1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 10 // inserting a dummy basic block. This pass may be "required" by passes that 11 // cannot deal with critical edges. For this usage, the structure type is 12 // forward declared. This pass obviously invalidates the CFG, but can update 13 // dominator trees. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemorySSAUpdater.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Transforms/Utils.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "break-crit-edges" 38 39 STATISTIC(NumBroken, "Number of blocks inserted"); 40 41 namespace { 42 struct BreakCriticalEdges : public FunctionPass { 43 static char ID; // Pass identification, replacement for typeid 44 BreakCriticalEdges() : FunctionPass(ID) { 45 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 46 } 47 48 bool runOnFunction(Function &F) override { 49 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 50 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 51 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 52 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 53 unsigned N = 54 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 55 NumBroken += N; 56 return N > 0; 57 } 58 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 AU.addPreserved<DominatorTreeWrapperPass>(); 61 AU.addPreserved<LoopInfoWrapperPass>(); 62 63 // No loop canonicalization guarantees are broken by this pass. 64 AU.addPreservedID(LoopSimplifyID); 65 } 66 }; 67 } 68 69 char BreakCriticalEdges::ID = 0; 70 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 71 "Break critical edges in CFG", false, false) 72 73 // Publicly exposed interface to pass... 74 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 75 FunctionPass *llvm::createBreakCriticalEdgesPass() { 76 return new BreakCriticalEdges(); 77 } 78 79 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F, 80 FunctionAnalysisManager &AM) { 81 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 82 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 83 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 84 NumBroken += N; 85 if (N == 0) 86 return PreservedAnalyses::all(); 87 PreservedAnalyses PA; 88 PA.preserve<DominatorTreeAnalysis>(); 89 PA.preserve<LoopAnalysis>(); 90 return PA; 91 } 92 93 //===----------------------------------------------------------------------===// 94 // Implementation of the external critical edge manipulation functions 95 //===----------------------------------------------------------------------===// 96 97 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new 98 /// exit block. This function inserts the new PHIs, as needed. Preds is a list 99 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is 100 /// the old loop exit, now the successor of SplitBB. 101 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 102 BasicBlock *SplitBB, 103 BasicBlock *DestBB) { 104 // SplitBB shouldn't have anything non-trivial in it yet. 105 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 106 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); 107 108 // For each PHI in the destination block. 109 for (PHINode &PN : DestBB->phis()) { 110 unsigned Idx = PN.getBasicBlockIndex(SplitBB); 111 Value *V = PN.getIncomingValue(Idx); 112 113 // If the input is a PHI which already satisfies LCSSA, don't create 114 // a new one. 115 if (const PHINode *VP = dyn_cast<PHINode>(V)) 116 if (VP->getParent() == SplitBB) 117 continue; 118 119 // Otherwise a new PHI is needed. Create one and populate it. 120 PHINode *NewPN = PHINode::Create( 121 PN.getType(), Preds.size(), "split", 122 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 123 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 124 NewPN->addIncoming(V, Preds[i]); 125 126 // Update the original PHI. 127 PN.setIncomingValue(Idx, NewPN); 128 } 129 } 130 131 BasicBlock * 132 llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum, 133 const CriticalEdgeSplittingOptions &Options) { 134 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) 135 return nullptr; 136 137 assert(!isa<IndirectBrInst>(TI) && 138 "Cannot split critical edge from IndirectBrInst"); 139 140 BasicBlock *TIBB = TI->getParent(); 141 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 142 143 // Splitting the critical edge to a pad block is non-trivial. Don't do 144 // it in this generic function. 145 if (DestBB->isEHPad()) return nullptr; 146 147 // Create a new basic block, linking it into the CFG. 148 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 149 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 150 // Create our unconditional branch. 151 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 152 NewBI->setDebugLoc(TI->getDebugLoc()); 153 154 // Branch to the new block, breaking the edge. 155 TI->setSuccessor(SuccNum, NewBB); 156 157 // Insert the block into the function... right after the block TI lives in. 158 Function &F = *TIBB->getParent(); 159 Function::iterator FBBI = TIBB->getIterator(); 160 F.getBasicBlockList().insert(++FBBI, NewBB); 161 162 // If there are any PHI nodes in DestBB, we need to update them so that they 163 // merge incoming values from NewBB instead of from TIBB. 164 { 165 unsigned BBIdx = 0; 166 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 167 // We no longer enter through TIBB, now we come in through NewBB. 