1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin()))
142     return false;
143 
144   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
145     if (PN->getIncomingValue(0) != PN)
146       PN->replaceAllUsesWith(PN->getIncomingValue(0));
147     else
148       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
149 
150     if (MemDep)
151       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
152 
153     PN->eraseFromParent();
154   }
155   return true;
156 }
157 
158 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
159                           MemorySSAUpdater *MSSAU) {
160   // Recursively deleting a PHI may cause multiple PHIs to be deleted
161   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
162   SmallVector<WeakTrackingVH, 8> PHIs;
163   for (PHINode &PN : BB->phis())
164     PHIs.push_back(&PN);
165 
166   bool Changed = false;
167   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
168     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
169       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
170 
171   return Changed;
172 }
173 
174 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
175                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
176                                      MemoryDependenceResults *MemDep,
177                                      bool PredecessorWithTwoSuccessors) {
178   if (BB->hasAddressTaken())
179     return false;
180 
181   // Can't merge if there are multiple predecessors, or no predecessors.
182   BasicBlock *PredBB = BB->getUniquePredecessor();
183   if (!PredBB) return false;
184 
185   // Don't break self-loops.
186   if (PredBB == BB) return false;
187   // Don't break unwinding instructions.
188   if (PredBB->getTerminator()->isExceptionalTerminator())
189     return false;
190 
191   // Can't merge if there are multiple distinct successors.
192   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
193     return false;
194 
195   // Currently only allow PredBB to have two predecessors, one being BB.
196   // Update BI to branch to BB's only successor instead of BB.
197   BranchInst *PredBB_BI;
198   BasicBlock *NewSucc = nullptr;
199   unsigned FallThruPath;
200   if (PredecessorWithTwoSuccessors) {
201     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
202       return false;
203     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
204     if (!BB_JmpI || !BB_JmpI->isUnconditional())
205       return false;
206     NewSucc = BB_JmpI->getSuccessor(0);
207     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
208   }
209 
210   // Can't merge if there is PHI loop.
211   for (PHINode &PN : BB->phis())
212     for (Value *IncValue : PN.incoming_values())
213       if (IncValue == &PN)
214         return false;
215 
216   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
217                     << PredBB->getName() << "\n");
218 
219   // Begin by getting rid of unneeded PHIs.
220   SmallVector<AssertingVH<Value>, 4> IncomingValues;
221   if (isa<PHINode>(BB->front())) {
222     for (PHINode &PN : BB->phis())
223       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
224           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
225         IncomingValues.push_back(PN.getIncomingValue(0));
226     FoldSingleEntryPHINodes(BB, MemDep);
227   }
228 
229   // DTU update: Collect all the edges that exit BB.
230   // These dominator edges will be redirected from Pred.
231   std::vector<DominatorTree::UpdateType> Updates;
232   if (DTU) {
233     Updates.reserve(1 + (2 * succ_size(BB)));
234     // Add insert edges first. Experimentally, for the particular case of two
235     // blocks that can be merged, with a single successor and single predecessor
236     // respectively, it is beneficial to have all insert updates first. Deleting
237     // edges first may lead to unreachable blocks, followed by inserting edges
238     // making the blocks reachable again. Such DT updates lead to high compile
239     // times. We add inserts before deletes here to reduce compile time.
240     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
241       // This successor of BB may already have PredBB as a predecessor.
242       if (!llvm::is_contained(successors(PredBB), *I))
243         Updates.push_back({DominatorTree::Insert, PredBB, *I});
244     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
245       Updates.push_back({DominatorTree::Delete, BB, *I});
246     Updates.push_back({DominatorTree::Delete, PredBB, BB});
247   }
248 
249   Instruction *PTI = PredBB->getTerminator();
250   Instruction *STI = BB->getTerminator();
251   Instruction *Start = &*BB->begin();
252   // If there's nothing to move, mark the starting instruction as the last
253   // instruction in the block. Terminator instruction is handled separately.
254   if (Start == STI)
255     Start = PTI;
256 
257   // Move all definitions in the successor to the predecessor...
258   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
259                                BB->begin(), STI->getIterator());
260 
261   if (MSSAU)
262     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
263 
264   // Make all PHI nodes that referred to BB now refer to Pred as their
265   // source...
266   BB->replaceAllUsesWith(PredBB);
267 
268   if (PredecessorWithTwoSuccessors) {
269     // Delete the unconditional branch from BB.
270     BB->getInstList().pop_back();
271 
272     // Update branch in the predecessor.
273     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
274   } else {
275     // Delete the unconditional branch from the predecessor.
276     PredBB->getInstList().pop_back();
277 
278     // Move terminator instruction.
279     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
280 
281     // Terminator may be a memory accessing instruction too.
282     if (MSSAU)
283       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
284               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
285         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
286   }
287   // Add unreachable to now empty BB.
288   new UnreachableInst(BB->getContext(), BB);
289 
290   // Inherit predecessors name if it exists.
291   if (!PredBB->hasName())
292     PredBB->takeName(BB);
293 
294   if (LI)
295     LI->removeBlock(BB);
296 
297   if (MemDep)
298     MemDep->invalidateCachedPredecessors();
299 
300   // Finally, erase the old block and update dominator info.
