1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "basicblock-utils"
53
54 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
55 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
56 cl::desc("Set the maximum path length when checking whether a basic block "
57 "is followed by a block that either has a terminating "
58 "deoptimizing call or is terminated with an unreachable"));
59
detachDeadBlocks(ArrayRef<BasicBlock * > BBs,SmallVectorImpl<DominatorTree::UpdateType> * Updates,bool KeepOneInputPHIs)60 void llvm::detachDeadBlocks(
61 ArrayRef<BasicBlock *> BBs,
62 SmallVectorImpl<DominatorTree::UpdateType> *Updates,
63 bool KeepOneInputPHIs) {
64 for (auto *BB : BBs) {
65 // Loop through all of our successors and make sure they know that one
66 // of their predecessors is going away.
67 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
68 for (BasicBlock *Succ : successors(BB)) {
69 Succ->removePredecessor(BB, KeepOneInputPHIs);
70 if (Updates && UniqueSuccessors.insert(Succ).second)
71 Updates->push_back({DominatorTree::Delete, BB, Succ});
72 }
73
74 // Zap all the instructions in the block.
75 while (!BB->empty()) {
76 Instruction &I = BB->back();
77 // If this instruction is used, replace uses with an arbitrary value.
78 // Because control flow can't get here, we don't care what we replace the
79 // value with. Note that since this block is unreachable, and all values
80 // contained within it must dominate their uses, that all uses will
81 // eventually be removed (they are themselves dead).
82 if (!I.use_empty())
83 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
84 BB->getInstList().pop_back();
85 }
86 new UnreachableInst(BB->getContext(), BB);
87 assert(BB->getInstList().size() == 1 &&
88 isa<UnreachableInst>(BB->getTerminator()) &&
89 "The successor list of BB isn't empty before "
90 "applying corresponding DTU updates.");
91 }
92 }
93
DeleteDeadBlock(BasicBlock * BB,DomTreeUpdater * DTU,bool KeepOneInputPHIs)94 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
95 bool KeepOneInputPHIs) {
96 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
97 }
98
DeleteDeadBlocks(ArrayRef<BasicBlock * > BBs,DomTreeUpdater * DTU,bool KeepOneInputPHIs)99 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
100 bool KeepOneInputPHIs) {
101 #ifndef NDEBUG
102 // Make sure that all predecessors of each dead block is also dead.
103 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
104 assert(Dead.size() == BBs.size() && "Duplicating blocks?");
105 for (auto *BB : Dead)
106 for (BasicBlock *Pred : predecessors(BB))
107 assert(Dead.count(Pred) && "All predecessors must be dead!");
108 #endif
109
110 SmallVector<DominatorTree::UpdateType, 4> Updates;
111 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
112
113 if (DTU)
114 DTU->applyUpdates(Updates);
115
116 for (BasicBlock *BB : BBs)
117 if (DTU)
118 DTU->deleteBB(BB);
119 else
120 BB->eraseFromParent();
121 }
122
EliminateUnreachableBlocks(Function & F,DomTreeUpdater * DTU,bool KeepOneInputPHIs)123 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
124 bool KeepOneInputPHIs) {
125 df_iterator_default_set<BasicBlock*> Reachable;
126
127 // Mark all reachable blocks.
128 for (BasicBlock *BB : depth_first_ext(&F, Reachable))
129 (void)BB/* Mark all reachable blocks */;
130
131 // Collect all dead blocks.
132 std::vector<BasicBlock*> DeadBlocks;
133 for (BasicBlock &BB : F)
134 if (!Reachable.count(&BB))
135 DeadBlocks.push_back(&BB);
136
137 // Delete the dead blocks.
138 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
139
140 return !DeadBlocks.empty();
141 }
142
FoldSingleEntryPHINodes(BasicBlock * BB,MemoryDependenceResults * MemDep)143 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
144 MemoryDependenceResults *MemDep) {
145 if (!isa<PHINode>(BB->begin()))
146 return false;
147
148 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
149 if (PN->getIncomingValue(0) != PN)
150 PN->replaceAllUsesWith(PN->getIncomingValue(0));
151 else
152 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
153
154 if (MemDep)
155 MemDep->removeInstruction(PN); // Memdep updates AA itself.
156
157 PN->eraseFromParent();
158 }
159 return true;
160 }
161
DeleteDeadPHIs(BasicBlock * BB,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU)162 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
163 MemorySSAUpdater *MSSAU) {
164 // Recursively deleting a PHI may cause multiple PHIs to be deleted
165 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
166 SmallVector<WeakTrackingVH, 8> PHIs;
167 for (PHINode &PN : BB->phis())
168 PHIs.push_back(&PN);
169
170 bool Changed = false;
171 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
172 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
173 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
174
175 return Changed;
176 }
177
MergeBlockIntoPredecessor(BasicBlock * BB,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,MemoryDependenceResults * MemDep,bool PredecessorWithTwoSuccessors)178 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
179 LoopInfo *LI, MemorySSAUpdater *MSSAU,
180 MemoryDependenceResults *MemDep,
181 bool PredecessorWithTwoSuccessors) {
182 if (BB->hasAddressTaken())
183 return false;
184
185 // Can't merge if there are multiple predecessors, or no predecessors.
186 BasicBlock *PredBB = BB->getUniquePredecessor();
187 if (!PredBB) return false;
188
189 // Don't break self-loops.
190 if (PredBB == BB) return false;
191
192 // Don't break unwinding instructions or terminators with other side-effects.
193 Instruction *PTI = PredBB->getTerminator();
194 if (PTI->isExceptionalTerminator() || PTI->mayHaveSideEffects())
195 return false;
196
197 // Can't merge if there are multiple distinct successors.
198 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
199 return false;
200
201 // Currently only allow PredBB to have two predecessors, one being BB.
202 // Update BI to branch to BB's only successor instead of BB.
203 BranchInst *PredBB_BI;
204 BasicBlock *NewSucc = nullptr;
205 unsigned FallThruPath;
206 if (PredecessorWithTwoSuccessors) {
207 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
208 return false;
209 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
210 if (!BB_JmpI || !BB_JmpI->isUnconditional())
211 return false;
212 NewSucc = BB_JmpI->getSuccessor(0);
213 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
214 }
215
216 // Can't merge if there is PHI loop.
217 for (PHINode &PN : BB->phis())
218 if (llvm::is_contained(PN.incoming_values(), &PN))
219 return false;
220
221 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
222 << PredBB->getName() << "\n");
223
224 // Begin by getting rid of unneeded PHIs.
225 SmallVector<AssertingVH<Value>, 4> IncomingValues;
226 if (isa<PHINode>(BB->front())) {
227 for (PHINode &PN : BB->phis())
228 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
229 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
230 IncomingValues.push_back(PN.getIncomingValue(0));
231 FoldSingleEntryPHINodes(BB, MemDep);
232 }
233
234 // DTU update: Collect all the edges that exit BB.
235 // These dominator edges will be redirected from Pred.
236 std::vector<DominatorTree::UpdateType> Updates;
237 if (DTU) {
238 // To avoid processing the same predecessor more than once.
239 SmallPtrSet<BasicBlock *, 8> SeenSuccs;
240 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
241 succ_end(PredBB));
242 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
243 // Add insert edges first. Experimentally, for the particular case of two
244 // blocks that can be merged, with a single successor and single predecessor
245 // respectively, it is beneficial to have all insert updates first. Deleting
246 // edges first may lead to unreachable blocks, followed by inserting edges
247 // making the blocks reachable again. Such DT updates lead to high compile
248 // times. We add inserts before deletes here to reduce compile time.
249 for (BasicBlock *SuccOfBB : successors(BB))
250 // This successor of BB may already be a PredBB's successor.
251 if (!SuccsOfPredBB.contains(SuccOfBB))
252 if (SeenSuccs.insert(SuccOfBB).second)
253 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
254 SeenSuccs.clear();
255 for (BasicBlock *SuccOfBB : successors(BB))
256 if (SeenSuccs.insert(SuccOfBB).second)
257 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
258 Updates.push_back({DominatorTree::Delete, PredBB, BB});
259 }
260
261 Instruction *STI = BB->getTerminator();
262 Instruction *Start = &*BB->begin();
263 // If there's nothing to move, mark the starting instruction as the last
264 // instruction in the block. Terminator instruction is handled separately.
