1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Function.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/Constant.h" 20 #include "llvm/Type.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/Dominators.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ValueHandle.h" 29 #include <algorithm> 30 using namespace llvm; 31 32 /// DeleteDeadBlock - Delete the specified block, which must have no 33 /// predecessors. 34 void llvm::DeleteDeadBlock(BasicBlock *BB) { 35 assert((pred_begin(BB) == pred_end(BB) || 36 // Can delete self loop. 37 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 38 TerminatorInst *BBTerm = BB->getTerminator(); 39 40 // Loop through all of our successors and make sure they know that one 41 // of their predecessors is going away. 42 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 43 BBTerm->getSuccessor(i)->removePredecessor(BB); 44 45 // Zap all the instructions in the block. 46 while (!BB->empty()) { 47 Instruction &I = BB->back(); 48 // If this instruction is used, replace uses with an arbitrary value. 49 // Because control flow can't get here, we don't care what we replace the 50 // value with. Note that since this block is unreachable, and all values 51 // contained within it must dominate their uses, that all uses will 52 // eventually be removed (they are themselves dead). 53 if (!I.use_empty()) 54 I.replaceAllUsesWith(UndefValue::get(I.getType())); 55 BB->getInstList().pop_back(); 56 } 57 58 // Zap the block! 59 BB->eraseFromParent(); 60 } 61 62 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 63 /// any single-entry PHI nodes in it, fold them away. This handles the case 64 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 65 /// when the block has exactly one predecessor. 66 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB) { 67 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 68 if (PN->getIncomingValue(0) != PN) 69 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 70 else 71 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 72 PN->eraseFromParent(); 73 } 74 } 75 76 77 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 78 /// is dead. Also recursively delete any operands that become dead as 79 /// a result. This includes tracing the def-use list from the PHI to see if 80 /// it is ultimately unused or if it reaches an unused cycle. 81 bool llvm::DeleteDeadPHIs(BasicBlock *BB) { 82 // Recursively deleting a PHI may cause multiple PHIs to be deleted 83 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 84 SmallVector<WeakVH, 8> PHIs; 85 for (BasicBlock::iterator I = BB->begin(); 86 PHINode *PN = dyn_cast<PHINode>(I); ++I) 87 PHIs.push_back(PN); 88 89 bool Changed = false; 90 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 91 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 92 Changed |= RecursivelyDeleteDeadPHINode(PN); 93 94 return Changed; 95 } 96 97 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 98 /// if possible. The return value indicates success or failure. 99 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { 100 // Don't merge away blocks who have their address taken. 101 if (BB->hasAddressTaken()) return false; 102 103 // Can't merge if there are multiple predecessors, or no predecessors. 104 BasicBlock *PredBB = BB->getUniquePredecessor(); 105 if (!PredBB) return false; 106 107 // Don't break self-loops. 108 if (PredBB == BB) return false; 109 // Don't break invokes. 110 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 111 112 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 113 BasicBlock* OnlySucc = BB; 114 for (; SI != SE; ++SI) 115 if (*SI != OnlySucc) { 116 OnlySucc = 0; // There are multiple distinct successors! 117 break; 118 } 119 120 // Can't merge if there are multiple successors. 121 if (!OnlySucc) return false; 122 123 // Can't merge if there is PHI loop. 124 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 125 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 126 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 127 if (PN->getIncomingValue(i) == PN) 128 return false; 129 } else 130 break; 131 } 132 133 // Begin by getting rid of unneeded PHIs. 134 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 135 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 136 BB->getInstList().pop_front(); // Delete the phi node... 137 } 138 139 // Delete the unconditional branch from the predecessor... 140 PredBB->getInstList().pop_back(); 141 142 // Move all definitions in the successor to the predecessor... 143 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 144 145 // Make all PHI nodes that referred to BB now refer to Pred as their 146 // source... 147 BB->replaceAllUsesWith(PredBB); 148 149 // Inherit predecessors name if it exists. 