1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/PostDominators.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DomTreeUpdater.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <string>
45 #include <utility>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU) {
51   assert((pred_begin(BB) == pred_end(BB) ||
52          // Can delete self loop.
53          BB->getSinglePredecessor() == BB) && "Block is not dead!");
54   TerminatorInst *BBTerm = BB->getTerminator();
55   std::vector<DominatorTree::UpdateType> Updates;
56 
57   // Loop through all of our successors and make sure they know that one
58   // of their predecessors is going away.
59   if (DTU)
60     Updates.reserve(BBTerm->getNumSuccessors());
61   for (BasicBlock *Succ : BBTerm->successors()) {
62     Succ->removePredecessor(BB);
63     if (DTU)
64       Updates.push_back({DominatorTree::Delete, BB, Succ});
65   }
66 
67   // Zap all the instructions in the block.
68   while (!BB->empty()) {
69     Instruction &I = BB->back();
70     // If this instruction is used, replace uses with an arbitrary value.
71     // Because control flow can't get here, we don't care what we replace the
72     // value with.  Note that since this block is unreachable, and all values
73     // contained within it must dominate their uses, that all uses will
74     // eventually be removed (they are themselves dead).
75     if (!I.use_empty())
76       I.replaceAllUsesWith(UndefValue::get(I.getType()));
77     BB->getInstList().pop_back();
78   }
79   new UnreachableInst(BB->getContext(), BB);
80   assert(BB->getInstList().size() == 1 &&
81          isa<UnreachableInst>(BB->getTerminator()) &&
82          "The successor list of BB isn't empty before "
83          "applying corresponding DTU updates.");
84 
85   if (DTU) {
86     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
87     DTU->deleteBB(BB);
88   } else {
89     BB->eraseFromParent(); // Zap the block!
90   }
91 }
92 
93 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
94                                    MemoryDependenceResults *MemDep) {
95   if (!isa<PHINode>(BB->begin())) return;
96 
97   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
98     if (PN->getIncomingValue(0) != PN)
99       PN->replaceAllUsesWith(PN->getIncomingValue(0));
100     else
101       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
102 
103     if (MemDep)
104       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
105 
106     PN->eraseFromParent();
107   }
108 }
109 
110 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
111   // Recursively deleting a PHI may cause multiple PHIs to be deleted
112   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
113   SmallVector<WeakTrackingVH, 8> PHIs;
114   for (PHINode &PN : BB->phis())
115     PHIs.push_back(&PN);
116 
117   bool Changed = false;
118   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
119     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
120       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
121 
122   return Changed;
123 }
124 
125 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
126                                      LoopInfo *LI,
127                                      MemoryDependenceResults *MemDep) {
128 
129   if (BB->hasAddressTaken())
130     return false;
131 
132   // Can't merge if there are multiple predecessors, or no predecessors.
133   BasicBlock *PredBB = BB->getUniquePredecessor();
134   if (!PredBB) return false;
135 
136   // Don't break self-loops.
137   if (PredBB == BB) return false;
138   // Don't break unwinding instructions.
139   if (PredBB->getTerminator()->isExceptional())
140     return false;
141 
142   // Can't merge if there are multiple distinct successors.
143   if (PredBB->getUniqueSuccessor() != BB)
144     return false;
145 
146   // Can't merge if there is PHI loop.
147   for (PHINode &PN : BB->phis())
148     for (Value *IncValue : PN.incoming_values())
149       if (IncValue == &PN)
150         return false;
151 
152   // Begin by getting rid of unneeded PHIs.
153   SmallVector<AssertingVH<Value>, 4> IncomingValues;
154   if (isa<PHINode>(BB->front())) {
155     for (PHINode &PN : BB->phis())
156       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
157           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
158         IncomingValues.push_back(PN.getIncomingValue(0));
159     FoldSingleEntryPHINodes(BB, MemDep);
160   }
161 
162   // DTU update: Collect all the edges that exit BB.
163   // These dominator edges will be redirected from Pred.
164   std::vector<DominatorTree::UpdateType> Updates;
165   if (DTU) {
166     Updates.reserve(1 + (2 * succ_size(BB)));
167     Updates.push_back({DominatorTree::Delete, PredBB, BB});
168     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
169       Updates.push_back({DominatorTree::Delete, BB, *I});
170       Updates.push_back({DominatorTree::Insert, PredBB, *I});
171     }
172   }
173 
174   // Delete the unconditional branch from the predecessor...