265 if (Start == STI)
266 Start = PTI;
267
268 // Move all definitions in the successor to the predecessor...
269 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
270 BB->begin(), STI->getIterator());
271
272 if (MSSAU)
273 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
274
275 // Make all PHI nodes that referred to BB now refer to Pred as their
276 // source...
277 BB->replaceAllUsesWith(PredBB);
278
279 if (PredecessorWithTwoSuccessors) {
280 // Delete the unconditional branch from BB.
281 BB->getInstList().pop_back();
282
283 // Update branch in the predecessor.
284 PredBB_BI->setSuccessor(FallThruPath, NewSucc);
285 } else {
286 // Delete the unconditional branch from the predecessor.
287 PredBB->getInstList().pop_back();
288
289 // Move terminator instruction.
290 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
291
292 // Terminator may be a memory accessing instruction too.
293 if (MSSAU)
294 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
295 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
296 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
297 }
298 // Add unreachable to now empty BB.
299 new UnreachableInst(BB->getContext(), BB);
300
301 // Inherit predecessors name if it exists.
302 if (!PredBB->hasName())
303 PredBB->takeName(BB);
304
305 if (LI)
306 LI->removeBlock(BB);
307
308 if (MemDep)
309 MemDep->invalidateCachedPredecessors();
310
311 if (DTU)
312 DTU->applyUpdates(Updates);
313
314 // Finally, erase the old block and update dominator info.
315 DeleteDeadBlock(BB, DTU);
316
317 return true;
318 }
319
MergeBlockSuccessorsIntoGivenBlocks(SmallPtrSetImpl<BasicBlock * > & MergeBlocks,Loop * L,DomTreeUpdater * DTU,LoopInfo * LI)320 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
321 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
322 LoopInfo *LI) {
323 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
324
325 bool BlocksHaveBeenMerged = false;
326 while (!MergeBlocks.empty()) {
327 BasicBlock *BB = *MergeBlocks.begin();
328 BasicBlock *Dest = BB->getSingleSuccessor();
329 if (Dest && (!L || L->contains(Dest))) {
330 BasicBlock *Fold = Dest->getUniquePredecessor();
331 (void)Fold;
332 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
333 assert(Fold == BB &&
334 "Expecting BB to be unique predecessor of the Dest block");
335 MergeBlocks.erase(Dest);
336 BlocksHaveBeenMerged = true;
337 } else
338 MergeBlocks.erase(BB);
339 } else
340 MergeBlocks.erase(BB);
341 }
342 return BlocksHaveBeenMerged;
343 }
344
345 /// Remove redundant instructions within sequences of consecutive dbg.value
346 /// instructions. This is done using a backward scan to keep the last dbg.value
347 /// describing a specific variable/fragment.
348 ///
349 /// BackwardScan strategy:
350 /// ----------------------
351 /// Given a sequence of consecutive DbgValueInst like this
352 ///
353 /// dbg.value ..., "x", FragmentX1 (*)
354 /// dbg.value ..., "y", FragmentY1
355 /// dbg.value ..., "x", FragmentX2
356 /// dbg.value ..., "x", FragmentX1 (**)
357 ///
358 /// then the instruction marked with (*) can be removed (it is guaranteed to be
359 /// obsoleted by the instruction marked with (**) as the latter instruction is
360 /// describing the same variable using the same fragment info).
361 ///
362 /// Possible improvements:
363 /// - Check fully overlapping fragments and not only identical fragments.
364 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
365 /// instructions being part of the sequence of consecutive instructions.
removeRedundantDbgInstrsUsingBackwardScan(BasicBlock * BB)366 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
367 SmallVector<DbgValueInst *, 8> ToBeRemoved;
368 SmallDenseSet<DebugVariable> VariableSet;
369 for (auto &I : reverse(*BB)) {
370 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
371 DebugVariable Key(DVI->getVariable(),
372 DVI->getExpression(),
373 DVI->getDebugLoc()->getInlinedAt());
374 auto R = VariableSet.insert(Key);
375 // If the same variable fragment is described more than once it is enough
376 // to keep the last one (i.e. the first found since we for reverse
377 // iteration).
378 if (!R.second)
379 ToBeRemoved.push_back(DVI);
380 continue;
381 }
382 // Sequence with consecutive dbg.value instrs ended. Clear the map to
383 // restart identifying redundant instructions if case we find another
384 // dbg.value sequence.
385 VariableSet.clear();
386 }
387
388 for (auto &Instr : ToBeRemoved)
389 Instr->eraseFromParent();
390
391 return !ToBeRemoved.empty();
392 }
393
394 /// Remove redundant dbg.value instructions using a forward scan. This can
395 /// remove a dbg.value instruction that is redundant due to indicating that a
396 /// variable has the same value as already being indicated by an earlier
397 /// dbg.value.
398 ///
399 /// ForwardScan strategy:
400 /// ---------------------
401 /// Given two identical dbg.value instructions, separated by a block of
402 /// instructions that isn't describing the same variable, like this
403 ///
404 /// dbg.value X1, "x", FragmentX1 (**)
405 /// <block of instructions, none being "dbg.value ..., "x", ...">
406 /// dbg.value X1, "x", FragmentX1 (*)
407 ///
408 /// then the instruction marked with (*) can be removed. Variable "x" is already
409 /// described as being mapped to the SSA value X1.
410 ///
411 /// Possible improvements:
412 /// - Keep track of non-overlapping fragments.
removeRedundantDbgInstrsUsingForwardScan(BasicBlock * BB)413 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
414 SmallVector<DbgValueInst *, 8> ToBeRemoved;
415 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
416 VariableMap;
417 for (auto &I : *BB) {
418 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
419 DebugVariable Key(DVI->getVariable(),
420 NoneType(),
421 DVI->getDebugLoc()->getInlinedAt());
422 auto VMI = VariableMap.find(Key);
423 // Update the map if we found a new value/expression describing the
424 // variable, or if the variable wasn't mapped already.
425 SmallVector<Value *, 4> Values(DVI->getValues());
426 if (VMI == VariableMap.end() || VMI->second.first != Values ||
427 VMI->second.second != DVI->getExpression()) {
428 VariableMap[Key] = {Values, DVI->getExpression()};
429 continue;
430 }
431 // Found an identical mapping. Remember the instruction for later removal.
432 ToBeRemoved.push_back(DVI);
433 }
434 }
435
436 for (auto &Instr : ToBeRemoved)
437 Instr->eraseFromParent();
438
439 return !ToBeRemoved.empty();
440 }
441
RemoveRedundantDbgInstrs(BasicBlock * BB)442 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
443 bool MadeChanges = false;
444 // By using the "backward scan" strategy before the "forward scan" strategy we
445 // can remove both dbg.value (2) and (3) in a situation like this:
446 //
447 // (1) dbg.value V1, "x", DIExpression()
448 // ...
449 // (2) dbg.value V2, "x", DIExpression()
450 // (3) dbg.value V1, "x", DIExpression()
451 //
452 // The backward scan will remove (2), it is made obsolete by (3). After
453 // getting (2) out of the way, the foward scan will remove (3) since "x"
454 // already is described as having the value V1 at (1).
455 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
456 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
457
458 if (MadeChanges)
459 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
460 << BB->getName() << "\n");
461 return MadeChanges;
462 }
463
ReplaceInstWithValue(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Value * V)464 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
465 BasicBlock::iterator &BI, Value *V) {
466 Instruction &I = *BI;
467 // Replaces all of the uses of the instruction with uses of the value
468 I.replaceAllUsesWith(V);
469
470 // Make sure to propagate a name if there is one already.
471 if (I.hasName() && !V->hasName())
472 V->takeName(&I);
473
474 // Delete the unnecessary instruction now...
475 BI = BIL.erase(BI);
476 }
477
ReplaceInstWithInst(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Instruction * I)478 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
479 BasicBlock::iterator &BI, Instruction *I) {
480 assert(I->getParent() == nullptr &&
481 "ReplaceInstWithInst: Instruction already inserted into basic block!");
482
483 // Copy debug location to newly added instruction, if it wasn't already set
484 // by the caller.
