1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 11 // inserting a dummy basic block. This pass may be "required" by passes that 12 // cannot deal with critical edges. For this usage, the structure type is 13 // forward declared. This pass obviously invalidates the CFG, but can update 14 // forward dominator (set, immediate dominators, tree, and frontier) 15 // information. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #define DEBUG_TYPE "break-crit-edges" 20 #include "llvm/Transforms/Scalar.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Analysis/Dominators.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/ProfileInfo.h" 25 #include "llvm/Function.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/Type.h" 28 #include "llvm/Support/CFG.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 using namespace llvm; 33 34 STATISTIC(NumBroken, "Number of blocks inserted"); 35 36 namespace { 37 struct BreakCriticalEdges : public FunctionPass { 38 static char ID; // Pass identification, replacement for typeid 39 BreakCriticalEdges() : FunctionPass(&ID) {} 40 41 virtual bool runOnFunction(Function &F); 42 43 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 44 AU.addPreserved<DominatorTree>(); 45 AU.addPreserved<DominanceFrontier>(); 46 AU.addPreserved<LoopInfo>(); 47 AU.addPreserved<ProfileInfo>(); 48 49 // No loop canonicalization guarantees are broken by this pass. 50 AU.addPreservedID(LoopSimplifyID); 51 } 52 }; 53 } 54 55 char BreakCriticalEdges::ID = 0; 56 static RegisterPass<BreakCriticalEdges> 57 X("break-crit-edges", "Break critical edges in CFG"); 58 59 // Publically exposed interface to pass... 60 const PassInfo *const llvm::BreakCriticalEdgesID = &X; 61 FunctionPass *llvm::createBreakCriticalEdgesPass() { 62 return new BreakCriticalEdges(); 63 } 64 65 // runOnFunction - Loop over all of the edges in the CFG, breaking critical 66 // edges as they are found. 67 // 68 bool BreakCriticalEdges::runOnFunction(Function &F) { 69 bool Changed = false; 70 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 71 TerminatorInst *TI = I->getTerminator(); 72 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 73 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 74 if (SplitCriticalEdge(TI, i, this)) { 75 ++NumBroken; 76 Changed = true; 77 } 78 } 79 80 return Changed; 81 } 82 83 //===----------------------------------------------------------------------===// 84 // Implementation of the external critical edge manipulation functions 85 //===----------------------------------------------------------------------===// 86 87 // isCriticalEdge - Return true if the specified edge is a critical edge. 88 // Critical edges are edges from a block with multiple successors to a block 89 // with multiple predecessors. 90 // 91 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, 92 bool AllowIdenticalEdges) { 93 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); 94 if (TI->getNumSuccessors() == 1) return false; 95 96 const BasicBlock *Dest = TI->getSuccessor(SuccNum); 97 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); 98 99 // If there is more than one predecessor, this is a critical edge... 100 assert(I != E && "No preds, but we have an edge to the block?"); 101 const BasicBlock *FirstPred = *I; 102 ++I; // Skip one edge due to the incoming arc from TI. 103 if (!AllowIdenticalEdges) 104 return I != E; 105 106 // If AllowIdenticalEdges is true, then we allow this edge to be considered 107 // non-critical iff all preds come from TI's block. 108 while (I != E) { 109 if (*I != FirstPred) 110 return true; 111 // Note: leave this as is until no one ever compiles with either gcc 4.0.1 112 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207 113 E = pred_end(*I); 114 ++I; 115 } 116 return false; 117 } 118 119 /// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form 120 /// may require new PHIs in the new exit block. This function inserts the 121 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB 122 /// is the new loop exit block, and DestBB is the old loop exit, now the 123 /// successor of SplitBB. 