301   if (DTU) {
302     assert(BB->getInstList().size() == 1 &&
303            isa<UnreachableInst>(BB->getTerminator()) &&
304            "The successor list of BB isn't empty before "
305            "applying corresponding DTU updates.");
306     DTU->applyUpdatesPermissive(Updates);
307     DTU->deleteBB(BB);
308   } else {
309     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
310   }
311 
312   return true;
313 }
314 
315 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
316     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
317     LoopInfo *LI) {
318   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
319 
320   bool BlocksHaveBeenMerged = false;
321   while (!MergeBlocks.empty()) {
322     BasicBlock *BB = *MergeBlocks.begin();
323     BasicBlock *Dest = BB->getSingleSuccessor();
324     if (Dest && (!L || L->contains(Dest))) {
325       BasicBlock *Fold = Dest->getUniquePredecessor();
326       (void)Fold;
327       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
328         assert(Fold == BB &&
329                "Expecting BB to be unique predecessor of the Dest block");
330         MergeBlocks.erase(Dest);
331         BlocksHaveBeenMerged = true;
332       } else
333         MergeBlocks.erase(BB);
334     } else
335       MergeBlocks.erase(BB);
336   }
337   return BlocksHaveBeenMerged;
338 }
339 
340 /// Remove redundant instructions within sequences of consecutive dbg.value
341 /// instructions. This is done using a backward scan to keep the last dbg.value
342 /// describing a specific variable/fragment.
343 ///
344 /// BackwardScan strategy:
345 /// ----------------------
346 /// Given a sequence of consecutive DbgValueInst like this
347 ///
348 ///   dbg.value ..., "x", FragmentX1  (*)
349 ///   dbg.value ..., "y", FragmentY1
350 ///   dbg.value ..., "x", FragmentX2
351 ///   dbg.value ..., "x", FragmentX1  (**)
352 ///
353 /// then the instruction marked with (*) can be removed (it is guaranteed to be
354 /// obsoleted by the instruction marked with (**) as the latter instruction is
355 /// describing the same variable using the same fragment info).
356 ///
357 /// Possible improvements:
358 /// - Check fully overlapping fragments and not only identical fragments.
359 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
360 ///   instructions being part of the sequence of consecutive instructions.
361 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
362   SmallVector<DbgValueInst *, 8> ToBeRemoved;
363   SmallDenseSet<DebugVariable> VariableSet;
364   for (auto &I : reverse(*BB)) {
365     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
366       DebugVariable Key(DVI->getVariable(),
367                         DVI->getExpression(),
368                         DVI->getDebugLoc()->getInlinedAt());
369       auto R = VariableSet.insert(Key);
370       // If the same variable fragment is described more than once it is enough
371       // to keep the last one (i.e. the first found since we for reverse
372       // iteration).
373       if (!R.second)
374         ToBeRemoved.push_back(DVI);
375       continue;
376     }
377     // Sequence with consecutive dbg.value instrs ended. Clear the map to
378     // restart identifying redundant instructions if case we find another
379     // dbg.value sequence.
380     VariableSet.clear();
381   }
382 
383   for (auto &Instr : ToBeRemoved)
384     Instr->eraseFromParent();
385 
386   return !ToBeRemoved.empty();
387 }
388 
389 /// Remove redundant dbg.value instructions using a forward scan. This can
390 /// remove a dbg.value instruction that is redundant due to indicating that a
391 /// variable has the same value as already being indicated by an earlier
392 /// dbg.value.
393 ///
394 /// ForwardScan strategy:
395 /// ---------------------
396 /// Given two identical dbg.value instructions, separated by a block of
397 /// instructions that isn't describing the same variable, like this
398 ///
399 ///   dbg.value X1, "x", FragmentX1  (**)
400 ///   <block of instructions, none being "dbg.value ..., "x", ...">
401 ///   dbg.value X1, "x", FragmentX1  (*)
402 ///
403 /// then the instruction marked with (*) can be removed. Variable "x" is already
404 /// described as being mapped to the SSA value X1.
405 ///
406 /// Possible improvements:
407 /// - Keep track of non-overlapping fragments.
408 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
409   SmallVector<DbgValueInst *, 8> ToBeRemoved;
410   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
411   for (auto &I : *BB) {
412     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
413       DebugVariable Key(DVI->getVariable(),
414                         NoneType(),
415                         DVI->getDebugLoc()->getInlinedAt());
416       auto VMI = VariableMap.find(Key);
417       // Update the map if we found a new value/expression describing the
418       // variable, or if the variable wasn't mapped already.
419       if (VMI == VariableMap.end() ||
420           VMI->second.first != DVI->getValue() ||
421           VMI->second.second != DVI->getExpression()) {
422         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
423         continue;
424       }
425       // Found an identical mapping. Remember the instruction for later removal.
426       ToBeRemoved.push_back(DVI);
427     }
428   }
429 
430   for (auto &Instr : ToBeRemoved)
431     Instr->eraseFromParent();
432 
433   return !ToBeRemoved.empty();
434 }
435 
436 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
437   bool MadeChanges = false;
438   // By using the "backward scan" strategy before the "forward scan" strategy we
439   // can remove both dbg.value (2) and (3) in a situation like this:
440   //
441   //   (1) dbg.value V1, "x", DIExpression()
442   //       ...
443   //   (2) dbg.value V2, "x", DIExpression()
444   //   (3) dbg.value V1, "x", DIExpression()
445   //
446   // The backward scan will remove (2), it is made obsolete by (3). After
447   // getting (2) out of the way, the foward scan will remove (3) since "x"
448   // already is described as having the value V1 at (1).