175   PredBB->getInstList().pop_back();
176 
177   // Make all PHI nodes that referred to BB now refer to Pred as their
178   // source...
179   BB->replaceAllUsesWith(PredBB);
180 
181   // Move all definitions in the successor to the predecessor...
182   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
183   new UnreachableInst(BB->getContext(), BB);
184 
185   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
186   for (auto Incoming : IncomingValues) {
187     if (isa<Instruction>(*Incoming)) {
188       SmallVector<DbgValueInst *, 2> DbgValues;
189       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
190           DbgValueSet;
191       llvm::findDbgValues(DbgValues, Incoming);
192       for (auto &DVI : DbgValues) {
193         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
194         if (!R.second)
195           DVI->eraseFromParent();
196       }
197     }
198   }
199 
200   // Inherit predecessors name if it exists.
201   if (!PredBB->hasName())
202     PredBB->takeName(BB);
203 
204   if (LI)
205     LI->removeBlock(BB);
206 
207   if (MemDep)
208     MemDep->invalidateCachedPredecessors();
209 
210   // Finally, erase the old block and update dominator info.
211   if (DTU) {
212     assert(BB->getInstList().size() == 1 &&
213            isa<UnreachableInst>(BB->getTerminator()) &&
214            "The successor list of BB isn't empty before "
215            "applying corresponding DTU updates.");
216     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
217     DTU->deleteBB(BB);
218   }
219 
220   else {
221     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
222   }
223   return true;
224 }
225 
226 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
227                                 BasicBlock::iterator &BI, Value *V) {
228   Instruction &I = *BI;
229   // Replaces all of the uses of the instruction with uses of the value
230   I.replaceAllUsesWith(V);
231 
232   // Make sure to propagate a name if there is one already.
233   if (I.hasName() && !V->hasName())
234     V->takeName(&I);
235 
236   // Delete the unnecessary instruction now...
237   BI = BIL.erase(BI);
238 }
239 
240 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
241                                BasicBlock::iterator &BI, Instruction *I) {
242   assert(I->getParent() == nullptr &&
243          "ReplaceInstWithInst: Instruction already inserted into basic block!");
244 
245   // Copy debug location to newly added instruction, if it wasn't already set
246   // by the caller.
247   if (!I->getDebugLoc())
248     I->setDebugLoc(BI->getDebugLoc());
249 
250   // Insert the new instruction into the basic block...
251   BasicBlock::iterator New = BIL.insert(BI, I);
252 
253   // Replace all uses of the old instruction, and delete it.
254   ReplaceInstWithValue(BIL, BI, I);
255 
256   // Move BI back to point to the newly inserted instruction
257   BI = New;
258 }
259 
260 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
261   BasicBlock::iterator BI(From);
262   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
263 }
264 
265 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
266                             LoopInfo *LI) {
267   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
268 
269   // If this is a critical edge, let SplitCriticalEdge do it.
270   TerminatorInst *LatchTerm = BB->getTerminator();
271   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
272                                                 .setPreserveLCSSA()))
273     return LatchTerm->getSuccessor(SuccNum);
274 
275   // If the edge isn't critical, then BB has a single successor or Succ has a
276   // single pred.  Split the block.
277   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
278     // If the successor only has a single pred, split the top of the successor
279     // block.
280     assert(SP == BB && "CFG broken");
281     SP = nullptr;
282     return SplitBlock(Succ, &Succ->front(), DT, LI);
283   }
284 
285   // Otherwise, if BB has a single successor, split it at the bottom of the
286   // block.
287   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
288          "Should have a single succ!");
289   return SplitBlock(BB, BB->getTerminator(), DT, LI);
290 }
291 
292 unsigned
293 llvm::SplitAllCriticalEdges(Function &F,
294                             const CriticalEdgeSplittingOptions &Options) {
295   unsigned NumBroken = 0;
296   for (BasicBlock &BB : F) {
297     TerminatorInst *TI = BB.getTerminator();
298     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
299       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
300         if (SplitCriticalEdge(TI, i, Options))
301           ++NumBroken;
302   }
303   return NumBroken;
304 }
305 
306 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
307                              DominatorTree *DT, LoopInfo *LI) {
308   BasicBlock::iterator SplitIt = SplitPt->getIterator();
309   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
310     ++SplitIt;
311   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
312 
313   // The new block lives in whichever loop the old one did. This preserves
314   // LCSSA as well, because we force the split point to be after any PHI nodes.
