1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 10 // inserting a dummy basic block. This pass may be "required" by passes that 11 // cannot deal with critical edges. For this usage, the structure type is 12 // forward declared. This pass obviously invalidates the CFG, but can update 13 // dominator trees. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/BreakCriticalEdges.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemorySSAUpdater.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Transforms/Utils.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 #include "llvm/Transforms/Utils/ValueMapper.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "break-crit-edges" 38 39 STATISTIC(NumBroken, "Number of blocks inserted"); 40 41 namespace { 42 struct BreakCriticalEdges : public FunctionPass { 43 static char ID; // Pass identification, replacement for typeid 44 BreakCriticalEdges() : FunctionPass(ID) { 45 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 46 } 47 48 bool runOnFunction(Function &F) override { 49 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 50 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 51 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 52 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 53 unsigned N = 54 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 55 NumBroken += N; 56 return N > 0; 57 } 58 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 AU.addPreserved<DominatorTreeWrapperPass>(); 61 AU.addPreserved<LoopInfoWrapperPass>(); 62 63 // No loop canonicalization guarantees are broken by this pass. 64 AU.addPreservedID(LoopSimplifyID); 65 } 66 }; 67 } 68 69 char BreakCriticalEdges::ID = 0; 70 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 71 "Break critical edges in CFG", false, false) 72 73 // Publicly exposed interface to pass... 74 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 75 FunctionPass *llvm::createBreakCriticalEdgesPass() { 76 return new BreakCriticalEdges(); 77 } 78 79 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F, 80 FunctionAnalysisManager &AM) { 81 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 82 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 83 unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 84 NumBroken += N; 85 if (N == 0) 86 return PreservedAnalyses::all(); 87 PreservedAnalyses PA; 88 PA.preserve<DominatorTreeAnalysis>(); 89 PA.preserve<LoopAnalysis>(); 90 return PA; 91 } 92 93 //===----------------------------------------------------------------------===// 94 // Implementation of the external critical edge manipulation functions 95 //===----------------------------------------------------------------------===// 96 97 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new 98 /// exit block. This function inserts the new PHIs, as needed. Preds is a list 99 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is 100 /// the old loop exit, now the successor of SplitBB. 101 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 102 BasicBlock *SplitBB, 103 BasicBlock *DestBB) { 104 // SplitBB shouldn't have anything non-trivial in it yet. 105 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 106 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); 107 108 // For each PHI in the destination block. 109 for (PHINode &PN : DestBB->phis()) { 110 unsigned Idx = PN.getBasicBlockIndex(SplitBB); 111 Value *V = PN.getIncomingValue(Idx); 112 113 // If the input is a PHI which already satisfies LCSSA, don't create 114 // a new one. 115 if (const PHINode *VP = dyn_cast<PHINode>(V)) 116 if (VP->getParent() == SplitBB) 117 continue; 118 119 // Otherwise a new PHI is needed. Create one and populate it. 120 PHINode *NewPN = PHINode::Create( 121 PN.getType(), Preds.size(), "split", 122 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 123 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 124 NewPN->addIncoming(V, Preds[i]); 125 126 // Update the original PHI. 127 PN.setIncomingValue(Idx, NewPN); 128 } 129 } 130 131 BasicBlock * 132 llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum, 133 const CriticalEdgeSplittingOptions &Options) { 134 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) 135 return nullptr; 136 137 assert(!isa<IndirectBrInst>(TI) && 138 "Cannot split critical edge from IndirectBrInst"); 139 140 BasicBlock *TIBB = TI->getParent(); 141 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 142 143 // Splitting the critical edge to a pad block is non-trivial. Don't do 144 // it in this generic function. 145 if (DestBB->isEHPad()) return nullptr; 146 147 // Don't split the non-fallthrough edge from a callbr. 148 if (isa<CallBrInst>(TI) && SuccNum > 0) 149 return nullptr; 150 151 // Create a new basic block, linking it into the CFG. 152 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 153 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 154 // Create our unconditional branch. 155 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 156 NewBI->setDebugLoc(TI->getDebugLoc()); 157 158 // Branch to the new block, breaking the edge. 159 TI->setSuccessor(SuccNum, NewBB); 160 161 // Insert the block into the function... right after the block TI lives in. 162 Function &F = *TIBB->getParent(); 163 Function::iterator FBBI = TIBB->getIterator(); 164 F.getBasicBlockList().insert(++FBBI, NewBB); 165 166 // If there are any PHI nodes in DestBB, we need to update them so that they 167 // merge incoming values from NewBB instead of from TIBB. 168 { 169 unsigned BBIdx = 0; 170 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 171 // We no longer enter through TIBB, now we come in through NewBB. 