1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/CFG.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/ValueHandle.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 /// DeleteDeadBlock - Delete the specified block, which must have no 35 /// predecessors. 36 void llvm::DeleteDeadBlock(BasicBlock *BB) { 37 assert((pred_begin(BB) == pred_end(BB) || 38 // Can delete self loop. 39 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 40 TerminatorInst *BBTerm = BB->getTerminator(); 41 42 // Loop through all of our successors and make sure they know that one 43 // of their predecessors is going away. 44 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 45 BBTerm->getSuccessor(i)->removePredecessor(BB); 46 47 // Zap all the instructions in the block. 48 while (!BB->empty()) { 49 Instruction &I = BB->back(); 50 // If this instruction is used, replace uses with an arbitrary value. 51 // Because control flow can't get here, we don't care what we replace the 52 // value with. Note that since this block is unreachable, and all values 53 // contained within it must dominate their uses, that all uses will 54 // eventually be removed (they are themselves dead). 55 if (!I.use_empty()) 56 I.replaceAllUsesWith(UndefValue::get(I.getType())); 57 BB->getInstList().pop_back(); 58 } 59 60 // Zap the block! 61 BB->eraseFromParent(); 62 } 63 64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 65 /// any single-entry PHI nodes in it, fold them away. This handles the case 66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 67 /// when the block has exactly one predecessor. 68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, AliasAnalysis *AA, 69 MemoryDependenceAnalysis *MemDep) { 70 if (!isa<PHINode>(BB->begin())) return; 71 72 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 73 if (PN->getIncomingValue(0) != PN) 74 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 75 else 76 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 77 78 if (MemDep) 79 MemDep->removeInstruction(PN); // Memdep updates AA itself. 80 else if (AA && isa<PointerType>(PN->getType())) 81 AA->deleteValue(PN); 82 83 PN->eraseFromParent(); 84 } 85 } 86 87 88 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 89 /// is dead. Also recursively delete any operands that become dead as 90 /// a result. This includes tracing the def-use list from the PHI to see if 91 /// it is ultimately unused or if it reaches an unused cycle. 92 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 93 // Recursively deleting a PHI may cause multiple PHIs to be deleted 94 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 95 SmallVector<WeakVH, 8> PHIs; 96 for (BasicBlock::iterator I = BB->begin(); 97 PHINode *PN = dyn_cast<PHINode>(I); ++I) 98 PHIs.push_back(PN); 99 100 bool Changed = false; 101 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 102 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 103 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 104 105 return Changed; 106 } 107 108 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 109 /// if possible. The return value indicates success or failure. 110 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT, 111 LoopInfo *LI, AliasAnalysis *AA, 112 MemoryDependenceAnalysis *MemDep) { 113 // Don't merge away blocks who have their address taken. 114 if (BB->hasAddressTaken()) return false; 115 116 // Can't merge if there are multiple predecessors, or no predecessors. 117 BasicBlock *PredBB = BB->getUniquePredecessor(); 118 if (!PredBB) return false; 119 120 // Don't break self-loops. 121 if (PredBB == BB) return false; 122 // Don't break invokes. 123 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 124 125 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 126 BasicBlock *OnlySucc = BB; 127 for (; SI != SE; ++SI) 128 if (*SI != OnlySucc) { 129 OnlySucc = nullptr; // There are multiple distinct successors! 130 break; 131 } 132 133 // Can't merge if there are multiple successors. 134 if (!OnlySucc) return false; 135 136 // Can't merge if there is PHI loop. 137 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 138 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 139 for (Value *IncValue : PN->incoming_values()) 140 if (IncValue == PN) 141 return false; 142 } else 143 break; 144 } 145 146 // Begin by getting rid of unneeded PHIs. 147 if (isa<PHINode>(BB->front())) 148 FoldSingleEntryPHINodes(BB, AA, MemDep); 149 150 // Delete the unconditional branch from the predecessor... 151 PredBB->getInstList().pop_back(); 152 153 // Make all PHI nodes that referred to BB now refer to Pred as their 154 // source... 155 BB->replaceAllUsesWith(PredBB); 156 157 // Move all definitions in the successor to the predecessor... 