315   if (LI)
316     if (Loop *L = LI->getLoopFor(Old))
317       L->addBasicBlockToLoop(New, *LI);
318 
319   if (DT)
320     // Old dominates New. New node dominates all other nodes dominated by Old.
321     if (DomTreeNode *OldNode = DT->getNode(Old)) {
322       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
323 
324       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
325       for (DomTreeNode *I : Children)
326         DT->changeImmediateDominator(I, NewNode);
327     }
328 
329   return New;
330 }
331 
332 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
333 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
334                                       ArrayRef<BasicBlock *> Preds,
335                                       DominatorTree *DT, LoopInfo *LI,
336                                       bool PreserveLCSSA, bool &HasLoopExit) {
337   // Update dominator tree if available.
338   if (DT) {
339     if (OldBB == DT->getRootNode()->getBlock()) {
340       assert(NewBB == &NewBB->getParent()->getEntryBlock());
341       DT->setNewRoot(NewBB);
342     } else {
343       // Split block expects NewBB to have a non-empty set of predecessors.
344       DT->splitBlock(NewBB);
345     }
346   }
347 
348   // The rest of the logic is only relevant for updating the loop structures.
349   if (!LI)
350     return;
351 
352   assert(DT && "DT should be available to update LoopInfo!");
353   Loop *L = LI->getLoopFor(OldBB);
354 
355   // If we need to preserve loop analyses, collect some information about how
356   // this split will affect loops.
357   bool IsLoopEntry = !!L;
358   bool SplitMakesNewLoopHeader = false;
359   for (BasicBlock *Pred : Preds) {
360     // Preds that are not reachable from entry should not be used to identify if
361     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
362     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
363     // as true and make the NewBB the header of some loop. This breaks LI.
364     if (!DT->isReachableFromEntry(Pred))
365       continue;
366     // If we need to preserve LCSSA, determine if any of the preds is a loop
367     // exit.
368     if (PreserveLCSSA)
369       if (Loop *PL = LI->getLoopFor(Pred))
370         if (!PL->contains(OldBB))
371           HasLoopExit = true;
372 
373     // If we need to preserve LoopInfo, note whether any of the preds crosses
374     // an interesting loop boundary.
375     if (!L)
376       continue;
377     if (L->contains(Pred))
378       IsLoopEntry = false;
379     else
380       SplitMakesNewLoopHeader = true;
381   }
382 
383   // Unless we have a loop for OldBB, nothing else to do here.
384   if (!L)
385     return;
386 
387   if (IsLoopEntry) {
388     // Add the new block to the nearest enclosing loop (and not an adjacent
389     // loop). To find this, examine each of the predecessors and determine which
390     // loops enclose them, and select the most-nested loop which contains the
391     // loop containing the block being split.
392     Loop *InnermostPredLoop = nullptr;
393     for (BasicBlock *Pred : Preds) {
394       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
395         // Seek a loop which actually contains the block being split (to avoid
396         // adjacent loops).
397         while (PredLoop && !PredLoop->contains(OldBB))
398           PredLoop = PredLoop->getParentLoop();
399 
400         // Select the most-nested of these loops which contains the block.
401         if (PredLoop && PredLoop->contains(OldBB) &&
402             (!InnermostPredLoop ||
403              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
404           InnermostPredLoop = PredLoop;
405       }
406     }
407 
408     if (InnermostPredLoop)
409       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
410   } else {
411     L->addBasicBlockToLoop(NewBB, *LI);
412     if (SplitMakesNewLoopHeader)
413       L->moveToHeader(NewBB);
414   }
415 }
416 
417 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
418 /// This also updates AliasAnalysis, if available.
419 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
420                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
421                            bool HasLoopExit) {
422   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
423   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
424   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
425     PHINode *PN = cast<PHINode>(I++);
426 
427     // Check to see if all of the values coming in are the same.  If so, we
428     // don't need to create a new PHI node, unless it's needed for LCSSA.
429     Value *InVal = nullptr;
430     if (!HasLoopExit) {
431       InVal = PN->getIncomingValueForBlock(Preds[0]);
432       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
433         if (!PredSet.count(PN->getIncomingBlock(i)))
434           continue;
435         if (!InVal)
436           InVal = PN->getIncomingValue(i);
437         else if (InVal != PN->getIncomingValue(i)) {
438           InVal = nullptr;
439           break;
440         }
441       }
442     }
443 
444     if (InVal) {
445       // If all incoming values for the new PHI would be the same, just don't
446       // make a new PHI.  Instead, just remove the incoming values from the old
447       // PHI.