449   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
450   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
451 
452   if (MadeChanges)
453     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
454                       << BB->getName() << "\n");
455   return MadeChanges;
456 }
457 
458 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
459                                 BasicBlock::iterator &BI, Value *V) {
460   Instruction &I = *BI;
461   // Replaces all of the uses of the instruction with uses of the value
462   I.replaceAllUsesWith(V);
463 
464   // Make sure to propagate a name if there is one already.
465   if (I.hasName() && !V->hasName())
466     V->takeName(&I);
467 
468   // Delete the unnecessary instruction now...
469   BI = BIL.erase(BI);
470 }
471 
472 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
473                                BasicBlock::iterator &BI, Instruction *I) {
474   assert(I->getParent() == nullptr &&
475          "ReplaceInstWithInst: Instruction already inserted into basic block!");
476 
477   // Copy debug location to newly added instruction, if it wasn't already set
478   // by the caller.
479   if (!I->getDebugLoc())
480     I->setDebugLoc(BI->getDebugLoc());
481 
482   // Insert the new instruction into the basic block...
483   BasicBlock::iterator New = BIL.insert(BI, I);
484 
485   // Replace all uses of the old instruction, and delete it.
486   ReplaceInstWithValue(BIL, BI, I);
487 
488   // Move BI back to point to the newly inserted instruction
489   BI = New;
490 }
491 
492 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
493   BasicBlock::iterator BI(From);
494   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
495 }
496 
497 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
498                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
499                             const Twine &BBName) {
500   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
501 
502   // If this is a critical edge, let SplitCriticalEdge do it.
503   Instruction *LatchTerm = BB->getTerminator();
504   if (SplitCriticalEdge(
505           LatchTerm, SuccNum,
506           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
507           BBName))
508     return LatchTerm->getSuccessor(SuccNum);
509 
510   // If the edge isn't critical, then BB has a single successor or Succ has a
511   // single pred.  Split the block.
512   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
513     // If the successor only has a single pred, split the top of the successor
514     // block.
515     assert(SP == BB && "CFG broken");
516     SP = nullptr;
517     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
518                       /*Before=*/true);
519   }
520 
521   // Otherwise, if BB has a single successor, split it at the bottom of the
522   // block.
523   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
524          "Should have a single succ!");
525   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
526 }
527 
528 unsigned
529 llvm::SplitAllCriticalEdges(Function &F,
530                             const CriticalEdgeSplittingOptions &Options) {
531   unsigned NumBroken = 0;
532   for (BasicBlock &BB : F) {
533     Instruction *TI = BB.getTerminator();
534     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
535         !isa<CallBrInst>(TI))
536       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
537         if (SplitCriticalEdge(TI, i, Options))
538           ++NumBroken;
539   }
540   return NumBroken;
541 }
542 
543 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
544                              DominatorTree *DT, LoopInfo *LI,
545                              MemorySSAUpdater *MSSAU, const Twine &BBName,
546                              bool Before) {
547   if (Before)
548     return splitBlockBefore(Old, SplitPt, DT, LI, MSSAU, BBName);
549   BasicBlock::iterator SplitIt = SplitPt->getIterator();
550   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
551     ++SplitIt;
552   std::string Name = BBName.str();
553   BasicBlock *New = Old->splitBasicBlock(
554       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
555 
556   // The new block lives in whichever loop the old one did. This preserves
557   // LCSSA as well, because we force the split point to be after any PHI nodes.
558   if (LI)
559     if (Loop *L = LI->getLoopFor(Old))
560       L->addBasicBlockToLoop(New, *LI);
561 
562   if (DT)
563     // Old dominates New. New node dominates all other nodes dominated by Old.
564     if (DomTreeNode *OldNode = DT->getNode(Old)) {
565       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
566 
567       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
568       for (DomTreeNode *I : Children)
569         DT->changeImmediateDominator(I, NewNode);
570     }
571 
572   // Move MemoryAccesses still tracked in Old, but part of New now.
573   // Update accesses in successor blocks accordingly.
574   if (MSSAU)
575     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
576 
577   return New;
578 }
579 
580 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
581                                    DominatorTree *DT, LoopInfo *LI,
582                                    MemorySSAUpdater *MSSAU,
583                                    const Twine &BBName) {
584 
585   BasicBlock::iterator SplitIt = SplitPt->getIterator();
586   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
587     ++SplitIt;
588   std::string Name = BBName.str();
589   BasicBlock *New = Old->splitBasicBlock(
590       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
591       /* Before=*/true);
592 
593   // The new block lives in whichever loop the old one did. This preserves
594   // LCSSA as well, because we force the split point to be after any PHI nodes.
595   if (LI)
596     if (Loop *L = LI->getLoopFor(Old))
597       L->addBasicBlockToLoop(New, *LI);
598 
599   if (DT) {
600     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
601     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
602     // New dominates Old. The predecessor nodes of the Old node dominate
603     // New node.
604     DTUpdates.push_back({DominatorTree::Insert, New, Old});
605     for (BasicBlock *Pred : predecessors(New))
606       if (DT->getNode(Pred)) {
607         DTUpdates.push_back({DominatorTree::Insert, Pred, New});
608         DTUpdates.push_back({DominatorTree::Delete, Pred, Old});
609       }
610 
611     DTU.applyUpdates(DTUpdates);
612     DTU.flush();
613 
614     // Move MemoryAccesses still tracked in Old, but part of New now.
615     // Update accesses in successor blocks accordingly.
