457           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
458       MergePHI->addIncoming(NewIndPHI, Target);
459       MergePHI->addIncoming(DirPHI, DirectSucc);
460 
461       IndPHI->replaceAllUsesWith(MergePHI);
462       IndPHI->eraseFromParent();
463     }
464 
465     Changed = true;
466   }
467 
468   return Changed;
469 }
470