448 
449       // NOTE! This loop walks backwards for a reason! First off, this minimizes
450       // the cost of removal if we end up removing a large number of values, and
451       // second off, this ensures that the indices for the incoming values
452       // aren't invalidated when we remove one.
453       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
454         if (PredSet.count(PN->getIncomingBlock(i)))
455           PN->removeIncomingValue(i, false);
456 
457       // Add an incoming value to the PHI node in the loop for the preheader
458       // edge.
459       PN->addIncoming(InVal, NewBB);
460       continue;
461     }
462 
463     // If the values coming into the block are not the same, we need a new
464     // PHI.
465     // Create the new PHI node, insert it into NewBB at the end of the block
466     PHINode *NewPHI =
467         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
468 
469     // NOTE! This loop walks backwards for a reason! First off, this minimizes
470     // the cost of removal if we end up removing a large number of values, and
471     // second off, this ensures that the indices for the incoming values aren't
472     // invalidated when we remove one.
473     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
474       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
475       if (PredSet.count(IncomingBB)) {
476         Value *V = PN->removeIncomingValue(i, false);
477         NewPHI->addIncoming(V, IncomingBB);
478       }
479     }
480 
481     PN->addIncoming(NewPHI, NewBB);
482   }
483 }
484 
485 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
486                                          ArrayRef<BasicBlock *> Preds,
487                                          const char *Suffix, DominatorTree *DT,
488                                          LoopInfo *LI, bool PreserveLCSSA) {
489   // Do not attempt to split that which cannot be split.
490   if (!BB->canSplitPredecessors())
491     return nullptr;
492 
493   // For the landingpads we need to act a bit differently.
494   // Delegate this work to the SplitLandingPadPredecessors.
495   if (BB->isLandingPad()) {
496     SmallVector<BasicBlock*, 2> NewBBs;
497     std::string NewName = std::string(Suffix) + ".split-lp";
498 
499     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
500                                 LI, PreserveLCSSA);
501     return NewBBs[0];
502   }
503 
504   // Create new basic block, insert right before the original block.
505   BasicBlock *NewBB = BasicBlock::Create(
506       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
507 
508   // The new block unconditionally branches to the old block.
509   BranchInst *BI = BranchInst::Create(BB, NewBB);
510   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
511 
512   // Move the edges from Preds to point to NewBB instead of BB.
513   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
514     // This is slightly more strict than necessary; the minimum requirement
515     // is that there be no more than one indirectbr branching to BB. And
516     // all BlockAddress uses would need to be updated.
517     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
518            "Cannot split an edge from an IndirectBrInst");
519     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
520   }
521 
522   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
523   // node becomes an incoming value for BB's phi node.  However, if the Preds
524   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
525   // account for the newly created predecessor.
526   if (Preds.empty()) {
527     // Insert dummy values as the incoming value.
528     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
529       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
530   }
531 
532   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
533   bool HasLoopExit = false;
534   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
535                             HasLoopExit);
536 
537   if (!Preds.empty()) {
538     // Update the PHI nodes in BB with the values coming from NewBB.
539     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
540   }
541 
542   return NewBB;
543 }
544 
545 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
546                                        ArrayRef<BasicBlock *> Preds,
547                                        const char *Suffix1, const char *Suffix2,
548                                        SmallVectorImpl<BasicBlock *> &NewBBs,
549                                        DominatorTree *DT, LoopInfo *LI,
550                                        bool PreserveLCSSA) {
551   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
552 
553   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
554   // it right before the original block.
555   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
556                                           OrigBB->getName() + Suffix1,
557                                           OrigBB->getParent(), OrigBB);
558   NewBBs.push_back(NewBB1);
559 
560   // The new block unconditionally branches to the old block.
561   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
562   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
563 
564   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
565   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
566     // This is slightly more strict than necessary; the minimum requirement
567     // is that there be no more than one indirectbr branching to BB. And
568     // all BlockAddress uses would need to be updated.
569     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
570            "Cannot split an edge from an IndirectBrInst");
571     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
572   }
573 
574   bool HasLoopExit = false;
575   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
576                             HasLoopExit);
577 
578   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
579   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
580 
581   // Move the remaining edges from OrigBB to point to NewBB2.