616     if (MSSAU) {
617       MSSAU->applyUpdates(DTUpdates, *DT);
618       if (VerifyMemorySSA)
619         MSSAU->getMemorySSA()->verifyMemorySSA();
620     }
621   }
622   return New;
623 }
624 
625 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
626 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
627                                       ArrayRef<BasicBlock *> Preds,
628                                       DominatorTree *DT, LoopInfo *LI,
629                                       MemorySSAUpdater *MSSAU,
630                                       bool PreserveLCSSA, bool &HasLoopExit) {
631   // Update dominator tree if available.
632   if (DT) {
633     if (OldBB == DT->getRootNode()->getBlock()) {
634       assert(NewBB == &NewBB->getParent()->getEntryBlock());
635       DT->setNewRoot(NewBB);
636     } else {
637       // Split block expects NewBB to have a non-empty set of predecessors.
638       DT->splitBlock(NewBB);
639     }
640   }
641 
642   // Update MemoryPhis after split if MemorySSA is available
643   if (MSSAU)
644     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
645 
646   // The rest of the logic is only relevant for updating the loop structures.
647   if (!LI)
648     return;
649 
650   assert(DT && "DT should be available to update LoopInfo!");
651   Loop *L = LI->getLoopFor(OldBB);
652 
653   // If we need to preserve loop analyses, collect some information about how
654   // this split will affect loops.
655   bool IsLoopEntry = !!L;
656   bool SplitMakesNewLoopHeader = false;
657   for (BasicBlock *Pred : Preds) {
658     // Preds that are not reachable from entry should not be used to identify if
659     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
660     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
661     // as true and make the NewBB the header of some loop. This breaks LI.
662     if (!DT->isReachableFromEntry(Pred))
663       continue;
664     // If we need to preserve LCSSA, determine if any of the preds is a loop
665     // exit.
666     if (PreserveLCSSA)
667       if (Loop *PL = LI->getLoopFor(Pred))
668         if (!PL->contains(OldBB))
669           HasLoopExit = true;
670 
671     // If we need to preserve LoopInfo, note whether any of the preds crosses
672     // an interesting loop boundary.
673     if (!L)
674       continue;
675     if (L->contains(Pred))
676       IsLoopEntry = false;
677     else
678       SplitMakesNewLoopHeader = true;
679   }
680 
681   // Unless we have a loop for OldBB, nothing else to do here.
682   if (!L)
683     return;
684 
685   if (IsLoopEntry) {
686     // Add the new block to the nearest enclosing loop (and not an adjacent
687     // loop). To find this, examine each of the predecessors and determine which
688     // loops enclose them, and select the most-nested loop which contains the
689     // loop containing the block being split.
690     Loop *InnermostPredLoop = nullptr;
691     for (BasicBlock *Pred : Preds) {
692       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
693         // Seek a loop which actually contains the block being split (to avoid
694         // adjacent loops).
695         while (PredLoop && !PredLoop->contains(OldBB))
696           PredLoop = PredLoop->getParentLoop();
697 
698         // Select the most-nested of these loops which contains the block.
699         if (PredLoop && PredLoop->contains(OldBB) &&
700             (!InnermostPredLoop ||
701              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
702           InnermostPredLoop = PredLoop;
703       }
704     }
705 
706     if (InnermostPredLoop)
707       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
708   } else {
709     L->addBasicBlockToLoop(NewBB, *LI);
710     if (SplitMakesNewLoopHeader)
711       L->moveToHeader(NewBB);
712   }
713 }
714 
715 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
716 /// This also updates AliasAnalysis, if available.
717 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
718                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
719                            bool HasLoopExit) {
720   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
721   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
722   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
723     PHINode *PN = cast<PHINode>(I++);
724 
725     // Check to see if all of the values coming in are the same.  If so, we
726     // don't need to create a new PHI node, unless it's needed for LCSSA.
727     Value *InVal = nullptr;
728     if (!HasLoopExit) {
729       InVal = PN->getIncomingValueForBlock(Preds[0]);
730       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
731         if (!PredSet.count(PN->getIncomingBlock(i)))
732           continue;
733         if (!InVal)
734           InVal = PN->getIncomingValue(i);
735         else if (InVal != PN->getIncomingValue(i)) {
736           InVal = nullptr;
737           break;
738         }
739       }
740     }
741 
742     if (InVal) {
743       // If all incoming values for the new PHI would be the same, just don't
744       // make a new PHI.  Instead, just remove the incoming values from the old
745       // PHI.
746 
747       // NOTE! This loop walks backwards for a reason! First off, this minimizes
748       // the cost of removal if we end up removing a large number of values, and
749       // second off, this ensures that the indices for the incoming values
750       // aren't invalidated when we remove one.
751       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
752         if (PredSet.count(PN->getIncomingBlock(i)))
753           PN->removeIncomingValue(i, false);
754 
755       // Add an incoming value to the PHI node in the loop for the preheader
756       // edge.
757       PN->addIncoming(InVal, NewBB);
758       continue;
759     }
760 
761     // If the values coming into the block are not the same, we need a new
762     // PHI.
763     // Create the new PHI node, insert it into NewBB at the end of the block
764     PHINode *NewPHI =
765         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
766 
767     // NOTE! This loop walks backwards for a reason! First off, this minimizes
768     // the cost of removal if we end up removing a large number of values, and
769     // second off, this ensures that the indices for the incoming values aren't
770     // invalidated when we remove one.
771     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
772       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
773       if (PredSet.count(IncomingBB)) {
774         Value *V = PN->removeIncomingValue(i, false);
775         NewPHI->addIncoming(V, IncomingBB);
776       }
777     }
778 
779     PN->addIncoming(NewPHI, NewBB);
780   }
781 }
782 
783 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
784                                          ArrayRef<BasicBlock *> Preds,
785                                          const char *Suffix, DominatorTree *DT,
786                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
787                                          bool PreserveLCSSA) {
788   // Do not attempt to split that which cannot be split.