485 if (!I->getDebugLoc())
486 I->setDebugLoc(BI->getDebugLoc());
487
488 // Insert the new instruction into the basic block...
489 BasicBlock::iterator New = BIL.insert(BI, I);
490
491 // Replace all uses of the old instruction, and delete it.
492 ReplaceInstWithValue(BIL, BI, I);
493
494 // Move BI back to point to the newly inserted instruction
495 BI = New;
496 }
497
IsBlockFollowedByDeoptOrUnreachable(const BasicBlock * BB)498 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
499 // Remember visited blocks to avoid infinite loop
500 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
501 unsigned Depth = 0;
502 while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
503 VisitedBlocks.insert(BB).second) {
504 if (BB->getTerminatingDeoptimizeCall() ||
505 isa<UnreachableInst>(BB->getTerminator()))
506 return true;
507 BB = BB->getUniqueSuccessor();
508 }
509 return false;
510 }
511
ReplaceInstWithInst(Instruction * From,Instruction * To)512 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
513 BasicBlock::iterator BI(From);
514 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
515 }
516
SplitEdge(BasicBlock * BB,BasicBlock * Succ,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName)517 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
518 LoopInfo *LI, MemorySSAUpdater *MSSAU,
519 const Twine &BBName) {
520 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
521
522 Instruction *LatchTerm = BB->getTerminator();
523
524 CriticalEdgeSplittingOptions Options =
525 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
526
527 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
528 // If it is a critical edge, and the succesor is an exception block, handle
529 // the split edge logic in this specific function
530 if (Succ->isEHPad())
531 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
532
533 // If this is a critical edge, let SplitKnownCriticalEdge do it.
534 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
535 }
536
537 // If the edge isn't critical, then BB has a single successor or Succ has a
538 // single pred. Split the block.
539 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
540 // If the successor only has a single pred, split the top of the successor
541 // block.
542 assert(SP == BB && "CFG broken");
543 SP = nullptr;
544 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
545 /*Before=*/true);
546 }
547
548 // Otherwise, if BB has a single successor, split it at the bottom of the
549 // block.
550 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
551 "Should have a single succ!");
552 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
553 }
554
setUnwindEdgeTo(Instruction * TI,BasicBlock * Succ)555 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
556 if (auto *II = dyn_cast<InvokeInst>(TI))
557 II->setUnwindDest(Succ);
558 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
559 CS->setUnwindDest(Succ);
560 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
561 CR->setUnwindDest(Succ);
562 else
563 llvm_unreachable("unexpected terminator instruction");
564 }
565
updatePhiNodes(BasicBlock * DestBB,BasicBlock * OldPred,BasicBlock * NewPred,PHINode * Until)566 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
567 BasicBlock *NewPred, PHINode *Until) {
568 int BBIdx = 0;
569 for (PHINode &PN : DestBB->phis()) {
570 // We manually update the LandingPadReplacement PHINode and it is the last
571 // PHI Node. So, if we find it, we are done.
572 if (Until == &PN)
573 break;
574
575 // Reuse the previous value of BBIdx if it lines up. In cases where we
576 // have multiple phi nodes with *lots* of predecessors, this is a speed
577 // win because we don't have to scan the PHI looking for TIBB. This
578 // happens because the BB list of PHI nodes are usually in the same
579 // order.
580 if (PN.getIncomingBlock(BBIdx) != OldPred)
581 BBIdx = PN.getBasicBlockIndex(OldPred);
582
583 assert(BBIdx != -1 && "Invalid PHI Index!");
584 PN.setIncomingBlock(BBIdx, NewPred);
585 }
586 }
587
ehAwareSplitEdge(BasicBlock * BB,BasicBlock * Succ,LandingPadInst * OriginalPad,PHINode * LandingPadReplacement,const CriticalEdgeSplittingOptions & Options,const Twine & BBName)588 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
589 LandingPadInst *OriginalPad,
590 PHINode *LandingPadReplacement,
591 const CriticalEdgeSplittingOptions &Options,
592 const Twine &BBName) {
593
594 auto *PadInst = Succ->getFirstNonPHI();
595 if (!LandingPadReplacement && !PadInst->isEHPad())
596 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
597
598 auto *LI = Options.LI;
599 SmallVector<BasicBlock *, 4> LoopPreds;
600 // Check if extra modifications will be required to preserve loop-simplify
601 // form after splitting. If it would require splitting blocks with IndirectBr
602 // terminators, bail out if preserving loop-simplify form is requested.
603 if (Options.PreserveLoopSimplify && LI) {
604 if (Loop *BBLoop = LI->getLoopFor(BB)) {
605
606 // The only way that we can break LoopSimplify form by splitting a
607 // critical edge is when there exists some edge from BBLoop to Succ *and*
608 // the only edge into Succ from outside of BBLoop is that of NewBB after
609 // the split. If the first isn't true, then LoopSimplify still holds,
610 // NewBB is the new exit block and it has no non-loop predecessors. If the
611 // second isn't true, then Succ was not in LoopSimplify form prior to
612 // the split as it had a non-loop predecessor. In both of these cases,
613 // the predecessor must be directly in BBLoop, not in a subloop, or again
614 // LoopSimplify doesn't hold.
615 for (BasicBlock *P : predecessors(Succ)) {
616 if (P == BB)
617 continue; // The new block is known.
618 if (LI->getLoopFor(P) != BBLoop) {
619 // Loop is not in LoopSimplify form, no need to re simplify after
620 // splitting edge.
621 LoopPreds.clear();
622 break;
623 }
624 LoopPreds.push_back(P);
625 }
626 // Loop-simplify form can be preserved, if we can split all in-loop
627 // predecessors.
628 if (any_of(LoopPreds, [](BasicBlock *Pred) {
629 return isa<IndirectBrInst>(Pred->getTerminator());
630 })) {
631 return nullptr;
632 }
633 }
634 }
635
636 auto *NewBB =
637 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
638 setUnwindEdgeTo(BB->getTerminator(), NewBB);
639 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
640
641 if (LandingPadReplacement) {
642 auto *NewLP = OriginalPad->clone();
643 auto *Terminator = BranchInst::Create(Succ, NewBB);
644 NewLP->insertBefore(Terminator);
645 LandingPadReplacement->addIncoming(NewLP, NewBB);
646 } else {
647 Value *ParentPad = nullptr;
648 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
649 ParentPad = FuncletPad->getParentPad();
650 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
651 ParentPad = CatchSwitch->getParentPad();
652 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
653 ParentPad = CleanupPad->getParentPad();
654 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
655 ParentPad = LandingPad->getParent();
656 else
657 llvm_unreachable("handling for other EHPads not implemented yet");
658
659 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
660 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
661 }
662
663 auto *DT = Options.DT;
664 auto *MSSAU = Options.MSSAU;
665 if (!DT && !LI)
666 return NewBB;
667
668 if (DT) {
669 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
670 SmallVector<DominatorTree::UpdateType, 3> Updates;
671
672 Updates.push_back({DominatorTree::Insert, BB, NewBB});
673 Updates.push_back({DominatorTree::Insert, NewBB, Succ});
674 Updates.push_back({DominatorTree::Delete, BB, Succ});
675
676 DTU.applyUpdates(Updates);
677 DTU.flush();
678
679 if (MSSAU) {
680 MSSAU->applyUpdates(Updates, *DT);
681 if (VerifyMemorySSA)
682 MSSAU->getMemorySSA()->verifyMemorySSA();
683 }
684 }
685
686 if (LI) {
687 if (Loop *BBLoop = LI->getLoopFor(BB)) {
688 // If one or the other blocks were not in a loop, the new block is not
689 // either, and thus LI doesn't need to be updated.
690 if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
691 if (BBLoop == SuccLoop) {
692 // Both in the same loop, the NewBB joins loop.
693 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
694 } else if (BBLoop->contains(SuccLoop)) {
695 // Edge from an outer loop to an inner loop. Add to the outer loop.
696 BBLoop->addBasicBlockToLoop(NewBB, *LI);
697 } else if (SuccLoop->contains(BBLoop)) {
698 // Edge from an inner loop to an outer loop. Add to the outer loop.
699 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
700 } else {
701 // Edge from two loops with no containment relation. Because these
702 // are natural loops, we know that the destination block must be the
703 // header of its loop (adding a branch into a loop elsewhere would
704 // create an irreducible loop).