582   SmallVector<BasicBlock*, 8> NewBB2Preds;
583   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
584        i != e; ) {
585     BasicBlock *Pred = *i++;
586     if (Pred == NewBB1) continue;
587     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
588            "Cannot split an edge from an IndirectBrInst");
589     NewBB2Preds.push_back(Pred);
590     e = pred_end(OrigBB);
591   }
592 
593   BasicBlock *NewBB2 = nullptr;
594   if (!NewBB2Preds.empty()) {
595     // Create another basic block for the rest of OrigBB's predecessors.
596     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
597                                 OrigBB->getName() + Suffix2,
598                                 OrigBB->getParent(), OrigBB);
599     NewBBs.push_back(NewBB2);
600 
601     // The new block unconditionally branches to the old block.
602     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
603     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
604 
605     // Move the remaining edges from OrigBB to point to NewBB2.
606     for (BasicBlock *NewBB2Pred : NewBB2Preds)
607       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
608 
609     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
610     HasLoopExit = false;
611     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
612                               PreserveLCSSA, HasLoopExit);
613 
614     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
615     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
616   }
617 
618   LandingPadInst *LPad = OrigBB->getLandingPadInst();
619   Instruction *Clone1 = LPad->clone();
620   Clone1->setName(Twine("lpad") + Suffix1);
621   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
622 
623   if (NewBB2) {
624     Instruction *Clone2 = LPad->clone();
625     Clone2->setName(Twine("lpad") + Suffix2);
626     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
627 
628     // Create a PHI node for the two cloned landingpad instructions only
629     // if the original landingpad instruction has some uses.
630     if (!LPad->use_empty()) {
631       assert(!LPad->getType()->isTokenTy() &&
632              "Split cannot be applied if LPad is token type. Otherwise an "
633              "invalid PHINode of token type would be created.");
634       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
635       PN->addIncoming(Clone1, NewBB1);
636       PN->addIncoming(Clone2, NewBB2);
637       LPad->replaceAllUsesWith(PN);
638     }
639     LPad->eraseFromParent();
640   } else {
641     // There is no second clone. Just replace the landing pad with the first
642     // clone.
643     LPad->replaceAllUsesWith(Clone1);
644     LPad->eraseFromParent();
645   }
646 }
647 
648 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
649                                              BasicBlock *Pred,
650                                              DomTreeUpdater *DTU) {
651   Instruction *UncondBranch = Pred->getTerminator();
652   // Clone the return and add it to the end of the predecessor.
653   Instruction *NewRet = RI->clone();
654   Pred->getInstList().push_back(NewRet);
655 
656   // If the return instruction returns a value, and if the value was a
657   // PHI node in "BB", propagate the right value into the return.
658   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
659        i != e; ++i) {
660     Value *V = *i;
661     Instruction *NewBC = nullptr;
662     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
663       // Return value might be bitcasted. Clone and insert it before the
664       // return instruction.
665       V = BCI->getOperand(0);
666       NewBC = BCI->clone();
667       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
668       *i = NewBC;
669     }
670     if (PHINode *PN = dyn_cast<PHINode>(V)) {
671       if (PN->getParent() == BB) {
672         if (NewBC)
673           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
674         else
675           *i = PN->getIncomingValueForBlock(Pred);
676       }
677     }
678   }
679 
680   // Update any PHI nodes in the returning block to realize that we no
681   // longer branch to them.
682   BB->removePredecessor(Pred);
683   UncondBranch->eraseFromParent();
684 
685   if (DTU)
686     DTU->deleteEdge(Pred, BB);
687 
688   return cast<ReturnInst>(NewRet);
689 }
690 
691 TerminatorInst *
692 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
693                                 bool Unreachable, MDNode *BranchWeights,
694                                 DominatorTree *DT, LoopInfo *LI) {
695   BasicBlock *Head = SplitBefore->getParent();
696   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
697   TerminatorInst *HeadOldTerm = Head->getTerminator();
698   LLVMContext &C = Head->getContext();
699   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
700   TerminatorInst *CheckTerm;
701   if (Unreachable)
702     CheckTerm = new UnreachableInst(C, ThenBlock);
703   else
704     CheckTerm = BranchInst::Create(Tail, ThenBlock);
705   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
706   BranchInst *HeadNewTerm =
707     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
708   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
709   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
710 
711   if (DT) {
712     if (DomTreeNode *OldNode = DT->getNode(Head)) {
713       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
714 
715       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
716       for (DomTreeNode *Child : Children)
717         DT->changeImmediateDominator(Child, NewNode);
718 
719       // Head dominates ThenBlock.