172 // Revector exactly one entry in the PHI node that used to come from 173 // TIBB to come from NewBB. 174 PHINode *PN = cast<PHINode>(I); 175 176 // Reuse the previous value of BBIdx if it lines up. In cases where we 177 // have multiple phi nodes with *lots* of predecessors, this is a speed 178 // win because we don't have to scan the PHI looking for TIBB. This 179 // happens because the BB list of PHI nodes are usually in the same 180 // order. 181 if (PN->getIncomingBlock(BBIdx) != TIBB) 182 BBIdx = PN->getBasicBlockIndex(TIBB); 183 PN->setIncomingBlock(BBIdx, NewBB); 184 } 185 } 186 187 // If there are any other edges from TIBB to DestBB, update those to go 188 // through the split block, making those edges non-critical as well (and 189 // reducing the number of phi entries in the DestBB if relevant). 190 if (Options.MergeIdenticalEdges) { 191 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 192 if (TI->getSuccessor(i) != DestBB) continue; 193 194 // Remove an entry for TIBB from DestBB phi nodes. 195 DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs); 196 197 // We found another edge to DestBB, go to NewBB instead. 198 TI->setSuccessor(i, NewBB); 199 } 200 } 201 202 // If we have nothing to update, just return. 203 auto *DT = Options.DT; 204 auto *LI = Options.LI; 205 auto *MSSAU = Options.MSSAU; 206 if (MSSAU) 207 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 208 DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges); 209 210 if (!DT && !LI) 211 return NewBB; 212 213 if (DT) { 214 // Update the DominatorTree. 215 // ---> NewBB -----\ 216 // / V 217 // TIBB -------\\------> DestBB 218 // 219 // First, inform the DT about the new path from TIBB to DestBB via NewBB, 220 // then delete the old edge from TIBB to DestBB. By doing this in that order 221 // DestBB stays reachable in the DT the whole time and its subtree doesn't 222 // get disconnected. 223 SmallVector<DominatorTree::UpdateType, 3> Updates; 224 Updates.push_back({DominatorTree::Insert, TIBB, NewBB}); 225 Updates.push_back({DominatorTree::Insert, NewBB, DestBB}); 226 if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB)) 227 Updates.push_back({DominatorTree::Delete, TIBB, DestBB}); 228 229 DT->applyUpdates(Updates); 230 } 231 232 // Update LoopInfo if it is around. 233 if (LI) { 234 if (Loop *TIL = LI->getLoopFor(TIBB)) { 235 // If one or the other blocks were not in a loop, the new block is not 236 // either, and thus LI doesn't need to be updated. 237 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 238 if (TIL == DestLoop) { 239 // Both in the same loop, the NewBB joins loop. 240 DestLoop->addBasicBlockToLoop(NewBB, *LI); 241 } else if (TIL->contains(DestLoop)) { 242 // Edge from an outer loop to an inner loop. Add to the outer loop. 243 TIL->addBasicBlockToLoop(NewBB, *LI); 244 } else if (DestLoop->contains(TIL)) { 245 // Edge from an inner loop to an outer loop. Add to the outer loop. 246 DestLoop->addBasicBlockToLoop(NewBB, *LI); 247 } else { 248 // Edge from two loops with no containment relation. Because these 249 // are natural loops, we know that the destination block must be the 250 // header of its loop (adding a branch into a loop elsewhere would 251 // create an irreducible loop). 252 assert(DestLoop->getHeader() == DestBB && 253 "Should not create irreducible loops!"); 254 if (Loop *P = DestLoop->getParentLoop()) 255 P->addBasicBlockToLoop(NewBB, *LI); 256 } 257 } 258 259 // If TIBB is in a loop and DestBB is outside of that loop, we may need 260 // to update LoopSimplify form and LCSSA form. 261 if (!TIL->contains(DestBB)) { 262 assert(!TIL->contains(NewBB) && 263 "Split point for loop exit is contained in loop!"); 264 265 // Update LCSSA form in the newly created exit block. 266 if (Options.PreserveLCSSA) { 267 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 268 } 269 270 // The only that we can break LoopSimplify form by splitting a critical 271 // edge is if after the split there exists some edge from TIL to DestBB 272 // *and* the only edge into DestBB from outside of TIL is that of 273 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 274 // is the new exit block and it has no non-loop predecessors. If the 275 // second isn't true, then DestBB was not in LoopSimplify form prior to 276 // the split as it had a non-loop predecessor. In both of these cases, 277 // the predecessor must be directly in TIL, not in a subloop, or again 278 // LoopSimplify doesn't hold. 279 SmallVector<BasicBlock *, 4> LoopPreds; 280 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; 281 ++I) { 282 BasicBlock *P = *I; 283 if (P == NewBB) 284 continue; // The new block is known. 285 if (LI->getLoopFor(P) != TIL) { 286 // No need to re-simplify, it wasn't to start with. 287 LoopPreds.clear(); 288 break; 289 } 290 LoopPreds.push_back(P); 291 } 292 if (!LoopPreds.empty()) { 293 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); 294 BasicBlock *NewExitBB = SplitBlockPredecessors( 295 DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 296 if (Options.PreserveLCSSA) 297 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 298 } 299 } 300 } 301 } 302 303 return NewBB; 304 } 305 306 // Return the unique indirectbr predecessor of a block. This may return null 307 // even if such a predecessor exists, if it's not useful for splitting. 