150 if (!PredBB->hasName()) 151 PredBB->takeName(BB); 152 153 // Finally, erase the old block and update dominator info. 154 if (P) { 155 if (DominatorTree* DT = P->getAnalysisIfAvailable<DominatorTree>()) { 156 DomTreeNode* DTN = DT->getNode(BB); 157 DomTreeNode* PredDTN = DT->getNode(PredBB); 158 159 if (DTN) { 160 SmallPtrSet<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); 161 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = Children.begin(), 162 DE = Children.end(); DI != DE; ++DI) 163 DT->changeImmediateDominator(*DI, PredDTN); 164 165 DT->eraseNode(BB); 166 } 167 } 168 } 169 170 BB->eraseFromParent(); 171 172 173 return true; 174 } 175 176 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 177 /// with a value, then remove and delete the original instruction. 178 /// 179 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 180 BasicBlock::iterator &BI, Value *V) { 181 Instruction &I = *BI; 182 // Replaces all of the uses of the instruction with uses of the value 183 I.replaceAllUsesWith(V); 184 185 // Make sure to propagate a name if there is one already. 186 if (I.hasName() && !V->hasName()) 187 V->takeName(&I); 188 189 // Delete the unnecessary instruction now... 190 BI = BIL.erase(BI); 191 } 192 193 194 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 195 /// instruction specified by I. The original instruction is deleted and BI is 196 /// updated to point to the new instruction. 197 /// 198 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 199 BasicBlock::iterator &BI, Instruction *I) { 200 assert(I->getParent() == 0 && 201 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 202 203 // Insert the new instruction into the basic block... 204 BasicBlock::iterator New = BIL.insert(BI, I); 205 206 // Replace all uses of the old instruction, and delete it. 207 ReplaceInstWithValue(BIL, BI, I); 208 209 // Move BI back to point to the newly inserted instruction 210 BI = New; 211 } 212 213 /// ReplaceInstWithInst - Replace the instruction specified by From with the 214 /// instruction specified by To. 215 /// 216 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 217 BasicBlock::iterator BI(From); 218 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 219 } 220 221 /// RemoveSuccessor - Change the specified terminator instruction such that its 222 /// successor SuccNum no longer exists. Because this reduces the outgoing 223 /// degree of the current basic block, the actual terminator instruction itself 224 /// may have to be changed. In the case where the last successor of the block 225 /// is deleted, a return instruction is inserted in its place which can cause a 226 /// surprising change in program behavior if it is not expected. 227 /// 228 void llvm::RemoveSuccessor(TerminatorInst *TI, unsigned SuccNum) { 229 assert(SuccNum < TI->getNumSuccessors() && 230 "Trying to remove a nonexistant successor!"); 231 232 // If our old successor block contains any PHI nodes, remove the entry in the 233 // PHI nodes that comes from this branch... 234 // 235 BasicBlock *BB = TI->getParent(); 236 TI->getSuccessor(SuccNum)->removePredecessor(BB); 237 238 TerminatorInst *NewTI = 0; 239 switch (TI->getOpcode()) { 240 case Instruction::Br: 241 // If this is a conditional branch... convert to unconditional branch. 242 if (TI->getNumSuccessors() == 2) { 243 cast<BranchInst>(TI)->setUnconditionalDest(TI->getSuccessor(1-SuccNum)); 244 } else { // Otherwise convert to a return instruction... 245 Value *RetVal = 0; 246 247 // Create a value to return... if the function doesn't return null... 248 if (!BB->getParent()->getReturnType()->isVoidTy()) 249 RetVal = Constant::getNullValue(BB->getParent()->getReturnType()); 250 251 // Create the return... 252 NewTI = ReturnInst::Create(TI->getContext(), RetVal); 253 } 254 break; 255 256 case Instruction::Invoke: // Should convert to call 257 case Instruction::Switch: // Should remove entry 258 default: 259 case Instruction::Ret: // Cannot happen, has no successors! 260 llvm_unreachable("Unhandled terminator inst type in RemoveSuccessor!"); 261 } 262 263 if (NewTI) // If it's a different instruction, replace. 264 ReplaceInstWithInst(TI, NewTI); 265 } 266 267 /// GetSuccessorNumber - Search for the specified successor of basic block BB 268 /// and return its position in the terminator instruction's list of 269 /// successors. It is an error to call this with a block that is not a 270 /// successor. 271 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { 272 TerminatorInst *Term = BB->getTerminator(); 273 #ifndef NDEBUG 274 unsigned e = Term->getNumSuccessors(); 275 #endif 276 for (unsigned i = 0; ; ++i) { 277 assert(i != e && "Didn't find edge?"); 278 if (Term->getSuccessor(i) == Succ) 279 return i; 280 } 281 return 0; 282 } 283 284 /// SplitEdge - Split the edge connecting specified block. Pass P must 285 /// not be NULL. 286 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { 287 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 288 289 // If this is a critical edge, let SplitCriticalEdge do it. 290 TerminatorInst *LatchTerm = BB->getTerminator(); 291 if (SplitCriticalEdge(LatchTerm, SuccNum, P)) 292 return LatchTerm->getSuccessor(SuccNum); 293 294 // If the edge isn't critical, then BB has a single successor or Succ has a 295 // single pred. Split the block. 