705 assert(SuccLoop->getHeader() == Succ &&
706 "Should not create irreducible loops!");
707 if (Loop *P = SuccLoop->getParentLoop())
708 P->addBasicBlockToLoop(NewBB, *LI);
709 }
710 }
711
712 // If BB is in a loop and Succ is outside of that loop, we may need to
713 // update LoopSimplify form and LCSSA form.
714 if (!BBLoop->contains(Succ)) {
715 assert(!BBLoop->contains(NewBB) &&
716 "Split point for loop exit is contained in loop!");
717
718 // Update LCSSA form in the newly created exit block.
719 if (Options.PreserveLCSSA) {
720 createPHIsForSplitLoopExit(BB, NewBB, Succ);
721 }
722
723 if (!LoopPreds.empty()) {
724 BasicBlock *NewExitBB = SplitBlockPredecessors(
725 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
726 if (Options.PreserveLCSSA)
727 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
728 }
729 }
730 }
731 }
732
733 return NewBB;
734 }
735
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)736 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
737 BasicBlock *SplitBB, BasicBlock *DestBB) {
738 // SplitBB shouldn't have anything non-trivial in it yet.
739 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
740 SplitBB->isLandingPad()) &&
741 "SplitBB has non-PHI nodes!");
742
743 // For each PHI in the destination block.
744 for (PHINode &PN : DestBB->phis()) {
745 int Idx = PN.getBasicBlockIndex(SplitBB);
746 assert(Idx >= 0 && "Invalid Block Index");
747 Value *V = PN.getIncomingValue(Idx);
748
749 // If the input is a PHI which already satisfies LCSSA, don't create
750 // a new one.
751 if (const PHINode *VP = dyn_cast<PHINode>(V))
752 if (VP->getParent() == SplitBB)
753 continue;
754
755 // Otherwise a new PHI is needed. Create one and populate it.
756 PHINode *NewPN = PHINode::Create(
757 PN.getType(), Preds.size(), "split",
758 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
759 for (BasicBlock *BB : Preds)
760 NewPN->addIncoming(V, BB);
761
762 // Update the original PHI.
763 PN.setIncomingValue(Idx, NewPN);
764 }
765 }
766
767 unsigned
SplitAllCriticalEdges(Function & F,const CriticalEdgeSplittingOptions & Options)768 llvm::SplitAllCriticalEdges(Function &F,
769 const CriticalEdgeSplittingOptions &Options) {
770 unsigned NumBroken = 0;
771 for (BasicBlock &BB : F) {
772 Instruction *TI = BB.getTerminator();
773 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
774 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
775 if (SplitCriticalEdge(TI, i, Options))
776 ++NumBroken;
777 }
778 return NumBroken;
779 }
780
SplitBlockImpl(BasicBlock * Old,Instruction * SplitPt,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName,bool Before)781 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
782 DomTreeUpdater *DTU, DominatorTree *DT,
783 LoopInfo *LI, MemorySSAUpdater *MSSAU,
784 const Twine &BBName, bool Before) {
785 if (Before) {
786 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
787 return splitBlockBefore(Old, SplitPt,
788 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
789 BBName);
790 }
791 BasicBlock::iterator SplitIt = SplitPt->getIterator();
792 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
793 ++SplitIt;
794 assert(SplitIt != SplitPt->getParent()->end());
795 }
796 std::string Name = BBName.str();
797 BasicBlock *New = Old->splitBasicBlock(
798 SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
799
800 // The new block lives in whichever loop the old one did. This preserves
801 // LCSSA as well, because we force the split point to be after any PHI nodes.
802 if (LI)
803 if (Loop *L = LI->getLoopFor(Old))
804 L->addBasicBlockToLoop(New, *LI);
805
806 if (DTU) {
807 SmallVector<DominatorTree::UpdateType, 8> Updates;
808 // Old dominates New. New node dominates all other nodes dominated by Old.
809 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
810 Updates.push_back({DominatorTree::Insert, Old, New});
811 Updates.reserve(Updates.size() + 2 * succ_size(New));
812 for (BasicBlock *SuccessorOfOld : successors(New))
813 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
814 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
815 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
816 }
817
818 DTU->applyUpdates(Updates);
819 } else if (DT)
820 // Old dominates New. New node dominates all other nodes dominated by Old.
821 if (DomTreeNode *OldNode = DT->getNode(Old)) {
822 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
823
824 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
825 for (DomTreeNode *I : Children)
826 DT->changeImmediateDominator(I, NewNode);
827 }
828
829 // Move MemoryAccesses still tracked in Old, but part of New now.
830 // Update accesses in successor blocks accordingly.
831 if (MSSAU)
832 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
833
834 return New;
835 }
836
SplitBlock(BasicBlock * Old,Instruction * SplitPt,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName,bool Before)837 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
838 DominatorTree *DT, LoopInfo *LI,
839 MemorySSAUpdater *MSSAU, const Twine &BBName,
840 bool Before) {
841 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
842 Before);
843 }
SplitBlock(BasicBlock * Old,Instruction * SplitPt,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName,bool Before)844 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
845 DomTreeUpdater *DTU, LoopInfo *LI,
846 MemorySSAUpdater *MSSAU, const Twine &BBName,
847 bool Before) {
848 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
849 Before);
850 }
851
splitBlockBefore(BasicBlock * Old,Instruction * SplitPt,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,const Twine & BBName)852 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
853 DomTreeUpdater *DTU, LoopInfo *LI,
854 MemorySSAUpdater *MSSAU,
855 const Twine &BBName) {
856
857 BasicBlock::iterator SplitIt = SplitPt->getIterator();
858 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
859 ++SplitIt;
860 std::string Name = BBName.str();
861 BasicBlock *New = Old->splitBasicBlock(
862 SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
863 /* Before=*/true);
864
865 // The new block lives in whichever loop the old one did. This preserves
866 // LCSSA as well, because we force the split point to be after any PHI nodes.
867 if (LI)
868 if (Loop *L = LI->getLoopFor(Old))
869 L->addBasicBlockToLoop(New, *LI);
870
871 if (DTU) {
872 SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
873 // New dominates Old. The predecessor nodes of the Old node dominate
874 // New node.
875 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
876 DTUpdates.push_back({DominatorTree::Insert, New, Old});
877 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
878 for (BasicBlock *PredecessorOfOld : predecessors(New))
879 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
880 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
881 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
882 }
883
884 DTU->applyUpdates(DTUpdates);
885
886 // Move MemoryAccesses still tracked in Old, but part of New now.
887 // Update accesses in successor blocks accordingly.
888 if (MSSAU) {
889 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
890 if (VerifyMemorySSA)
891 MSSAU->getMemorySSA()->verifyMemorySSA();
892 }
893 }
894 return New;
895 }
896
897 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
UpdateAnalysisInformation(BasicBlock * OldBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA,bool & HasLoopExit)898 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
899 ArrayRef<BasicBlock *> Preds,
900 DomTreeUpdater *DTU, DominatorTree *DT,
901 LoopInfo *LI, MemorySSAUpdater *MSSAU,
902 bool PreserveLCSSA, bool &HasLoopExit) {
903 // Update dominator tree if available.
904 if (DTU) {
905 // Recalculation of DomTree is needed when updating a forward DomTree and
906 // the Entry BB is replaced.
907 if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
908 // The entry block was removed and there is no external interface for
909 // the dominator tree to be notified of this change. In this corner-case
910 // we recalculate the entire tree.
911 DTU->recalculate(*NewBB->getParent());
912 } else {
913 // Split block expects NewBB to have a non-empty set of predecessors.
914 SmallVector<DominatorTree::UpdateType, 8> Updates;
915 SmallPtrSet<BasicBlock *, 8> UniquePreds;
916 Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
917 Updates.reserve(Updates.size() + 2 * Preds.size());
918 for (auto *Pred : Preds)
919 if (UniquePreds.insert(Pred).second) {
920 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
921 Updates.push_back({DominatorTree::Delete, Pred, OldBB});
922 }
923 DTU->applyUpdates(Updates);
924 }
925 } else if (DT) {
926 if (OldBB == DT->getRootNode()->getBlock()) {
927 assert(NewBB->isEntryBlock());
928 DT->setNewRoot(NewBB);
929 } else {
930 // Split block expects NewBB to have a non-empty set of predecessors.