124 static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds, 125 BasicBlock *SplitBB, 126 BasicBlock *DestBB) { 127 // SplitBB shouldn't have anything non-trivial in it yet. 128 assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() && 129 "SplitBB has non-PHI nodes!"); 130 131 // For each PHI in the destination block... 132 for (BasicBlock::iterator I = DestBB->begin(); 133 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 134 unsigned Idx = PN->getBasicBlockIndex(SplitBB); 135 Value *V = PN->getIncomingValue(Idx); 136 // If the input is a PHI which already satisfies LCSSA, don't create 137 // a new one. 138 if (const PHINode *VP = dyn_cast<PHINode>(V)) 139 if (VP->getParent() == SplitBB) 140 continue; 141 // Otherwise a new PHI is needed. Create one and populate it. 142 PHINode *NewPN = PHINode::Create(PN->getType(), "split", 143 SplitBB->getTerminator()); 144 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 145 NewPN->addIncoming(V, Preds[i]); 146 // Update the original PHI. 147 PN->setIncomingValue(Idx, NewPN); 148 } 149 } 150 151 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to 152 /// split the critical edge. This will update DominatorTree and 153 /// DominatorFrontier information if it is available, thus calling this pass 154 /// will not invalidate either of them. This returns the new block if the edge 155 /// was split, null otherwise. 156 /// 157 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the 158 /// specified successor will be merged into the same critical edge block. 159 /// This is most commonly interesting with switch instructions, which may 160 /// have many edges to any one destination. This ensures that all edges to that 161 /// dest go to one block instead of each going to a different block, but isn't 162 /// the standard definition of a "critical edge". 163 /// 164 /// It is invalid to call this function on a critical edge that starts at an 165 /// IndirectBrInst. Splitting these edges will almost always create an invalid 166 /// program because the address of the new block won't be the one that is jumped 167 /// to. 168 /// 169 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, 170 Pass *P, bool MergeIdenticalEdges) { 171 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0; 172 173 assert(!isa<IndirectBrInst>(TI) && 174 "Cannot split critical edge from IndirectBrInst"); 175 176 BasicBlock *TIBB = TI->getParent(); 177 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 178 179 // Create a new basic block, linking it into the CFG. 180 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 181 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 182 // Create our unconditional branch. 183 BranchInst::Create(DestBB, NewBB); 184 185 // Branch to the new block, breaking the edge. 186 TI->setSuccessor(SuccNum, NewBB); 187 188 // Insert the block into the function... right after the block TI lives in. 189 Function &F = *TIBB->getParent(); 190 Function::iterator FBBI = TIBB; 191 F.getBasicBlockList().insert(++FBBI, NewBB); 192 193 // If there are any PHI nodes in DestBB, we need to update them so that they 194 // merge incoming values from NewBB instead of from TIBB. 195 if (PHINode *APHI = dyn_cast<PHINode>(DestBB->begin())) { 196 // This conceptually does: 197 // foreach (PHINode *PN in DestBB) 198 // PN->setIncomingBlock(PN->getIncomingBlock(TIBB), NewBB); 199 // but is optimized for two cases. 200 201 if (APHI->getNumIncomingValues() <= 8) { // Small # preds case. 202 unsigned BBIdx = 0; 203 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 204 // We no longer enter through TIBB, now we come in through NewBB. 205 // Revector exactly one entry in the PHI node that used to come from 206 // TIBB to come from NewBB. 207 PHINode *PN = cast<PHINode>(I); 208 209 // Reuse the previous value of BBIdx if it lines up. In cases where we 210 // have multiple phi nodes with *lots* of predecessors, this is a speed 211 // win because we don't have to scan the PHI looking for TIBB. This 212 // happens because the BB list of PHI nodes are usually in the same 213 // order. 214 if (PN->getIncomingBlock(BBIdx) != TIBB) 215 BBIdx = PN->getBasicBlockIndex(TIBB); 216 PN->setIncomingBlock(BBIdx, NewBB); 217 } 218 } else { 219 // However, the foreach loop is slow for blocks with lots of predecessors 220 // because PHINode::getIncomingBlock is O(n) in # preds. Instead, walk 221 // the user list of TIBB to find the PHI nodes. 