158 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 159 160 // Inherit predecessors name if it exists. 161 if (!PredBB->hasName()) 162 PredBB->takeName(BB); 163 164 // Finally, erase the old block and update dominator info. 165 if (DT) 166 if (DomTreeNode *DTN = DT->getNode(BB)) { 167 DomTreeNode *PredDTN = DT->getNode(PredBB); 168 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 169 for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(), 170 DE = Children.end(); 171 DI != DE; ++DI) 172 DT->changeImmediateDominator(*DI, PredDTN); 173 174 DT->eraseNode(BB); 175 } 176 177 if (LI) 178 LI->removeBlock(BB); 179 180 if (MemDep) 181 MemDep->invalidateCachedPredecessors(); 182 183 BB->eraseFromParent(); 184 return true; 185 } 186 187 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 188 /// with a value, then remove and delete the original instruction. 189 /// 190 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 191 BasicBlock::iterator &BI, Value *V) { 192 Instruction &I = *BI; 193 // Replaces all of the uses of the instruction with uses of the value 194 I.replaceAllUsesWith(V); 195 196 // Make sure to propagate a name if there is one already. 197 if (I.hasName() && !V->hasName()) 198 V->takeName(&I); 199 200 // Delete the unnecessary instruction now... 201 BI = BIL.erase(BI); 202 } 203 204 205 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 206 /// instruction specified by I. The original instruction is deleted and BI is 207 /// updated to point to the new instruction. 208 /// 209 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 210 BasicBlock::iterator &BI, Instruction *I) { 211 assert(I->getParent() == nullptr && 212 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 213 214 // Copy debug location to newly added instruction, if it wasn't already set 215 // by the caller. 216 if (!I->getDebugLoc()) 217 I->setDebugLoc(BI->getDebugLoc()); 218 219 // Insert the new instruction into the basic block... 220 BasicBlock::iterator New = BIL.insert(BI, I); 221 222 // Replace all uses of the old instruction, and delete it. 223 ReplaceInstWithValue(BIL, BI, I); 224 225 // Move BI back to point to the newly inserted instruction 226 BI = New; 227 } 228 229 /// ReplaceInstWithInst - Replace the instruction specified by From with the 230 /// instruction specified by To. 231 /// 232 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 233 BasicBlock::iterator BI(From); 234 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 235 } 236 237 /// SplitEdge - Split the edge connecting specified block. Pass P must 238 /// not be NULL. 239 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 240 LoopInfo *LI) { 241 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 242 243 // If this is a critical edge, let SplitCriticalEdge do it. 244 TerminatorInst *LatchTerm = BB->getTerminator(); 245 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI) 246 .setPreserveLCSSA())) 247 return LatchTerm->getSuccessor(SuccNum); 248 249 // If the edge isn't critical, then BB has a single successor or Succ has a 250 // single pred. Split the block. 251 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 252 // If the successor only has a single pred, split the top of the successor 253 // block. 254 assert(SP == BB && "CFG broken"); 255 SP = nullptr; 256 return SplitBlock(Succ, Succ->begin(), DT, LI); 257 } 258 259 // Otherwise, if BB has a single successor, split it at the bottom of the 260 // block. 261 assert(BB->getTerminator()->getNumSuccessors() == 1 && 262 "Should have a single succ!"); 263 return SplitBlock(BB, BB->getTerminator(), DT, LI); 264 } 265 266 unsigned 267 llvm::SplitAllCriticalEdges(Function &F, 268 const CriticalEdgeSplittingOptions &Options) { 269 unsigned NumBroken = 0; 270 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 271 TerminatorInst *TI = I->getTerminator(); 272 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 273 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 274 if (SplitCriticalEdge(TI, i, Options)) 275 ++NumBroken; 276 } 277 return NumBroken; 278 } 279 280 /// SplitBlock - Split the specified block at the specified instruction - every 281 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 282 /// to a new block. The two blocks are joined by an unconditional branch and 283 /// the loop info is updated. 284 /// 285 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 286 DominatorTree *DT, LoopInfo *LI) { 287 BasicBlock::iterator SplitIt = SplitPt; 288 while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) 289 ++SplitIt; 290 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 291 292 // The new block lives in whichever loop the old one did. This preserves 293 // LCSSA as well, because we force the split point to be after any PHI nodes. 