168 // Revector exactly one entry in the PHI node that used to come from 169 // TIBB to come from NewBB. 170 PHINode *PN = cast<PHINode>(I); 171 172 // Reuse the previous value of BBIdx if it lines up. In cases where we 173 // have multiple phi nodes with *lots* of predecessors, this is a speed 174 // win because we don't have to scan the PHI looking for TIBB. This 175 // happens because the BB list of PHI nodes are usually in the same 176 // order. 177 if (PN->getIncomingBlock(BBIdx) != TIBB) 178 BBIdx = PN->getBasicBlockIndex(TIBB); 179 PN->setIncomingBlock(BBIdx, NewBB); 180 } 181 } 182 183 // If there are any other edges from TIBB to DestBB, update those to go 184 // through the split block, making those edges non-critical as well (and 185 // reducing the number of phi entries in the DestBB if relevant). 186 if (Options.MergeIdenticalEdges) { 187 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 188 if (TI->getSuccessor(i) != DestBB) continue; 189 190 // Remove an entry for TIBB from DestBB phi nodes. 191 DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs); 192 193 // We found another edge to DestBB, go to NewBB instead. 194 TI->setSuccessor(i, NewBB); 195 } 196 } 197 198 // If we have nothing to update, just return. 199 auto *DT = Options.DT; 200 auto *LI = Options.LI; 201 auto *MSSAU = Options.MSSAU; 202 if (MSSAU) 203 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 204 DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges); 205 206 if (!DT && !LI) 207 return NewBB; 208 209 if (DT) { 210 // Update the DominatorTree. 211 // ---> NewBB -----\ 212 // / V 213 // TIBB -------\\------> DestBB 214 // 215 // First, inform the DT about the new path from TIBB to DestBB via NewBB, 216 // then delete the old edge from TIBB to DestBB. By doing this in that order 217 // DestBB stays reachable in the DT the whole time and its subtree doesn't 218 // get disconnected. 219 SmallVector<DominatorTree::UpdateType, 3> Updates; 220 Updates.push_back({DominatorTree::Insert, TIBB, NewBB}); 221 Updates.push_back({DominatorTree::Insert, NewBB, DestBB}); 222 if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB)) 223 Updates.push_back({DominatorTree::Delete, TIBB, DestBB}); 224 225 DT->applyUpdates(Updates); 226 } 227 228 // Update LoopInfo if it is around. 229 if (LI) { 230 if (Loop *TIL = LI->getLoopFor(TIBB)) { 231 // If one or the other blocks were not in a loop, the new block is not 232 // either, and thus LI doesn't need to be updated. 233 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 234 if (TIL == DestLoop) { 235 // Both in the same loop, the NewBB joins loop. 236 DestLoop->addBasicBlockToLoop(NewBB, *LI); 237 } else if (TIL->contains(DestLoop)) { 238 // Edge from an outer loop to an inner loop. Add to the outer loop. 239 TIL->addBasicBlockToLoop(NewBB, *LI); 240 } else if (DestLoop->contains(TIL)) { 241 // Edge from an inner loop to an outer loop. Add to the outer loop. 242 DestLoop->addBasicBlockToLoop(NewBB, *LI); 243 } else { 244 // Edge from two loops with no containment relation. Because these 245 // are natural loops, we know that the destination block must be the 246 // header of its loop (adding a branch into a loop elsewhere would 247 // create an irreducible loop). 248 assert(DestLoop->getHeader() == DestBB && 249 "Should not create irreducible loops!"); 250 if (Loop *P = DestLoop->getParentLoop()) 251 P->addBasicBlockToLoop(NewBB, *LI); 252 } 253 } 254 255 // If TIBB is in a loop and DestBB is outside of that loop, we may need 256 // to update LoopSimplify form and LCSSA form. 257 if (!TIL->contains(DestBB)) { 258 assert(!TIL->contains(NewBB) && 259 "Split point for loop exit is contained in loop!"); 260 261 // Update LCSSA form in the newly created exit block. 262 if (Options.PreserveLCSSA) { 263 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 264 } 265 266 // The only that we can break LoopSimplify form by splitting a critical 267 // edge is if after the split there exists some edge from TIL to DestBB 268 // *and* the only edge into DestBB from outside of TIL is that of 269 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 270 // is the new exit block and it has no non-loop predecessors. If the 271 // second isn't true, then DestBB was not in LoopSimplify form prior to 272 // the split as it had a non-loop predecessor. In both of these cases, 273 // the predecessor must be directly in TIL, not in a subloop, or again 274 // LoopSimplify doesn't hold. 275 SmallVector<BasicBlock *, 4> LoopPreds; 276 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; 277 ++I) { 278 BasicBlock *P = *I; 279 if (P == NewBB) 280 continue; // The new block is known. 281 if (LI->getLoopFor(P) != TIL) { 282 // No need to re-simplify, it wasn't to start with. 283 LoopPreds.clear(); 284 break; 285 } 286 LoopPreds.push_back(P); 287 } 288 if (!LoopPreds.empty()) { 289 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); 290 BasicBlock *NewExitBB = SplitBlockPredecessors( 291 DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 292 if (Options.PreserveLCSSA) 293 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 294 } 295 } 296 } 297 } 298 299 return NewBB; 300 } 301 302 // Return the unique indirectbr predecessor of a block. This may return null 303 // even if such a predecessor exists, if it's not useful for splitting. 