931 DT->splitBlock(NewBB);
932 }
933 }
934
935 // Update MemoryPhis after split if MemorySSA is available
936 if (MSSAU)
937 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
938
939 // The rest of the logic is only relevant for updating the loop structures.
940 if (!LI)
941 return;
942
943 if (DTU && DTU->hasDomTree())
944 DT = &DTU->getDomTree();
945 assert(DT && "DT should be available to update LoopInfo!");
946 Loop *L = LI->getLoopFor(OldBB);
947
948 // If we need to preserve loop analyses, collect some information about how
949 // this split will affect loops.
950 bool IsLoopEntry = !!L;
951 bool SplitMakesNewLoopHeader = false;
952 for (BasicBlock *Pred : Preds) {
953 // Preds that are not reachable from entry should not be used to identify if
954 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
955 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
956 // as true and make the NewBB the header of some loop. This breaks LI.
957 if (!DT->isReachableFromEntry(Pred))
958 continue;
959 // If we need to preserve LCSSA, determine if any of the preds is a loop
960 // exit.
961 if (PreserveLCSSA)
962 if (Loop *PL = LI->getLoopFor(Pred))
963 if (!PL->contains(OldBB))
964 HasLoopExit = true;
965
966 // If we need to preserve LoopInfo, note whether any of the preds crosses
967 // an interesting loop boundary.
968 if (!L)
969 continue;
970 if (L->contains(Pred))
971 IsLoopEntry = false;
972 else
973 SplitMakesNewLoopHeader = true;
974 }
975
976 // Unless we have a loop for OldBB, nothing else to do here.
977 if (!L)
978 return;
979
980 if (IsLoopEntry) {
981 // Add the new block to the nearest enclosing loop (and not an adjacent
982 // loop). To find this, examine each of the predecessors and determine which
983 // loops enclose them, and select the most-nested loop which contains the
984 // loop containing the block being split.
985 Loop *InnermostPredLoop = nullptr;
986 for (BasicBlock *Pred : Preds) {
987 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
988 // Seek a loop which actually contains the block being split (to avoid
989 // adjacent loops).
990 while (PredLoop && !PredLoop->contains(OldBB))
991 PredLoop = PredLoop->getParentLoop();
992
993 // Select the most-nested of these loops which contains the block.
994 if (PredLoop && PredLoop->contains(OldBB) &&
995 (!InnermostPredLoop ||
996 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
997 InnermostPredLoop = PredLoop;
998 }
999 }
1000
1001 if (InnermostPredLoop)
1002 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1003 } else {
1004 L->addBasicBlockToLoop(NewBB, *LI);
1005 if (SplitMakesNewLoopHeader)
1006 L->moveToHeader(NewBB);
1007 }
1008 }
1009
1010 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1011 /// This also updates AliasAnalysis, if available.
UpdatePHINodes(BasicBlock * OrigBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,BranchInst * BI,bool HasLoopExit)1012 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1013 ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1014 bool HasLoopExit) {
1015 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1016 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1017 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1018 PHINode *PN = cast<PHINode>(I++);
1019
1020 // Check to see if all of the values coming in are the same. If so, we
1021 // don't need to create a new PHI node, unless it's needed for LCSSA.
1022 Value *InVal = nullptr;
1023 if (!HasLoopExit) {
1024 InVal = PN->getIncomingValueForBlock(Preds[0]);
1025 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1026 if (!PredSet.count(PN->getIncomingBlock(i)))
1027 continue;
1028 if (!InVal)
1029 InVal = PN->getIncomingValue(i);
1030 else if (InVal != PN->getIncomingValue(i)) {
1031 InVal = nullptr;
1032 break;
1033 }
1034 }
1035 }
1036
1037 if (InVal) {
1038 // If all incoming values for the new PHI would be the same, just don't
1039 // make a new PHI. Instead, just remove the incoming values from the old
1040 // PHI.
1041
1042 // NOTE! This loop walks backwards for a reason! First off, this minimizes
1043 // the cost of removal if we end up removing a large number of values, and
1044 // second off, this ensures that the indices for the incoming values
1045 // aren't invalidated when we remove one.
1046 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1047 if (PredSet.count(PN->getIncomingBlock(i)))
1048 PN->removeIncomingValue(i, false);
1049
1050 // Add an incoming value to the PHI node in the loop for the preheader
1051 // edge.
1052 PN->addIncoming(InVal, NewBB);
1053 continue;
1054 }
1055
1056 // If the values coming into the block are not the same, we need a new
1057 // PHI.
1058 // Create the new PHI node, insert it into NewBB at the end of the block
1059 PHINode *NewPHI =
1060 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1061
1062 // NOTE! This loop walks backwards for a reason! First off, this minimizes
1063 // the cost of removal if we end up removing a large number of values, and
1064 // second off, this ensures that the indices for the incoming values aren't
1065 // invalidated when we remove one.
1066 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1067 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1068 if (PredSet.count(IncomingBB)) {
1069 Value *V = PN->removeIncomingValue(i, false);
1070 NewPHI->addIncoming(V, IncomingBB);
1071 }
1072 }
1073
1074 PN->addIncoming(NewPHI, NewBB);
1075 }
1076 }
1077
1078 static void SplitLandingPadPredecessorsImpl(
1079 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1080 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1081 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1082 MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1083
1084 static BasicBlock *
SplitBlockPredecessorsImpl(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1085 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1086 const char *Suffix, DomTreeUpdater *DTU,
1087 DominatorTree *DT, LoopInfo *LI,
1088 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1089 // Do not attempt to split that which cannot be split.
1090 if (!BB->canSplitPredecessors())
1091 return nullptr;
1092
1093 // For the landingpads we need to act a bit differently.
1094 // Delegate this work to the SplitLandingPadPredecessors.
1095 if (BB->isLandingPad()) {
1096 SmallVector<BasicBlock*, 2> NewBBs;
1097 std::string NewName = std::string(Suffix) + ".split-lp";
1098
1099 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1100 DTU, DT, LI, MSSAU, PreserveLCSSA);
1101 return NewBBs[0];
1102 }
1103
1104 // Create new basic block, insert right before the original block.
1105 BasicBlock *NewBB = BasicBlock::Create(
1106 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1107
1108 // The new block unconditionally branches to the old block.
1109 BranchInst *BI = BranchInst::Create(BB, NewBB);
1110
1111 Loop *L = nullptr;
1112 BasicBlock *OldLatch = nullptr;
1113 // Splitting the predecessors of a loop header creates a preheader block.
1114 if (LI && LI->isLoopHeader(BB)) {
1115 L = LI->getLoopFor(BB);
1116 // Using the loop start line number prevents debuggers stepping into the
1117 // loop body for this instruction.
1118 BI->setDebugLoc(L->getStartLoc());
1119
1120 // If BB is the header of the Loop, it is possible that the loop is
1121 // modified, such that the current latch does not remain the latch of the
1122 // loop. If that is the case, the loop metadata from the current latch needs
1123 // to be applied to the new latch.
1124 OldLatch = L->getLoopLatch();
1125 } else
1126 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1127
1128 // Move the edges from Preds to point to NewBB instead of BB.
1129 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1130 // This is slightly more strict than necessary; the minimum requirement
1131 // is that there be no more than one indirectbr branching to BB. And
1132 // all BlockAddress uses would need to be updated.
1133 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1134 "Cannot split an edge from an IndirectBrInst");
1135 Preds[i]->getTerminator()->replaceSuccessorWith(BB, NewBB);
1136 }
1137
1138 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1139 // node becomes an incoming value for BB's phi node. However, if the Preds
1140 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1141 // account for the newly created predecessor.
1142 if (Preds.empty()) {
1143 // Insert dummy values as the incoming value.
1144 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1145 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1146 }
1147
1148 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1149 bool HasLoopExit = false;
1150 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1151 HasLoopExit);
1152
1153 if (!Preds.empty()) {
1154 // Update the PHI nodes in BB with the values coming from NewBB.