294 if (LI) 295 if (Loop *L = LI->getLoopFor(Old)) 296 L->addBasicBlockToLoop(New, *LI); 297 298 if (DT) 299 // Old dominates New. New node dominates all other nodes dominated by Old. 300 if (DomTreeNode *OldNode = DT->getNode(Old)) { 301 std::vector<DomTreeNode *> Children; 302 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 303 I != E; ++I) 304 Children.push_back(*I); 305 306 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 307 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 308 E = Children.end(); I != E; ++I) 309 DT->changeImmediateDominator(*I, NewNode); 310 } 311 312 return New; 313 } 314 315 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA 316 /// analysis information. 317 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 318 ArrayRef<BasicBlock *> Preds, 319 DominatorTree *DT, LoopInfo *LI, 320 bool PreserveLCSSA, bool &HasLoopExit) { 321 // Update dominator tree if available. 322 if (DT) 323 DT->splitBlock(NewBB); 324 325 // The rest of the logic is only relevant for updating the loop structures. 326 if (!LI) 327 return; 328 329 Loop *L = LI->getLoopFor(OldBB); 330 331 // If we need to preserve loop analyses, collect some information about how 332 // this split will affect loops. 333 bool IsLoopEntry = !!L; 334 bool SplitMakesNewLoopHeader = false; 335 for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end(); 336 i != e; ++i) { 337 BasicBlock *Pred = *i; 338 339 // If we need to preserve LCSSA, determine if any of the preds is a loop 340 // exit. 341 if (PreserveLCSSA) 342 if (Loop *PL = LI->getLoopFor(Pred)) 343 if (!PL->contains(OldBB)) 344 HasLoopExit = true; 345 346 // If we need to preserve LoopInfo, note whether any of the preds crosses 347 // an interesting loop boundary. 348 if (!L) 349 continue; 350 if (L->contains(Pred)) 351 IsLoopEntry = false; 352 else 353 SplitMakesNewLoopHeader = true; 354 } 355 356 // Unless we have a loop for OldBB, nothing else to do here. 357 if (!L) 358 return; 359 360 if (IsLoopEntry) { 361 // Add the new block to the nearest enclosing loop (and not an adjacent 362 // loop). To find this, examine each of the predecessors and determine which 363 // loops enclose them, and select the most-nested loop which contains the 364 // loop containing the block being split. 365 Loop *InnermostPredLoop = nullptr; 366 for (ArrayRef<BasicBlock*>::iterator 367 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 368 BasicBlock *Pred = *i; 369 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 370 // Seek a loop which actually contains the block being split (to avoid 371 // adjacent loops). 372 while (PredLoop && !PredLoop->contains(OldBB)) 373 PredLoop = PredLoop->getParentLoop(); 374 375 // Select the most-nested of these loops which contains the block. 376 if (PredLoop && PredLoop->contains(OldBB) && 377 (!InnermostPredLoop || 378 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 379 InnermostPredLoop = PredLoop; 380 } 381 } 382 383 if (InnermostPredLoop) 384 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 385 } else { 386 L->addBasicBlockToLoop(NewBB, *LI); 387 if (SplitMakesNewLoopHeader) 388 L->moveToHeader(NewBB); 389 } 390 } 391 392 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming 393 /// from NewBB. This also updates AliasAnalysis, if available. 394 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 395 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 396 AliasAnalysis *AA, bool HasLoopExit) { 397 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 398 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 399 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 400 PHINode *PN = cast<PHINode>(I++); 401 402 // Check to see if all of the values coming in are the same. If so, we 403 // don't need to create a new PHI node, unless it's needed for LCSSA. 404 Value *InVal = nullptr; 405 if (!HasLoopExit) { 406 InVal = PN->getIncomingValueForBlock(Preds[0]); 407 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 408 if (!PredSet.count(PN->getIncomingBlock(i))) 409 continue; 410 if (!InVal) 411 InVal = PN->getIncomingValue(i); 412 else if (InVal != PN->getIncomingValue(i)) { 413 InVal = nullptr; 414 break; 415 } 416 } 417 } 418 419 if (InVal) { 420 // If all incoming values for the new PHI would be the same, just don't 421 // make a new PHI. Instead, just remove the incoming values from the old 422 // PHI. 423 424 // NOTE! This loop walks backwards for a reason! First off, this minimizes 425 // the cost of removal if we end up removing a large number of values, and 426 // second