308 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 309 // predecessors of BB. 310 static BasicBlock * 311 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 312 // If the block doesn't have any PHIs, we don't care about it, since there's 313 // no point in splitting it. 314 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 315 if (!PN) 316 return nullptr; 317 318 // Verify we have exactly one IBR predecessor. 319 // Conservatively bail out if one of the other predecessors is not a "regular" 320 // terminator (that is, not a switch or a br). 321 BasicBlock *IBB = nullptr; 322 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 323 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 324 Instruction *PredTerm = PredBB->getTerminator(); 325 switch (PredTerm->getOpcode()) { 326 case Instruction::IndirectBr: 327 if (IBB) 328 return nullptr; 329 IBB = PredBB; 330 break; 331 case Instruction::Br: 332 case Instruction::Switch: 333 OtherPreds.push_back(PredBB); 334 continue; 335 default: 336 return nullptr; 337 } 338 } 339 340 return IBB; 341 } 342 343 bool llvm::SplitIndirectBrCriticalEdges(Function &F, 344 BranchProbabilityInfo *BPI, 345 BlockFrequencyInfo *BFI) { 346 // Check whether the function has any indirectbrs, and collect which blocks 347 // they may jump to. Since most functions don't have indirect branches, 348 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 349 SmallSetVector<BasicBlock *, 16> Targets; 350 for (auto &BB : F) { 351 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 352 if (!IBI) 353 continue; 354 355 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 356 Targets.insert(IBI->getSuccessor(Succ)); 357 } 358 359 if (Targets.empty()) 360 return false; 361 362 bool ShouldUpdateAnalysis = BPI && BFI; 363 bool Changed = false; 364 for (BasicBlock *Target : Targets) { 365 SmallVector<BasicBlock *, 16> OtherPreds; 366 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 367 // If we did not found an indirectbr, or the indirectbr is the only 368 // incoming edge, this isn't the kind of edge we're looking for. 369 if (!IBRPred || OtherPreds.empty()) 370 continue; 371 372 // Don't even think about ehpads/landingpads. 373 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 374 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 375 continue; 376 377 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 378 if (ShouldUpdateAnalysis) { 379 // Copy the BFI/BPI from Target to BodyBlock. 380 for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors(); 381 I < E; ++I) 382 BPI->setEdgeProbability(BodyBlock, I, 383 BPI->getEdgeProbability(Target, I)); 384 BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency()); 385 } 386 // It's possible Target was its own successor through an indirectbr. 387 // In this case, the indirectbr now comes from BodyBlock. 388 if (IBRPred == Target) 389 IBRPred = BodyBlock; 390 391 // At this point Target only has PHIs, and BodyBlock has the rest of the 392 // block's body. Create a copy of Target that will be used by the "direct" 393 // preds. 394 ValueToValueMapTy VMap; 395 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 396 397 BlockFrequency BlockFreqForDirectSucc; 398 for (BasicBlock *Pred : OtherPreds) { 399 // If the target is a loop to itself, then the terminator of the split 400 // block (BodyBlock) needs to be updated. 401 BasicBlock *Src = Pred != Target ? Pred : BodyBlock; 402 Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 403 if (ShouldUpdateAnalysis) 404 BlockFreqForDirectSucc += BFI->getBlockFreq(Src) * 405 BPI->getEdgeProbability(Src, DirectSucc); 406 } 407 if (ShouldUpdateAnalysis) { 408 BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency()); 409 BlockFrequency NewBlockFreqForTarget = 410 BFI->getBlockFreq(Target) - BlockFreqForDirectSucc; 411 BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency()); 412 BPI->eraseBlock(Target); 413 } 414 415 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 416 // they are clones, so the number of PHIs are the same. 417 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 418 // (b) Leave that as the only edge in the "Indirect" PHI. 419 // (c) Merge the two in the body block. 420 BasicBlock::iterator Indirect = Target->begin(), 421 End = Target->getFirstNonPHI()->getIterator(); 422 BasicBlock::iterator Direct = DirectSucc->begin(); 423 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 424 425 assert(&*End == Target->getTerminator() && 426 "Block was expected to only contain PHIs"); 427 428 while (Indirect != End) { 429 PHINode *DirPHI = cast<PHINode>(Direct); 430 PHINode *IndPHI = cast<PHINode>(Indirect); 431 432 // Now, clean up - the direct block shouldn't get the indirect value, 433 // and vice versa. 434 DirPHI->removeIncomingValue(IBRPred); 435 Direct++; 436 437 // Advance the pointer here, to avoid invalidation issues when the old 438 // PHI is erased. 439 Indirect++; 440 441 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 442 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 443 IBRPred); 444 445 // Create a PHI in the body block, to merge the direct and indirect 446 // predecessors. 447 PHINode *MergePHI = 448 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 449 MergePHI->addIncoming(NewIndPHI, Target); 450 MergePHI->addIncoming(DirPHI, DirectSucc); 451 452 IndPHI->replaceAllUsesWith(MergePHI); 453 IndPHI->eraseFromParent(); 454 } 455 456 Changed = true; 457 } 458 459 return Changed; 460 } 461