1155 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1156 }
1157
1158 if (OldLatch) {
1159 BasicBlock *NewLatch = L->getLoopLatch();
1160 if (NewLatch != OldLatch) {
1161 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1162 NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1163 // It's still possible that OldLatch is the latch of another inner loop,
1164 // in which case we do not remove the metadata.
1165 Loop *IL = LI->getLoopFor(OldLatch);
1166 if (IL && IL->getLoopLatch() != OldLatch)
1167 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1168 }
1169 }
1170
1171 return NewBB;
1172 }
1173
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1174 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1175 ArrayRef<BasicBlock *> Preds,
1176 const char *Suffix, DominatorTree *DT,
1177 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1178 bool PreserveLCSSA) {
1179 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1180 MSSAU, PreserveLCSSA);
1181 }
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1182 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1183 ArrayRef<BasicBlock *> Preds,
1184 const char *Suffix,
1185 DomTreeUpdater *DTU, LoopInfo *LI,
1186 MemorySSAUpdater *MSSAU,
1187 bool PreserveLCSSA) {
1188 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1189 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1190 }
1191
SplitLandingPadPredecessorsImpl(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1192 static void SplitLandingPadPredecessorsImpl(
1193 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1194 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1195 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1196 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1197 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1198
1199 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1200 // it right before the original block.
1201 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1202 OrigBB->getName() + Suffix1,
1203 OrigBB->getParent(), OrigBB);
1204 NewBBs.push_back(NewBB1);
1205
1206 // The new block unconditionally branches to the old block.
1207 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1208 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1209
1210 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1211 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1212 // This is slightly more strict than necessary; the minimum requirement
1213 // is that there be no more than one indirectbr branching to BB. And
1214 // all BlockAddress uses would need to be updated.
1215 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1216 "Cannot split an edge from an IndirectBrInst");
1217 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1218 }
1219
1220 bool HasLoopExit = false;
1221 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1222 PreserveLCSSA, HasLoopExit);
1223
1224 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1225 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1226
1227 // Move the remaining edges from OrigBB to point to NewBB2.
1228 SmallVector<BasicBlock*, 8> NewBB2Preds;
1229 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1230 i != e; ) {
1231 BasicBlock *Pred = *i++;
1232 if (Pred == NewBB1) continue;
1233 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1234 "Cannot split an edge from an IndirectBrInst");
1235 NewBB2Preds.push_back(Pred);
1236 e = pred_end(OrigBB);
1237 }
1238
1239 BasicBlock *NewBB2 = nullptr;
1240 if (!NewBB2Preds.empty()) {
1241 // Create another basic block for the rest of OrigBB's predecessors.
1242 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1243 OrigBB->getName() + Suffix2,
1244 OrigBB->getParent(), OrigBB);
1245 NewBBs.push_back(NewBB2);
1246
1247 // The new block unconditionally branches to the old block.
1248 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1249 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1250
1251 // Move the remaining edges from OrigBB to point to NewBB2.
1252 for (BasicBlock *NewBB2Pred : NewBB2Preds)
1253 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1254
1255 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1256 HasLoopExit = false;
1257 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1258 PreserveLCSSA, HasLoopExit);
1259
1260 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1261 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1262 }
1263
1264 LandingPadInst *LPad = OrigBB->getLandingPadInst();
1265 Instruction *Clone1 = LPad->clone();
1266 Clone1->setName(Twine("lpad") + Suffix1);
1267 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1268
1269 if (NewBB2) {
1270 Instruction *Clone2 = LPad->clone();
1271 Clone2->setName(Twine("lpad") + Suffix2);
1272 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1273
1274 // Create a PHI node for the two cloned landingpad instructions only
1275 // if the original landingpad instruction has some uses.
1276 if (!LPad->use_empty()) {
1277 assert(!LPad->getType()->isTokenTy() &&
1278 "Split cannot be applied if LPad is token type. Otherwise an "
1279 "invalid PHINode of token type would be created.");
1280 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1281 PN->addIncoming(Clone1, NewBB1);
1282 PN->addIncoming(Clone2, NewBB2);
1283 LPad->replaceAllUsesWith(PN);
1284 }
1285 LPad->eraseFromParent();
1286 } else {
1287 // There is no second clone. Just replace the landing pad with the first
1288 // clone.
1289 LPad->replaceAllUsesWith(Clone1);
1290 LPad->eraseFromParent();
1291 }
1292 }
1293
SplitLandingPadPredecessors(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1294 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1295 ArrayRef<BasicBlock *> Preds,
1296 const char *Suffix1, const char *Suffix2,
1297 SmallVectorImpl<BasicBlock *> &NewBBs,
1298 DominatorTree *DT, LoopInfo *LI,
1299 MemorySSAUpdater *MSSAU,
1300 bool PreserveLCSSA) {
1301 return SplitLandingPadPredecessorsImpl(
1302 OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1303 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1304 }
SplitLandingPadPredecessors(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DomTreeUpdater * DTU,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)1305 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1306 ArrayRef<BasicBlock *> Preds,
1307 const char *Suffix1, const char *Suffix2,
1308 SmallVectorImpl<BasicBlock *> &NewBBs,
1309 DomTreeUpdater *DTU, LoopInfo *LI,
1310 MemorySSAUpdater *MSSAU,
1311 bool PreserveLCSSA) {
1312 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1313 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1314 PreserveLCSSA);
1315 }
1316
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred,DomTreeUpdater * DTU)1317 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1318 BasicBlock *Pred,
1319 DomTreeUpdater *DTU) {
1320 Instruction *UncondBranch = Pred->getTerminator();
1321 // Clone the return and add it to the end of the predecessor.
1322 Instruction *NewRet = RI->clone();
1323 Pred->getInstList().push_back(NewRet);
1324
1325 // If the return instruction returns a value, and if the value was a
1326 // PHI node in "BB", propagate the right value into the return.
1327 for (Use &Op : NewRet->operands()) {
1328 Value *V = Op;
1329 Instruction *NewBC = nullptr;
1330 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1331 // Return value might be bitcasted. Clone and insert it before the
1332 // return instruction.
1333 V = BCI->getOperand(0);
1334 NewBC = BCI->clone();
1335 Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1336 Op = NewBC;
1337 }
1338
1339 Instruction *NewEV = nullptr;
1340 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1341 V = EVI->getOperand(0);
1342 NewEV = EVI->clone();
1343 if (NewBC) {
1344 NewBC->setOperand(0, NewEV);
1345 Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1346 } else {
1347 Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1348 Op = NewEV;
1349 }
1350 }
1351
1352 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1353 if (PN->getParent() == BB) {
1354 if (NewEV) {
1355 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1356 } else if (NewBC)
1357 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1358 else
1359 Op = PN->getIncomingValueForBlock(Pred);
1360 }
1361 }
1362 }
1363
1364 // Update any PHI nodes in the returning block to realize that we no
1365 // longer branch to them.
1366 BB->removePredecessor(Pred);
1367 UncondBranch->eraseFromParent();
1368
1369 if (DTU)
1370 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1371
1372 return cast<ReturnInst>(NewRet);
1373 }
1374
1375 static Instruction *
SplitBlockAndInsertIfThenImpl(Value * Cond,Instruction * SplitBefore,bool Unreachable,MDNode * BranchWeights,DomTreeUpdater * DTU,DominatorTree * DT,LoopInfo * LI,BasicBlock * ThenBlock)1376 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1377 bool Unreachable, MDNode *BranchWeights,
1378 DomTreeUpdater *DTU, DominatorTree *DT,
1379 LoopInfo *LI, BasicBlock *ThenBlock) {
1380 SmallVector<DominatorTree::UpdateType, 8> Updates;
1381 BasicBlock *Head = SplitBefore->getParent();
1382 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1383 if (DTU) {
1384 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead;
1385 Updates.push_back({DominatorTree::Insert, Head, Tail});
1386 Updates.reserve(Updates.size() + 2 * succ_size(Tail));
1387 for (BasicBlock *SuccessorOfHead : successors(Tail))
1388 if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) {
1389 Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead});
1390 Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead});
1391 }
1392 }
1393 Instruction *HeadOldTerm = Head->getTerminator();
1394 LLVMContext &C = Head->getContext();
1395 Instruction *CheckTerm;
1396 bool CreateThenBlock = (ThenBlock == nullptr);
1397 if (CreateThenBlock) {
1398 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1399 if (Unreachable)
1400 CheckTerm = new UnreachableInst(C, ThenBlock);
1401 else {
1402 CheckTerm = BranchInst::Create(Tail, ThenBlock);
1403 if (DTU)
1404 Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1405 }
1406 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1407 } else
1408 CheckTerm = ThenBlock->getTerminator();
1409 BranchInst *HeadNewTerm =
1410 BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1411 if (DTU)
1412 Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1413 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1414 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1415
1416 if (DTU)
1417 DTU->applyUpdates(Updates);
1418 else if (DT) {
1419 if (DomTreeNode *OldNode = DT->getNode(Head)) {
1420 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1421
1422 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1423 for (DomTreeNode *Child : Children)
1424 DT->changeImmediateDominator(Child, NewNode);
1425
1426 // Head dominates ThenBlock.