222 SmallPtrSet<PHINode*, 16> UpdatedPHIs; 223 224 for (Value::use_iterator UI = TIBB->use_begin(), E = TIBB->use_end(); 225 UI != E; ) { 226 Value::use_iterator Use = UI++; 227 if (PHINode *PN = dyn_cast<PHINode>(Use)) { 228 // Remove one entry from each PHI. 229 if (PN->getParent() == DestBB && UpdatedPHIs.insert(PN)) 230 PN->setOperand(Use.getOperandNo(), NewBB); 231 } 232 } 233 } 234 } 235 236 // If there are any other edges from TIBB to DestBB, update those to go 237 // through the split block, making those edges non-critical as well (and 238 // reducing the number of phi entries in the DestBB if relevant). 239 if (MergeIdenticalEdges) { 240 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 241 if (TI->getSuccessor(i) != DestBB) continue; 242 243 // Remove an entry for TIBB from DestBB phi nodes. 244 DestBB->removePredecessor(TIBB); 245 246 // We found another edge to DestBB, go to NewBB instead. 247 TI->setSuccessor(i, NewBB); 248 } 249 } 250 251 252 253 // If we don't have a pass object, we can't update anything... 254 if (P == 0) return NewBB; 255 256 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 257 DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>(); 258 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); 259 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); 260 261 // If we have nothing to update, just return. 262 if (DT == 0 && DF == 0 && LI == 0 && PI == 0) 263 return NewBB; 264 265 // Now update analysis information. Since the only predecessor of NewBB is 266 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate 267 // anything, as there are other successors of DestBB. However, if all other 268 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a 269 // loop header) then NewBB dominates DestBB. 270 SmallVector<BasicBlock*, 8> OtherPreds; 271 272 // If there is a PHI in the block, loop over predecessors with it, which is 273 // faster than iterating pred_begin/end. 274 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 275 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 276 if (PN->getIncomingBlock(i) != NewBB) 277 OtherPreds.push_back(PN->getIncomingBlock(i)); 278 } else { 279 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); 280 I != E; ++I) 281 if (*I != NewBB) 282 OtherPreds.push_back(*I); 283 } 284 285 bool NewBBDominatesDestBB = true; 286 287 // Should we update DominatorTree information? 288 if (DT) { 289 DomTreeNode *TINode = DT->getNode(TIBB); 290 291 // The new block is not the immediate dominator for any other nodes, but 292 // TINode is the immediate dominator for the new node. 293 // 294 if (TINode) { // Don't break unreachable code! 295 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB); 296 DomTreeNode *DestBBNode = 0; 297 298 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT. 299 if (!OtherPreds.empty()) { 300 DestBBNode = DT->getNode(DestBB); 301 while (!OtherPreds.empty() && NewBBDominatesDestBB) { 302 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back())) 303 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode); 304 OtherPreds.pop_back(); 305 } 306 OtherPreds.clear(); 307 } 308 309 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it 310 // doesn't dominate anything. 311 if (NewBBDominatesDestBB) { 312 if (!DestBBNode) DestBBNode = DT->getNode(DestBB); 313 DT->changeImmediateDominator(DestBBNode, NewBBNode); 314 } 315 } 316 } 317 318 // Should we update DominanceFrontier information? 319 if (DF) { 320 // If NewBBDominatesDestBB hasn't been computed yet, do so with DF. 321 if (!OtherPreds.empty()) { 322 // FIXME: IMPLEMENT THIS! 323 llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset." 324 " not implemented yet!"); 325 } 326 327 // Since the new block is dominated by its only predecessor TIBB, 328 // it cannot be in any block's dominance frontier. If NewBB dominates 329 // DestBB, its dominance frontier is the same as DestBB's, otherwise it is 330 // just {DestBB}. 