789   if (!BB->canSplitPredecessors())
790     return nullptr;
791 
792   // For the landingpads we need to act a bit differently.
793   // Delegate this work to the SplitLandingPadPredecessors.
794   if (BB->isLandingPad()) {
795     SmallVector<BasicBlock*, 2> NewBBs;
796     std::string NewName = std::string(Suffix) + ".split-lp";
797 
798     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
799                                 LI, MSSAU, PreserveLCSSA);
800     return NewBBs[0];
801   }
802 
803   // Create new basic block, insert right before the original block.
804   BasicBlock *NewBB = BasicBlock::Create(
805       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
806 
807   // The new block unconditionally branches to the old block.
808   BranchInst *BI = BranchInst::Create(BB, NewBB);
809 
810   Loop *L = nullptr;
811   BasicBlock *OldLatch = nullptr;
812   // Splitting the predecessors of a loop header creates a preheader block.
813   if (LI && LI->isLoopHeader(BB)) {
814     L = LI->getLoopFor(BB);
815     // Using the loop start line number prevents debuggers stepping into the
816     // loop body for this instruction.
817     BI->setDebugLoc(L->getStartLoc());
818 
819     // If BB is the header of the Loop, it is possible that the loop is
820     // modified, such that the current latch does not remain the latch of the
821     // loop. If that is the case, the loop metadata from the current latch needs
822     // to be applied to the new latch.
823     OldLatch = L->getLoopLatch();
824   } else
825     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
826 
827   // Move the edges from Preds to point to NewBB instead of BB.
828   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
829     // This is slightly more strict than necessary; the minimum requirement
830     // is that there be no more than one indirectbr branching to BB. And
831     // all BlockAddress uses would need to be updated.
832     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
833            "Cannot split an edge from an IndirectBrInst");
834     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
835            "Cannot split an edge from a CallBrInst");
836     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
837   }
838 
839   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
840   // node becomes an incoming value for BB's phi node.  However, if the Preds
841   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
842   // account for the newly created predecessor.
843   if (Preds.empty()) {
844     // Insert dummy values as the incoming value.
845     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
846       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
847   }
848 
849   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
850   bool HasLoopExit = false;
851   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
852                             HasLoopExit);
853 
854   if (!Preds.empty()) {
855     // Update the PHI nodes in BB with the values coming from NewBB.
856     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
857   }
858 
859   if (OldLatch) {
860     BasicBlock *NewLatch = L->getLoopLatch();
861     if (NewLatch != OldLatch) {
862       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
863       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
864       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
865     }
866   }
867 
868   return NewBB;
869 }
870 
871 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
872                                        ArrayRef<BasicBlock *> Preds,
873                                        const char *Suffix1, const char *Suffix2,
874                                        SmallVectorImpl<BasicBlock *> &NewBBs,
875                                        DominatorTree *DT, LoopInfo *LI,
876                                        MemorySSAUpdater *MSSAU,
877                                        bool PreserveLCSSA) {
878   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
879 
880   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
881   // it right before the original block.
882   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
883                                           OrigBB->getName() + Suffix1,
884                                           OrigBB->getParent(), OrigBB);
885   NewBBs.push_back(NewBB1);
886 
887   // The new block unconditionally branches to the old block.
888   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
889   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
890 
891   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
892   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
893     // This is slightly more strict than necessary; the minimum requirement
894     // is that there be no more than one indirectbr branching to BB. And
895     // all BlockAddress uses would need to be updated.
896     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
897            "Cannot split an edge from an IndirectBrInst");
898     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
899   }
900 
901   bool HasLoopExit = false;
902   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
903                             HasLoopExit);
904 
905   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
906   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
907 
908   // Move the remaining edges from OrigBB to point to NewBB2.
909   SmallVector<BasicBlock*, 8> NewBB2Preds;
910   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
911        i != e; ) {
912     BasicBlock *Pred = *i++;
913     if (Pred == NewBB1) continue;
914     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
915            "Cannot split an edge from an IndirectBrInst");
916     NewBB2Preds.push_back(Pred);
917     e = pred_end(OrigBB);
918   }
919 
920   BasicBlock *NewBB2 = nullptr;
921   if (!NewBB2Preds.empty()) {
922     // Create another basic block for the rest of OrigBB's predecessors.
923     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
924                                 OrigBB->getName() + Suffix2,
925                                 OrigBB->getParent(), OrigBB);
926     NewBBs.push_back(NewBB2);
927 
928     // The new block unconditionally branches to the old block.
929     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
930     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
931 
932     // Move the remaining edges from OrigBB to point to NewBB2.
933     for (BasicBlock *NewBB2Pred : NewBB2Preds)
934       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
935 
936     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
937     HasLoopExit = false;
938     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
939                               PreserveLCSSA, HasLoopExit);
940 
941     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
942     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
943   }
944 
945   LandingPadInst *LPad = OrigBB->getLandingPadInst();
946   Instruction *Clone1 = LPad->clone();
947   Clone1->setName(Twine("lpad") + Suffix1);
948   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
949 
950   if (NewBB2) {
951     Instruction *Clone2 = LPad->clone();
952     Clone2->setName(Twine("lpad") + Suffix2);
953     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
954 
955     // Create a PHI node for the two cloned landingpad instructions only
956     // if the original landingpad instruction has some uses.