296 BasicBlock::iterator SplitPoint; 297 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 298 // If the successor only has a single pred, split the top of the successor 299 // block. 300 assert(SP == BB && "CFG broken"); 301 SP = NULL; 302 return SplitBlock(Succ, Succ->begin(), P); 303 } else { 304 // Otherwise, if BB has a single successor, split it at the bottom of the 305 // block. 306 assert(BB->getTerminator()->getNumSuccessors() == 1 && 307 "Should have a single succ!"); 308 return SplitBlock(BB, BB->getTerminator(), P); 309 } 310 } 311 312 /// SplitBlock - Split the specified block at the specified instruction - every 313 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 314 /// to a new block. The two blocks are joined by an unconditional branch and 315 /// the loop info is updated. 316 /// 317 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { 318 BasicBlock::iterator SplitIt = SplitPt; 319 while (isa<PHINode>(SplitIt)) 320 ++SplitIt; 321 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 322 323 // The new block lives in whichever loop the old one did. This preserves 324 // LCSSA as well, because we force the split point to be after any PHI nodes. 325 if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>()) 326 if (Loop *L = LI->getLoopFor(Old)) 327 L->addBasicBlockToLoop(New, LI->getBase()); 328 329 if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { 330 // Old dominates New. New node dominates all other nodes dominated by Old. 331 DomTreeNode *OldNode = DT->getNode(Old); 332 std::vector<DomTreeNode *> Children; 333 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 334 I != E; ++I) 335 Children.push_back(*I); 336 337 DomTreeNode *NewNode = DT->addNewBlock(New,Old); 338 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 339 E = Children.end(); I != E; ++I) 340 DT->changeImmediateDominator(*I, NewNode); 341 } 342 343 if (DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>()) 344 DF->splitBlock(Old); 345 346 return New; 347 } 348 349 350 /// SplitBlockPredecessors - This method transforms BB by introducing a new 351 /// basic block into the function, and moving some of the predecessors of BB to 352 /// be predecessors of the new block. The new predecessors are indicated by the 353 /// Preds array, which has NumPreds elements in it. The new block is given a 354 /// suffix of 'Suffix'. 355 /// 356 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 357 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. 358 /// In particular, it does not preserve LoopSimplify (because it's 359 /// complicated to handle the case where one of the edges being split 360 /// is an exit of a loop with other exits). 361 /// 362 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 363 BasicBlock *const *Preds, 364 unsigned NumPreds, const char *Suffix, 365 Pass *P) { 366 // Create new basic block, insert right before the original block. 367 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, 368 BB->getParent(), BB); 369 370 // The new block unconditionally branches to the old block. 371 BranchInst *BI = BranchInst::Create(BB, NewBB); 372 373 LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0; 374 Loop *L = LI ? LI->getLoopFor(BB) : 0; 375 bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); 376 377 // Move the edges from Preds to point to NewBB instead of BB. 378 // While here, if we need to preserve loop analyses, collect 379 // some information about how this split will affect loops. 380 bool HasLoopExit = false; 381 bool IsLoopEntry = !!L; 382 bool SplitMakesNewLoopHeader = false; 383 for (unsigned i = 0; i != NumPreds; ++i) { 384 // This is slightly more strict than necessary; the minimum requirement 385 // is that there be no more than one indirectbr branching to BB. And 386 // all BlockAddress uses would need to be updated. 387 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 388 "Cannot split an edge from an IndirectBrInst"); 389 390 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 391 392 if (LI) { 393 // If we need to preserve LCSSA, determine if any of 394 // the preds is a loop exit. 395 if (PreserveLCSSA) 396 if (Loop *PL = LI->getLoopFor(Preds[i])) 397 if (!PL->contains(BB)) 398 HasLoopExit = true; 399 // If we need to preserve LoopInfo, note whether any of the 400 // preds crosses an interesting loop boundary. 401 if (L) { 402 if (L->contains(Preds[i])) 403 IsLoopEntry = false; 404 else 405 SplitMakesNewLoopHeader = true; 406 } 407 } 408 } 409 410 // Update dominator tree and dominator frontier if available. 