331 DominanceFrontier::DomSetType NewDFSet; 332 if (NewBBDominatesDestBB) { 333 DominanceFrontier::iterator I = DF->find(DestBB); 334 if (I != DF->end()) { 335 DF->addBasicBlock(NewBB, I->second); 336 337 if (I->second.count(DestBB)) { 338 // However NewBB's frontier does not include DestBB. 339 DominanceFrontier::iterator NF = DF->find(NewBB); 340 DF->removeFromFrontier(NF, DestBB); 341 } 342 } 343 else 344 DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType()); 345 } else { 346 DominanceFrontier::DomSetType NewDFSet; 347 NewDFSet.insert(DestBB); 348 DF->addBasicBlock(NewBB, NewDFSet); 349 } 350 } 351 352 // Update LoopInfo if it is around. 353 if (LI) { 354 if (Loop *TIL = LI->getLoopFor(TIBB)) { 355 // If one or the other blocks were not in a loop, the new block is not 356 // either, and thus LI doesn't need to be updated. 357 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 358 if (TIL == DestLoop) { 359 // Both in the same loop, the NewBB joins loop. 360 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 361 } else if (TIL->contains(DestLoop)) { 362 // Edge from an outer loop to an inner loop. Add to the outer loop. 363 TIL->addBasicBlockToLoop(NewBB, LI->getBase()); 364 } else if (DestLoop->contains(TIL)) { 365 // Edge from an inner loop to an outer loop. Add to the outer loop. 366 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 367 } else { 368 // Edge from two loops with no containment relation. Because these 369 // are natural loops, we know that the destination block must be the 370 // header of its loop (adding a branch into a loop elsewhere would 371 // create an irreducible loop). 372 assert(DestLoop->getHeader() == DestBB && 373 "Should not create irreducible loops!"); 374 if (Loop *P = DestLoop->getParentLoop()) 375 P->addBasicBlockToLoop(NewBB, LI->getBase()); 376 } 377 } 378 // If TIBB is in a loop and DestBB is outside of that loop, split the 379 // other exit blocks of the loop that also have predecessors outside 380 // the loop, to maintain a LoopSimplify guarantee. 381 if (!TIL->contains(DestBB) && 382 P->mustPreserveAnalysisID(LoopSimplifyID)) { 383 assert(!TIL->contains(NewBB) && 384 "Split point for loop exit is contained in loop!"); 385 386 // Update LCSSA form in the newly created exit block. 387 if (P->mustPreserveAnalysisID(LCSSAID)) { 388 SmallVector<BasicBlock *, 1> OrigPred; 389 OrigPred.push_back(TIBB); 390 CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB); 391 } 392 393 // For each unique exit block... 394 SmallVector<BasicBlock *, 4> ExitBlocks; 395 TIL->getExitBlocks(ExitBlocks); 396 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 397 // Collect all the preds that are inside the loop, and note 398 // whether there are any preds outside the loop. 399 SmallVector<BasicBlock *, 4> Preds; 400 bool HasPredOutsideOfLoop = false; 401 BasicBlock *Exit = ExitBlocks[i]; 402 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); 403 I != E; ++I) 404 if (TIL->contains(*I)) 405 Preds.push_back(*I); 406 else 407 HasPredOutsideOfLoop = true; 408 // If there are any preds not in the loop, we'll need to split 409 // the edges. The Preds.empty() check is needed because a block 410 // may appear multiple times in the list. We can't use 411 // getUniqueExitBlocks above because that depends on LoopSimplify 412 // form, which we're in the process of restoring! 413 if (!Preds.empty() && HasPredOutsideOfLoop) { 414 BasicBlock *NewExitBB = 415 SplitBlockPredecessors(Exit, Preds.data(), Preds.size(), 416 "split", P); 417 if (P->mustPreserveAnalysisID(LCSSAID)) 418 CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit); 419 } 420 } 421 } 422 // LCSSA form was updated above for the case where LoopSimplify is 423 // available, which means that all predecessors of loop exit blocks 424 // are within the loop. Without LoopSimplify form, it would be 425 // necessary to insert a new phi. 426 assert((!P->mustPreserveAnalysisID(LCSSAID) || 427 P->mustPreserveAnalysisID(LoopSimplifyID)) && 428 "SplitCriticalEdge doesn't know how to update LCCSA form " 429 "without LoopSimplify!"); 430 } 431 } 432 433 // Update ProfileInfo if it is around. 434 if (PI) 435 PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges); 436 437 return NewBB; 438 } 439