957     if (!LPad->use_empty()) {
958       assert(!LPad->getType()->isTokenTy() &&
959              "Split cannot be applied if LPad is token type. Otherwise an "
960              "invalid PHINode of token type would be created.");
961       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
962       PN->addIncoming(Clone1, NewBB1);
963       PN->addIncoming(Clone2, NewBB2);
964       LPad->replaceAllUsesWith(PN);
965     }
966     LPad->eraseFromParent();
967   } else {
968     // There is no second clone. Just replace the landing pad with the first
969     // clone.
970     LPad->replaceAllUsesWith(Clone1);
971     LPad->eraseFromParent();
972   }
973 }
974 
975 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
976                                              BasicBlock *Pred,
977                                              DomTreeUpdater *DTU) {
978   Instruction *UncondBranch = Pred->getTerminator();
979   // Clone the return and add it to the end of the predecessor.
980   Instruction *NewRet = RI->clone();
981   Pred->getInstList().push_back(NewRet);
982 
983   // If the return instruction returns a value, and if the value was a
984   // PHI node in "BB", propagate the right value into the return.
985   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
986        i != e; ++i) {
987     Value *V = *i;
988     Instruction *NewBC = nullptr;
989     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
990       // Return value might be bitcasted. Clone and insert it before the
991       // return instruction.
992       V = BCI->getOperand(0);
993       NewBC = BCI->clone();
994       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
995       *i = NewBC;
996     }
997 
998     Instruction *NewEV = nullptr;
999     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1000       V = EVI->getOperand(0);
1001       NewEV = EVI->clone();
1002       if (NewBC) {
1003         NewBC->setOperand(0, NewEV);
1004         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1005       } else {
1006         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1007         *i = NewEV;
1008       }
1009     }
1010 
1011     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1012       if (PN->getParent() == BB) {
1013         if (NewEV) {
1014           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1015         } else if (NewBC)
1016           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1017         else
1018           *i = PN->getIncomingValueForBlock(Pred);
1019       }
1020     }
1021   }
1022 
1023   // Update any PHI nodes in the returning block to realize that we no
1024   // longer branch to them.
1025   BB->removePredecessor(Pred);
1026   UncondBranch->eraseFromParent();
1027 
1028   if (DTU)
1029     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1030 
1031   return cast<ReturnInst>(NewRet);
1032 }
1033 
1034 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1035                                              Instruction *SplitBefore,
1036                                              bool Unreachable,
1037                                              MDNode *BranchWeights,
1038                                              DominatorTree *DT, LoopInfo *LI,
1039                                              BasicBlock *ThenBlock) {
1040   BasicBlock *Head = SplitBefore->getParent();
1041   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1042   Instruction *HeadOldTerm = Head->getTerminator();
1043   LLVMContext &C = Head->getContext();
1044   Instruction *CheckTerm;
1045   bool CreateThenBlock = (ThenBlock == nullptr);
1046   if (CreateThenBlock) {
1047     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1048     if (Unreachable)
1049       CheckTerm = new UnreachableInst(C, ThenBlock);
1050     else
1051       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1052     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1053   } else
1054     CheckTerm = ThenBlock->getTerminator();
1055   BranchInst *HeadNewTerm =
1056     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
1057   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1058   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1059 
1060   if (DT) {
1061     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1062       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1063 
1064       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1065       for (DomTreeNode *Child : Children)
1066         DT->changeImmediateDominator(Child, NewNode);
1067 
1068       // Head dominates ThenBlock.
1069       if (CreateThenBlock)
1070         DT->addNewBlock(ThenBlock, Head);
1071       else
1072         DT->changeImmediateDominator(ThenBlock, Head);
1073     }
1074   }
1075 
1076   if (LI) {
1077     if (Loop *L = LI->getLoopFor(Head)) {
1078       L->addBasicBlockToLoop(ThenBlock, *LI);
1079       L->addBasicBlockToLoop(Tail, *LI);
1080     }
1081   }
1082 
1083   return CheckTerm;
1084 }
1085 
1086 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1087                                          Instruction **ThenTerm,
1088                                          Instruction **ElseTerm,
1089                                          MDNode *BranchWeights) {
1090   BasicBlock *Head = SplitBefore->getParent();
1091   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1092   Instruction *HeadOldTerm = Head->getTerminator();
1093   LLVMContext &C = Head->getContext();
1094   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1095   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1096   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1097   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1098   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1099   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1100   BranchInst *HeadNewTerm =
1101     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1102   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1103   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1104 }
1105 
1106 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1107                              BasicBlock *&IfFalse) {
1108   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1109   BasicBlock *Pred1 = nullptr;
1110   BasicBlock *Pred2 = nullptr;
1111 
1112   if (SomePHI) {
1113     if (SomePHI->getNumIncomingValues() != 2)
1114       return nullptr;
1115     Pred1 = SomePHI->getIncomingBlock(0);
1116     Pred2 = SomePHI->getIncomingBlock(1);
1117   } else {
1118     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1119     if (PI == PE) // No predecessor
1120       return nullptr;
1121     Pred1 = *PI++;
1122     if (PI == PE) // Only one predecessor
1123       return nullptr;
1124     Pred2 = *PI++;
1125     if (PI != PE) // More than two predecessors
1126       return nullptr;
1127   }
1128 
1129   // We can only handle branches.  Other control flow will be lowered to
1130   // branches if possible anyway.
1131   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1132   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1133   if (!Pred1Br || !Pred2Br)
1134     return nullptr;
1135 
1136   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1137   // either are.