304 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 305 // predecessors of BB. 306 static BasicBlock * 307 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 308 // If the block doesn't have any PHIs, we don't care about it, since there's 309 // no point in splitting it. 310 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 311 if (!PN) 312 return nullptr; 313 314 // Verify we have exactly one IBR predecessor. 315 // Conservatively bail out if one of the other predecessors is not a "regular" 316 // terminator (that is, not a switch or a br). 317 BasicBlock *IBB = nullptr; 318 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 319 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 320 Instruction *PredTerm = PredBB->getTerminator(); 321 switch (PredTerm->getOpcode()) { 322 case Instruction::IndirectBr: 323 if (IBB) 324 return nullptr; 325 IBB = PredBB; 326 break; 327 case Instruction::Br: 328 case Instruction::Switch: 329 OtherPreds.push_back(PredBB); 330 continue; 331 default: 332 return nullptr; 333 } 334 } 335 336 return IBB; 337 } 338 339 bool llvm::SplitIndirectBrCriticalEdges(Function &F, 340 BranchProbabilityInfo *BPI, 341 BlockFrequencyInfo *BFI) { 342 // Check whether the function has any indirectbrs, and collect which blocks 343 // they may jump to. Since most functions don't have indirect branches, 344 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 345 SmallSetVector<BasicBlock *, 16> Targets; 346 for (auto &BB : F) { 347 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 348 if (!IBI) 349 continue; 350 351 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 352 Targets.insert(IBI->getSuccessor(Succ)); 353 } 354 355 if (Targets.empty()) 356 return false; 357 358 bool ShouldUpdateAnalysis = BPI && BFI; 359 bool Changed = false; 360 for (BasicBlock *Target : Targets) { 361 SmallVector<BasicBlock *, 16> OtherPreds; 362 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 363 // If we did not found an indirectbr, or the indirectbr is the only 364 // incoming edge, this isn't the kind of edge we're looking for. 365 if (!IBRPred || OtherPreds.empty()) 366 continue; 367 368 // Don't even think about ehpads/landingpads. 369 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 370 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 371 continue; 372 373 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 374 if (ShouldUpdateAnalysis) { 375 // Copy the BFI/BPI from Target to BodyBlock. 376 for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors(); 377 I < E; ++I) 378 BPI->setEdgeProbability(BodyBlock, I, 379 BPI->getEdgeProbability(Target, I)); 380 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency()); 381 } 382 // It's possible Target was its own successor through an indirectbr. 383 // In this case, the indirectbr now comes from BodyBlock. 384 if (IBRPred == Target) 385 IBRPred = BodyBlock; 386 387 // At this point Target only has PHIs, and BodyBlock has the rest of the 388 // block's body. Create a copy of Target that will be used by the "direct" 389 // preds. 390 ValueToValueMapTy VMap; 391 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 392 393 BlockFrequency BlockFreqForDirectSucc; 394 for (BasicBlock *Pred : OtherPreds) { 395 // If the target is a loop to itself, then the terminator of the split 396 // block (BodyBlock) needs to be updated. 397 BasicBlock *Src = Pred != Target ? Pred : BodyBlock; 398 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 399 if (ShouldUpdateAnalysis) 400 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) * 401 BPI->getEdgeProbability(Src, DirectSucc); 402 } 403 if (ShouldUpdateAnalysis) { 404 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency()); 405 BlockFrequency NewBlockFreqForTarget = 406 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc; 407 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency()); 408 BPI->eraseBlock(Target); 409 } 410 411 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 412 // they are clones, so the number of PHIs are the same. 413 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 414 // (b) Leave that as the only edge in the "Indirect" PHI. 415 // (c) Merge the two in the body block. 416 BasicBlock::iterator Indirect = Target->begin(), 417 End = Target->getFirstNonPHI()->getIterator(); 418 BasicBlock::iterator Direct = DirectSucc->begin(); 419 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 420 421 assert(&*End == Target->getTerminator() && 422 "Block was expected to only contain PHIs"); 423 424 while (Indirect != End) { 425 PHINode *DirPHI = cast<PHINode>(Direct); 426 PHINode *IndPHI = cast<PHINode>(Indirect); 427 428 // Now, clean up - the direct block shouldn't get the indirect value, 429 // and vice versa. 430 DirPHI->removeIncomingValue(IBRPred); 431 Direct++; 432 433 // Advance the pointer here, to avoid invalidation issues when the old 434 // PHI is erased. 435 Indirect++; 436 437 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 438 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 439 IBRPred); 440 441 // Create a PHI in the body block, to merge the direct and indirect 442 // predecessors. 443 PHINode *MergePHI = 444 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 445 MergePHI->addIncoming(NewIndPHI, Target); 446 MergePHI->addIncoming(DirPHI, DirectSucc); 447 448 IndPHI->replaceAllUsesWith(MergePHI); 449 IndPHI->eraseFromParent(); 450 } 451 452 Changed = true; 453 } 454 455 return Changed; 456 } 457