411 DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0; 412 if (DT) 413 DT->splitBlock(NewBB); 414 if (DominanceFrontier *DF = 415 P ? P->getAnalysisIfAvailable<DominanceFrontier>() : 0) 416 DF->splitBlock(NewBB); 417 418 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 419 // node becomes an incoming value for BB's phi node. However, if the Preds 420 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 421 // account for the newly created predecessor. 422 if (NumPreds == 0) { 423 // Insert dummy values as the incoming value. 424 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 425 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 426 return NewBB; 427 } 428 429 AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; 430 431 if (L) { 432 if (IsLoopEntry) { 433 // Add the new block to the nearest enclosing loop (and not an 434 // adjacent loop). To find this, examine each of the predecessors and 435 // determine which loops enclose them, and select the most-nested loop 436 // which contains the loop containing the block being split. 437 Loop *InnermostPredLoop = 0; 438 for (unsigned i = 0; i != NumPreds; ++i) 439 if (Loop *PredLoop = LI->getLoopFor(Preds[i])) { 440 // Seek a loop which actually contains the block being split (to 441 // avoid adjacent loops). 442 while (PredLoop && !PredLoop->contains(BB)) 443 PredLoop = PredLoop->getParentLoop(); 444 // Select the most-nested of these loops which contains the block. 445 if (PredLoop && 446 PredLoop->contains(BB) && 447 (!InnermostPredLoop || 448 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 449 InnermostPredLoop = PredLoop; 450 } 451 if (InnermostPredLoop) 452 InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 453 } else { 454 L->addBasicBlockToLoop(NewBB, LI->getBase()); 455 if (SplitMakesNewLoopHeader) 456 L->moveToHeader(NewBB); 457 } 458 } 459 460 // Otherwise, create a new PHI node in NewBB for each PHI node in BB. 461 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) { 462 PHINode *PN = cast<PHINode>(I++); 463 464 // Check to see if all of the values coming in are the same. If so, we 465 // don't need to create a new PHI node, unless it's needed for LCSSA. 466 Value *InVal = 0; 467 if (!HasLoopExit) { 468 InVal = PN->getIncomingValueForBlock(Preds[0]); 469 for (unsigned i = 1; i != NumPreds; ++i) 470 if (InVal != PN->getIncomingValueForBlock(Preds[i])) { 471 InVal = 0; 472 break; 473 } 474 } 475 476 if (InVal) { 477 // If all incoming values for the new PHI would be the same, just don't 478 // make a new PHI. Instead, just remove the incoming values from the old 479 // PHI. 480 for (unsigned i = 0; i != NumPreds; ++i) 481 PN->removeIncomingValue(Preds[i], false); 482 } else { 483 // If the values coming into the block are not the same, we need a PHI. 484 // Create the new PHI node, insert it into NewBB at the end of the block 485 PHINode *NewPHI = 486 PHINode::Create(PN->getType(), PN->getName()+".ph", BI); 487 if (AA) AA->copyValue(PN, NewPHI); 488 489 // Move all of the PHI values for 'Preds' to the new PHI. 490 for (unsigned i = 0; i != NumPreds; ++i) { 491 Value *V = PN->removeIncomingValue(Preds[i], false); 492 NewPHI->addIncoming(V, Preds[i]); 493 } 494 InVal = NewPHI; 495 } 496 497 // Add an incoming value to the PHI node in the loop for the preheader 498 // edge. 499 PN->addIncoming(InVal, NewBB); 500 } 501 502 return NewBB; 503 } 504 505 /// FindFunctionBackedges - Analyze the specified function to find all of the 506 /// loop backedges in the function and return them. This is a relatively cheap 507 /// (compared to computing dominators and loop info) analysis. 508 /// 509 /// The output is added to Result, as pairs of <from,to> edge info. 510 void llvm::FindFunctionBackedges(const Function &F, 511 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 512 const BasicBlock *BB = &F.getEntryBlock(); 513 if (succ_begin(BB) == succ_end(BB)) 514 return; 515 516 SmallPtrSet<const BasicBlock*, 8> Visited; 517 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; 518 SmallPtrSet<const BasicBlock*, 8> InStack; 519 520 Visited.insert(BB); 521 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 522 InStack.insert(BB); 523 do { 524 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); 525 const BasicBlock *ParentBB = Top.first; 526 succ_const_iterator &I = Top.second; 527 528 bool FoundNew = false; 529 while (I != succ_end(ParentBB)) { 530 BB = *I++; 531 if (Visited.insert(BB)) { 532 FoundNew = true; 533 break; 534 } 535 // Successor is in VisitStack, it's a back edge. 536 if (InStack.count(BB)) 537 Result.push_back(std::make_pair(ParentBB, BB)); 538 } 539 540 if (FoundNew) { 541 // Go down one level if there is a unvisited successor. 542 InStack.insert(BB); 543 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 544 } else { 545 // Go up one level. 546 InStack.erase(VisitStack.pop_back_val().first); 547 } 548 } while (!VisitStack.empty()); 549 550 551 } 552