1138   if (Pred2Br->isConditional()) {
1139     // If both branches are conditional, we don't have an "if statement".  In
1140     // reality, we could transform this case, but since the condition will be
1141     // required anyway, we stand no chance of eliminating it, so the xform is
1142     // probably not profitable.
1143     if (Pred1Br->isConditional())
1144       return nullptr;
1145 
1146     std::swap(Pred1, Pred2);
1147     std::swap(Pred1Br, Pred2Br);
1148   }
1149 
1150   if (Pred1Br->isConditional()) {
1151     // The only thing we have to watch out for here is to make sure that Pred2
1152     // doesn't have incoming edges from other blocks.  If it does, the condition
1153     // doesn't dominate BB.
1154     if (!Pred2->getSinglePredecessor())
1155       return nullptr;
1156 
1157     // If we found a conditional branch predecessor, make sure that it branches
1158     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1159     if (Pred1Br->getSuccessor(0) == BB &&
1160         Pred1Br->getSuccessor(1) == Pred2) {
1161       IfTrue = Pred1;
1162       IfFalse = Pred2;
1163     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1164                Pred1Br->getSuccessor(1) == BB) {
1165       IfTrue = Pred2;
1166       IfFalse = Pred1;
1167     } else {
1168       // We know that one arm of the conditional goes to BB, so the other must
1169       // go somewhere unrelated, and this must not be an "if statement".
1170       return nullptr;
1171     }
1172 
1173     return Pred1Br->getCondition();
1174   }
1175 
1176   // Ok, if we got here, both predecessors end with an unconditional branch to
1177   // BB.  Don't panic!  If both blocks only have a single (identical)
1178   // predecessor, and THAT is a conditional branch, then we're all ok!
1179   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1180   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1181     return nullptr;
1182 
1183   // Otherwise, if this is a conditional branch, then we can use it!
1184   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1185   if (!BI) return nullptr;
1186 
1187   assert(BI->isConditional() && "Two successors but not conditional?");
1188   if (BI->getSuccessor(0) == Pred1) {
1189     IfTrue = Pred1;
1190     IfFalse = Pred2;
1191   } else {
1192     IfTrue = Pred2;
1193     IfFalse = Pred1;
1194   }
1195   return BI->getCondition();
1196 }
1197 
1198 // After creating a control flow hub, the operands of PHINodes in an outgoing
1199 // block Out no longer match the predecessors of that block. Predecessors of Out
1200 // that are incoming blocks to the hub are now replaced by just one edge from
1201 // the hub. To match this new control flow, the corresponding values from each
1202 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1203 //
1204 // This operation cannot be performed with SSAUpdater, because it involves one
1205 // new use: If the block Out is in the list of Incoming blocks, then the newly
1206 // created PHI in the Hub will use itself along that edge from Out to Hub.
1207 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1208                           const SetVector<BasicBlock *> &Incoming,
1209                           BasicBlock *FirstGuardBlock) {
1210   auto I = Out->begin();
1211   while (I != Out->end() && isa<PHINode>(I)) {
1212     auto Phi = cast<PHINode>(I);
1213     auto NewPhi =
1214         PHINode::Create(Phi->getType(), Incoming.size(),
1215                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1216     for (auto In : Incoming) {
1217       Value *V = UndefValue::get(Phi->getType());
1218       if (In == Out) {
1219         V = NewPhi;
1220       } else if (Phi->getBasicBlockIndex(In) != -1) {
1221         V = Phi->removeIncomingValue(In, false);
1222       }
1223       NewPhi->addIncoming(V, In);
1224     }
1225     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1226     if (Phi->getNumOperands() == 0) {
1227       Phi->replaceAllUsesWith(NewPhi);
1228       I = Phi->eraseFromParent();
1229       continue;
1230     }
1231     Phi->addIncoming(NewPhi, GuardBlock);
1232     ++I;
1233   }
1234 }
1235 
1236 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1237 using BBSetVector = SetVector<BasicBlock *>;
1238 
1239 // Redirects the terminator of the incoming block to the first guard
1240 // block in the hub. The condition of the original terminator (if it
1241 // was conditional) and its original successors are returned as a
1242 // tuple <condition, succ0, succ1>. The function additionally filters
1243 // out successors that are not in the set of outgoing blocks.
1244 //
1245 // - condition is non-null iff the branch is conditional.
1246 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1247 // - Succ2 is non-null iff condition is non-null and the fallthrough
1248 //         target is an outgoing block.
1249 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1250 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1251               const BBSetVector &Outgoing) {
1252   auto Branch = cast<BranchInst>(BB->getTerminator());
1253   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1254 
1255   BasicBlock *Succ0 = Branch->getSuccessor(0);
1256   BasicBlock *Succ1 = nullptr;
1257   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1258 
1259   if (Branch->isUnconditional()) {
1260     Branch->setSuccessor(0, FirstGuardBlock);
1261     assert(Succ0);
1262   } else {
1263     Succ1 = Branch->getSuccessor(1);
1264     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1265     assert(Succ0 || Succ1);
1266     if (Succ0 && !Succ1) {
1267       Branch->setSuccessor(0, FirstGuardBlock);
1268     } else if (Succ1 && !Succ0) {
1269       Branch->setSuccessor(1, FirstGuardBlock);
1270     } else {
1271       Branch->eraseFromParent();
1272       BranchInst::Create(FirstGuardBlock, BB);
1273     }
1274   }
1275 
1276   assert(Succ0 || Succ1);
1277   return std::make_tuple(Condition, Succ0, Succ1);
1278 }
1279 
1280 // Capture the existing control flow as guard predicates, and redirect
1281 // control flow from every incoming block to the first guard block in
1282 // the hub.