1427 if (CreateThenBlock)
1428 DT->addNewBlock(ThenBlock, Head);
1429 else
1430 DT->changeImmediateDominator(ThenBlock, Head);
1431 }
1432 }
1433
1434 if (LI) {
1435 if (Loop *L = LI->getLoopFor(Head)) {
1436 L->addBasicBlockToLoop(ThenBlock, *LI);
1437 L->addBasicBlockToLoop(Tail, *LI);
1438 }
1439 }
1440
1441 return CheckTerm;
1442 }
1443
SplitBlockAndInsertIfThen(Value * Cond,Instruction * SplitBefore,bool Unreachable,MDNode * BranchWeights,DominatorTree * DT,LoopInfo * LI,BasicBlock * ThenBlock)1444 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1445 Instruction *SplitBefore,
1446 bool Unreachable,
1447 MDNode *BranchWeights,
1448 DominatorTree *DT, LoopInfo *LI,
1449 BasicBlock *ThenBlock) {
1450 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1451 BranchWeights,
1452 /*DTU=*/nullptr, DT, LI, ThenBlock);
1453 }
SplitBlockAndInsertIfThen(Value * Cond,Instruction * SplitBefore,bool Unreachable,MDNode * BranchWeights,DomTreeUpdater * DTU,LoopInfo * LI,BasicBlock * ThenBlock)1454 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1455 Instruction *SplitBefore,
1456 bool Unreachable,
1457 MDNode *BranchWeights,
1458 DomTreeUpdater *DTU, LoopInfo *LI,
1459 BasicBlock *ThenBlock) {
1460 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1461 BranchWeights, DTU, /*DT=*/nullptr, LI,
1462 ThenBlock);
1463 }
1464
SplitBlockAndInsertIfThenElse(Value * Cond,Instruction * SplitBefore,Instruction ** ThenTerm,Instruction ** ElseTerm,MDNode * BranchWeights)1465 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1466 Instruction **ThenTerm,
1467 Instruction **ElseTerm,
1468 MDNode *BranchWeights) {
1469 BasicBlock *Head = SplitBefore->getParent();
1470 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1471 Instruction *HeadOldTerm = Head->getTerminator();
1472 LLVMContext &C = Head->getContext();
1473 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1474 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1475 *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1476 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1477 *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1478 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1479 BranchInst *HeadNewTerm =
1480 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1481 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1482 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1483 }
1484
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)1485 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1486 BasicBlock *&IfFalse) {
1487 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1488 BasicBlock *Pred1 = nullptr;
1489 BasicBlock *Pred2 = nullptr;
1490
1491 if (SomePHI) {
1492 if (SomePHI->getNumIncomingValues() != 2)
1493 return nullptr;
1494 Pred1 = SomePHI->getIncomingBlock(0);
1495 Pred2 = SomePHI->getIncomingBlock(1);
1496 } else {
1497 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1498 if (PI == PE) // No predecessor
1499 return nullptr;
1500 Pred1 = *PI++;
1501 if (PI == PE) // Only one predecessor
1502 return nullptr;
1503 Pred2 = *PI++;
1504 if (PI != PE) // More than two predecessors
1505 return nullptr;
1506 }
1507
1508 // We can only handle branches. Other control flow will be lowered to
1509 // branches if possible anyway.
1510 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1511 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1512 if (!Pred1Br || !Pred2Br)
1513 return nullptr;
1514
1515 // Eliminate code duplication by ensuring that Pred1Br is conditional if
1516 // either are.
1517 if (Pred2Br->isConditional()) {
1518 // If both branches are conditional, we don't have an "if statement". In
1519 // reality, we could transform this case, but since the condition will be
1520 // required anyway, we stand no chance of eliminating it, so the xform is
1521 // probably not profitable.
1522 if (Pred1Br->isConditional())
1523 return nullptr;
1524
1525 std::swap(Pred1, Pred2);
1526 std::swap(Pred1Br, Pred2Br);
1527 }
1528
1529 if (Pred1Br->isConditional()) {
1530 // The only thing we have to watch out for here is to make sure that Pred2
1531 // doesn't have incoming edges from other blocks. If it does, the condition
1532 // doesn't dominate BB.
1533 if (!Pred2->getSinglePredecessor())
1534 return nullptr;
1535
1536 // If we found a conditional branch predecessor, make sure that it branches
1537 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
1538 if (Pred1Br->getSuccessor(0) == BB &&
1539 Pred1Br->getSuccessor(1) == Pred2) {
1540 IfTrue = Pred1;
1541 IfFalse = Pred2;
1542 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1543 Pred1Br->getSuccessor(1) == BB) {
1544 IfTrue = Pred2;
1545 IfFalse = Pred1;
1546 } else {
1547 // We know that one arm of the conditional goes to BB, so the other must
1548 // go somewhere unrelated, and this must not be an "if statement".
1549 return nullptr;
1550 }
1551
1552 return Pred1Br;
1553 }
1554
1555 // Ok, if we got here, both predecessors end with an unconditional branch to
1556 // BB. Don't panic! If both blocks only have a single (identical)
1557 // predecessor, and THAT is a conditional branch, then we're all ok!
1558 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1559 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1560 return nullptr;
1561
1562 // Otherwise, if this is a conditional branch, then we can use it!
1563 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1564 if (!BI) return nullptr;
1565
1566 assert(BI->isConditional() && "Two successors but not conditional?");
1567 if (BI->getSuccessor(0) == Pred1) {
1568 IfTrue = Pred1;
1569 IfFalse = Pred2;
1570 } else {
1571 IfTrue = Pred2;
1572 IfFalse = Pred1;
1573 }
1574 return BI;
1575 }
1576
1577 // After creating a control flow hub, the operands of PHINodes in an outgoing
1578 // block Out no longer match the predecessors of that block. Predecessors of Out
1579 // that are incoming blocks to the hub are now replaced by just one edge from
1580 // the hub. To match this new control flow, the corresponding values from each
1581 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1582 //
1583 // This operation cannot be performed with SSAUpdater, because it involves one
1584 // new use: If the block Out is in the list of Incoming blocks, then the newly
1585 // created PHI in the Hub will use itself along that edge from Out to Hub.
reconnectPhis(BasicBlock * Out,BasicBlock * GuardBlock,const SetVector<BasicBlock * > & Incoming,BasicBlock * FirstGuardBlock)1586 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1587 const SetVector<BasicBlock *> &Incoming,
1588 BasicBlock *FirstGuardBlock) {
1589 auto I = Out->begin();
1590 while (I != Out->end() && isa<PHINode>(I)) {
1591 auto Phi = cast<PHINode>(I);
1592 auto NewPhi =
1593 PHINode::Create(Phi->getType(), Incoming.size(),
1594 Phi->getName() + ".moved", &FirstGuardBlock->back());
1595 for (auto In : Incoming) {
1596 Value *V = UndefValue::get(Phi->getType());
1597 if (In == Out) {
1598 V = NewPhi;
1599 } else if (Phi->getBasicBlockIndex(In) != -1) {
1600 V = Phi->removeIncomingValue(In, false);
1601 }
1602 NewPhi->addIncoming(V, In);
1603 }
1604 assert(NewPhi->getNumIncomingValues() == Incoming.size());
1605 if (Phi->getNumOperands() == 0) {
1606 Phi->replaceAllUsesWith(NewPhi);
1607 I = Phi->eraseFromParent();
1608 continue;
1609 }
1610 Phi->addIncoming(NewPhi, GuardBlock);
1611 ++I;
1612 }
1613 }
1614
1615 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1616 using BBSetVector = SetVector<BasicBlock *>;
1617
1618 // Redirects the terminator of the incoming block to the first guard
1619 // block in the hub. The condition of the original terminator (if it
1620 // was conditional) and its original successors are returned as a
1621 // tuple <condition, succ0, succ1>. The function additionally filters
1622 // out successors that are not in the set of outgoing blocks.