720       DT->addNewBlock(ThenBlock, Head);
721     }
722   }
723 
724   if (LI) {
725     if (Loop *L = LI->getLoopFor(Head)) {
726       L->addBasicBlockToLoop(ThenBlock, *LI);
727       L->addBasicBlockToLoop(Tail, *LI);
728     }
729   }
730 
731   return CheckTerm;
732 }
733 
734 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
735                                          TerminatorInst **ThenTerm,
736                                          TerminatorInst **ElseTerm,
737                                          MDNode *BranchWeights) {
738   BasicBlock *Head = SplitBefore->getParent();
739   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
740   TerminatorInst *HeadOldTerm = Head->getTerminator();
741   LLVMContext &C = Head->getContext();
742   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
743   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
744   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
745   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
746   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
747   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
748   BranchInst *HeadNewTerm =
749     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
750   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
751   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
752 }
753 
754 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
755                              BasicBlock *&IfFalse) {
756   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
757   BasicBlock *Pred1 = nullptr;
758   BasicBlock *Pred2 = nullptr;
759 
760   if (SomePHI) {
761     if (SomePHI->getNumIncomingValues() != 2)
762       return nullptr;
763     Pred1 = SomePHI->getIncomingBlock(0);
764     Pred2 = SomePHI->getIncomingBlock(1);
765   } else {
766     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
767     if (PI == PE) // No predecessor
768       return nullptr;
769     Pred1 = *PI++;
770     if (PI == PE) // Only one predecessor
771       return nullptr;
772     Pred2 = *PI++;
773     if (PI != PE) // More than two predecessors
774       return nullptr;
775   }
776 
777   // We can only handle branches.  Other control flow will be lowered to
778   // branches if possible anyway.
779   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
780   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
781   if (!Pred1Br || !Pred2Br)
782     return nullptr;
783 
784   // Eliminate code duplication by ensuring that Pred1Br is conditional if
785   // either are.
786   if (Pred2Br->isConditional()) {
787     // If both branches are conditional, we don't have an "if statement".  In
788     // reality, we could transform this case, but since the condition will be
789     // required anyway, we stand no chance of eliminating it, so the xform is
790     // probably not profitable.
791     if (Pred1Br->isConditional())
792       return nullptr;
793 
794     std::swap(Pred1, Pred2);
795     std::swap(Pred1Br, Pred2Br);
796   }
797 
798   if (Pred1Br->isConditional()) {
799     // The only thing we have to watch out for here is to make sure that Pred2
800     // doesn't have incoming edges from other blocks.  If it does, the condition
801     // doesn't dominate BB.
802     if (!Pred2->getSinglePredecessor())
803       return nullptr;
804 
805     // If we found a conditional branch predecessor, make sure that it branches
806     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
807     if (Pred1Br->getSuccessor(0) == BB &&
808         Pred1Br->getSuccessor(1) == Pred2) {
809       IfTrue = Pred1;
810       IfFalse = Pred2;
811     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
812                Pred1Br->getSuccessor(1) == BB) {
813       IfTrue = Pred2;
814       IfFalse = Pred1;
815     } else {
816       // We know that one arm of the conditional goes to BB, so the other must
817       // go somewhere unrelated, and this must not be an "if statement".
818       return nullptr;
819     }
820 
821     return Pred1Br->getCondition();
822   }
823 
824   // Ok, if we got here, both predecessors end with an unconditional branch to
825   // BB.  Don't panic!  If both blocks only have a single (identical)
826   // predecessor, and THAT is a conditional branch, then we're all ok!
827   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
828   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
829     return nullptr;
830 
831   // Otherwise, if this is a conditional branch, then we can use it!
832   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
833   if (!BI) return nullptr;
834 
835   assert(BI->isConditional() && "Two successors but not conditional?");
836   if (BI->getSuccessor(0) == Pred1) {
837     IfTrue = Pred1;
838     IfFalse = Pred2;
839   } else {
840     IfTrue = Pred2;
841     IfFalse = Pred1;
842   }
843   return BI->getCondition();
844 }
845