1283 //
1284 // There is one guard predicate for each outgoing block OutBB. The
1285 // predicate is a PHINode with one input for each InBB which
1286 // represents whether the hub should transfer control flow to OutBB if
1287 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1288 // evaluates them in the same order as the Outgoing set-vector, and
1289 // control branches to the first outgoing block whose predicate
1290 // evaluates to true.
1291 static void convertToGuardPredicates(
1292     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1293     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1294     const BBSetVector &Outgoing) {
1295   auto &Context = Incoming.front()->getContext();
1296   auto BoolTrue = ConstantInt::getTrue(Context);
1297   auto BoolFalse = ConstantInt::getFalse(Context);
1298 
1299   // The predicate for the last outgoing is trivially true, and so we
1300   // process only the first N-1 successors.
1301   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1302     auto Out = Outgoing[i];
1303     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1304     auto Phi =
1305         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1306                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1307     GuardPredicates[Out] = Phi;
1308   }
1309 
1310   for (auto In : Incoming) {
1311     Value *Condition;
1312     BasicBlock *Succ0;
1313     BasicBlock *Succ1;
1314     std::tie(Condition, Succ0, Succ1) =
1315         redirectToHub(In, FirstGuardBlock, Outgoing);
1316 
1317     // Optimization: Consider an incoming block A with both successors
1318     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1319     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1320     // first in the loop below, control will branch to Succ0 using the
1321     // corresponding predicate. But if that branch is not taken, then
1322     // control must reach Succ1, which means that the predicate for
1323     // Succ1 is always true.
1324     bool OneSuccessorDone = false;
1325     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1326       auto Out = Outgoing[i];
1327       auto Phi = GuardPredicates[Out];
1328       if (Out != Succ0 && Out != Succ1) {
1329         Phi->addIncoming(BoolFalse, In);
1330         continue;
1331       }
1332       // Optimization: When only one successor is an outgoing block,
1333       // the predicate is always true.
1334       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1335         Phi->addIncoming(BoolTrue, In);
1336         continue;
1337       }
1338       assert(Succ0 && Succ1);
1339       OneSuccessorDone = true;
1340       if (Out == Succ0) {
1341         Phi->addIncoming(Condition, In);
1342         continue;
1343       }
1344       auto Inverted = invertCondition(Condition);
1345       DeletionCandidates.push_back(Condition);
1346       Phi->addIncoming(Inverted, In);
1347     }
1348   }
1349 }
1350 
1351 // For each outgoing block OutBB, create a guard block in the Hub. The
1352 // first guard block was already created outside, and available as the
1353 // first element in the vector of guard blocks.
1354 //
1355 // Each guard block terminates in a conditional branch that transfers
1356 // control to the corresponding outgoing block or the next guard
1357 // block. The last guard block has two outgoing blocks as successors
1358 // since the condition for the final outgoing block is trivially
1359 // true. So we create one less block (including the first guard block)
1360 // than the number of outgoing blocks.
1361 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1362                               Function *F, const BBSetVector &Outgoing,
1363                               BBPredicates &GuardPredicates, StringRef Prefix) {
1364   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1365     GuardBlocks.push_back(
1366         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1367   }
1368   assert(GuardBlocks.size() == GuardPredicates.size());
1369 
1370   // To help keep the loop simple, temporarily append the last
1371   // outgoing block to the list of guard blocks.
1372   GuardBlocks.push_back(Outgoing.back());
1373 
1374   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1375     auto Out = Outgoing[i];
1376     assert(GuardPredicates.count(Out));
1377     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1378                        GuardBlocks[i]);
1379   }
1380 
1381   // Remove the last block from the guard list.
1382   GuardBlocks.pop_back();
1383 }
1384 
1385 BasicBlock *llvm::CreateControlFlowHub(
1386     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1387     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1388     const StringRef Prefix) {
1389   auto F = Incoming.front()->getParent();
1390   auto FirstGuardBlock =
1391       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1392 
1393   SmallVector<DominatorTree::UpdateType, 16> Updates;
1394   if (DTU) {
1395     for (auto In : Incoming) {
1396       for (auto Succ : successors(In)) {
1397         if (Outgoing.count(Succ))
1398           Updates.push_back({DominatorTree::Delete, In, Succ});
1399       }
1400       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1401     }
1402   }
1403 
1404   BBPredicates GuardPredicates;
1405   SmallVector<WeakVH, 8> DeletionCandidates;
1406   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1407                            Incoming, Outgoing);
1408 
1409   GuardBlocks.push_back(FirstGuardBlock);
1410   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1411 
1412   // Update the PHINodes in each outgoing block to match the new control flow.
1413   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1414     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1415   }
1416   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1417 
1418   if (DTU) {
1419     int NumGuards = GuardBlocks.size();
1420     assert((int)Outgoing.size() == NumGuards + 1);
1421     for (int i = 0; i != NumGuards - 1; ++i) {
1422       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1423       Updates.push_back(
1424           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1425     }
1426     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1427                        Outgoing[NumGuards - 1]});
1428     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1429                        Outgoing[NumGuards]});
1430     DTU->applyUpdates(Updates);
1431   }
1432 
1433   for (auto I : DeletionCandidates) {
1434     if (I->use_empty())
1435       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1436         Inst->eraseFromParent();
1437   }
1438 
1439   return FirstGuardBlock;
1440 }
1441