1623 //
1624 // - condition is non-null iff the branch is conditional.
1625 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1626 // - Succ2 is non-null iff condition is non-null and the fallthrough
1627 // target is an outgoing block.
1628 static std::tuple<Value *, BasicBlock *, BasicBlock *>
redirectToHub(BasicBlock * BB,BasicBlock * FirstGuardBlock,const BBSetVector & Outgoing)1629 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1630 const BBSetVector &Outgoing) {
1631 auto Branch = cast<BranchInst>(BB->getTerminator());
1632 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1633
1634 BasicBlock *Succ0 = Branch->getSuccessor(0);
1635 BasicBlock *Succ1 = nullptr;
1636 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1637
1638 if (Branch->isUnconditional()) {
1639 Branch->setSuccessor(0, FirstGuardBlock);
1640 assert(Succ0);
1641 } else {
1642 Succ1 = Branch->getSuccessor(1);
1643 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1644 assert(Succ0 || Succ1);
1645 if (Succ0 && !Succ1) {
1646 Branch->setSuccessor(0, FirstGuardBlock);
1647 } else if (Succ1 && !Succ0) {
1648 Branch->setSuccessor(1, FirstGuardBlock);
1649 } else {
1650 Branch->eraseFromParent();
1651 BranchInst::Create(FirstGuardBlock, BB);
1652 }
1653 }
1654
1655 assert(Succ0 || Succ1);
1656 return std::make_tuple(Condition, Succ0, Succ1);
1657 }
1658
1659 // Capture the existing control flow as guard predicates, and redirect
1660 // control flow from every incoming block to the first guard block in
1661 // the hub.
1662 //
1663 // There is one guard predicate for each outgoing block OutBB. The
1664 // predicate is a PHINode with one input for each InBB which
1665 // represents whether the hub should transfer control flow to OutBB if
1666 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1667 // evaluates them in the same order as the Outgoing set-vector, and
1668 // control branches to the first outgoing block whose predicate
1669 // evaluates to true.
convertToGuardPredicates(BasicBlock * FirstGuardBlock,BBPredicates & GuardPredicates,SmallVectorImpl<WeakVH> & DeletionCandidates,const BBSetVector & Incoming,const BBSetVector & Outgoing)1670 static void convertToGuardPredicates(
1671 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1672 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1673 const BBSetVector &Outgoing) {
1674 auto &Context = Incoming.front()->getContext();
1675 auto BoolTrue = ConstantInt::getTrue(Context);
1676 auto BoolFalse = ConstantInt::getFalse(Context);
1677
1678 // The predicate for the last outgoing is trivially true, and so we
1679 // process only the first N-1 successors.
1680 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1681 auto Out = Outgoing[i];
1682 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1683 auto Phi =
1684 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1685 StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1686 GuardPredicates[Out] = Phi;
1687 }
1688
1689 for (auto In : Incoming) {
1690 Value *Condition;
1691 BasicBlock *Succ0;
1692 BasicBlock *Succ1;
1693 std::tie(Condition, Succ0, Succ1) =
1694 redirectToHub(In, FirstGuardBlock, Outgoing);
1695
1696 // Optimization: Consider an incoming block A with both successors
1697 // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1698 // for Succ0 and Succ1 complement each other. If Succ0 is visited
1699 // first in the loop below, control will branch to Succ0 using the
1700 // corresponding predicate. But if that branch is not taken, then
1701 // control must reach Succ1, which means that the predicate for
1702 // Succ1 is always true.
1703 bool OneSuccessorDone = false;
1704 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1705 auto Out = Outgoing[i];
1706 auto Phi = GuardPredicates[Out];
1707 if (Out != Succ0 && Out != Succ1) {
1708 Phi->addIncoming(BoolFalse, In);
1709 continue;
1710 }
1711 // Optimization: When only one successor is an outgoing block,
1712 // the predicate is always true.
1713 if (!Succ0 || !Succ1 || OneSuccessorDone) {
1714 Phi->addIncoming(BoolTrue, In);
1715 continue;
1716 }
1717 assert(Succ0 && Succ1);
1718 OneSuccessorDone = true;
1719 if (Out == Succ0) {
1720 Phi->addIncoming(Condition, In);
1721 continue;
1722 }
1723 auto Inverted = invertCondition(Condition);
1724 DeletionCandidates.push_back(Condition);
1725 Phi->addIncoming(Inverted, In);
1726 }
1727 }
1728 }
1729
1730 // For each outgoing block OutBB, create a guard block in the Hub. The
1731 // first guard block was already created outside, and available as the
1732 // first element in the vector of guard blocks.
1733 //
1734 // Each guard block terminates in a conditional branch that transfers
1735 // control to the corresponding outgoing block or the next guard
1736 // block. The last guard block has two outgoing blocks as successors
1737 // since the condition for the final outgoing block is trivially
1738 // true. So we create one less block (including the first guard block)
1739 // than the number of outgoing blocks.
createGuardBlocks(SmallVectorImpl<BasicBlock * > & GuardBlocks,Function * F,const BBSetVector & Outgoing,BBPredicates & GuardPredicates,StringRef Prefix)1740 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1741 Function *F, const BBSetVector &Outgoing,
1742 BBPredicates &GuardPredicates, StringRef Prefix) {
1743 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1744 GuardBlocks.push_back(
1745 BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1746 }
1747 assert(GuardBlocks.size() == GuardPredicates.size());
1748
1749 // To help keep the loop simple, temporarily append the last
1750 // outgoing block to the list of guard blocks.
1751 GuardBlocks.push_back(Outgoing.back());
1752
1753 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1754 auto Out = Outgoing[i];
1755 assert(GuardPredicates.count(Out));
1756 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1757 GuardBlocks[i]);
1758 }
1759
1760 // Remove the last block from the guard list.
1761 GuardBlocks.pop_back();
1762 }
1763
CreateControlFlowHub(DomTreeUpdater * DTU,SmallVectorImpl<BasicBlock * > & GuardBlocks,const BBSetVector & Incoming,const BBSetVector & Outgoing,const StringRef Prefix)1764 BasicBlock *llvm::CreateControlFlowHub(
1765 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1766 const BBSetVector &Incoming, const BBSetVector &Outgoing,
1767 const StringRef Prefix) {
1768 auto F = Incoming.front()->getParent();
1769 auto FirstGuardBlock =
1770 BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1771
1772 SmallVector<DominatorTree::UpdateType, 16> Updates;
1773 if (DTU) {
1774 for (auto In : Incoming) {
1775 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1776 for (auto Succ : successors(In)) {
1777 if (Outgoing.count(Succ))
1778 Updates.push_back({DominatorTree::Delete, In, Succ});
1779 }
1780 }
1781 }
1782
1783 BBPredicates GuardPredicates;
1784 SmallVector<WeakVH, 8> DeletionCandidates;
1785 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1786 Incoming, Outgoing);
1787
1788 GuardBlocks.push_back(FirstGuardBlock);
1789 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1790
1791 // Update the PHINodes in each outgoing block to match the new control flow.
1792 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1793 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1794 }
1795 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1796
1797 if (DTU) {
1798 int NumGuards = GuardBlocks.size();
1799 assert((int)Outgoing.size() == NumGuards + 1);
1800 for (int i = 0; i != NumGuards - 1; ++i) {
1801 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1802 Updates.push_back(
1803 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1804 }
1805 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1806 Outgoing[NumGuards - 1]});
1807 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1808 Outgoing[NumGuards]});
1809 DTU->applyUpdates(Updates);
1810 }
1811
1812 for (auto I : DeletionCandidates) {
1813 if (I->use_empty())
1814 if (auto Inst = dyn_cast_or_null<Instruction>(I))
1815 Inst->eraseFromParent();
1816 }
1817
1818 return FirstGuardBlock;
1819 }
1820