off, this ensures that the indices for the incoming values 427 // aren't invalidated when we remove one. 428 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 429 if (PredSet.count(PN->getIncomingBlock(i))) 430 PN->removeIncomingValue(i, false); 431 432 // Add an incoming value to the PHI node in the loop for the preheader 433 // edge. 434 PN->addIncoming(InVal, NewBB); 435 continue; 436 } 437 438 // If the values coming into the block are not the same, we need a new 439 // PHI. 440 // Create the new PHI node, insert it into NewBB at the end of the block 441 PHINode *NewPHI = 442 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 443 444 // NOTE! This loop walks backwards for a reason! First off, this minimizes 445 // the cost of removal if we end up removing a large number of values, and 446 // second off, this ensures that the indices for the incoming values aren't 447 // invalidated when we remove one. 448 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 449 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 450 if (PredSet.count(IncomingBB)) { 451 Value *V = PN->removeIncomingValue(i, false); 452 NewPHI->addIncoming(V, IncomingBB); 453 } 454 } 455 456 PN->addIncoming(NewPHI, NewBB); 457 } 458 } 459 460 /// SplitBlockPredecessors - This method introduces at least one new basic block 461 /// into the function and moves some of the predecessors of BB to be 462 /// predecessors of the new block. The new predecessors are indicated by the 463 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic 464 /// block to which predecessors from Preds are now pointing. 465 /// 466 /// If BB is a landingpad block then additional basicblock might be introduced. 467 /// It will have suffix of 'Suffix'+".split_lp". 468 /// See SplitLandingPadPredecessors for more details on this case. 469 /// 470 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 471 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not 472 /// preserve LoopSimplify (because it's complicated to handle the case where one 473 /// of the edges being split is an exit of a loop with other exits). 474 /// 475 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 476 ArrayRef<BasicBlock *> Preds, 477 const char *Suffix, AliasAnalysis *AA, 478 DominatorTree *DT, LoopInfo *LI, 479 bool PreserveLCSSA) { 480 // For the landingpads we need to act a bit differently. 481 // Delegate this work to the SplitLandingPadPredecessors. 482 if (BB->isLandingPad()) { 483 SmallVector<BasicBlock*, 2> NewBBs; 484 std::string NewName = std::string(Suffix) + ".split-lp"; 485 486 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), 487 NewBBs, AA, DT, LI, PreserveLCSSA); 488 return NewBBs[0]; 489 } 490 491 // Create new basic block, insert right before the original block. 492 BasicBlock *NewBB = BasicBlock::Create( 493 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 494 495 // The new block unconditionally branches to the old block. 496 BranchInst *BI = BranchInst::Create(BB, NewBB); 497 BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc()); 498 499 // Move the edges from Preds to point to NewBB instead of BB. 500 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 501 // This is slightly more strict than necessary; the minimum requirement 502 // is that there be no more than one indirectbr branching to BB. And 503 // all BlockAddress uses would need to be updated. 504 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 505 "Cannot split an edge from an IndirectBrInst"); 506 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 507 } 508 509 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 510 // node becomes an incoming value for BB's phi node. However, if the Preds 511 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 512 // account for the newly created predecessor. 513 if (Preds.size() == 0) { 514 // Insert dummy values as the incoming value. 515 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 516 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 517 return NewBB; 518 } 519 520 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 521 bool HasLoopExit = false; 522 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA, 523 HasLoopExit); 524 525 // Update the PHI nodes in BB with the values coming from NewBB. 526 UpdatePHINodes(BB, NewBB, Preds, BI, AA, HasLoopExit); 527 return NewBB; 528 } 529 530 /// SplitLandingPadPredecessors - This method transforms the landing pad, 531 /// OrigBB, by introducing two new basic blocks into the function. One of those 532 /// new basic blocks gets the predecessors listed in Preds. The other basic 533 /// block gets the remaining predecessors of OrigBB. The landingpad instruction 534 /// OrigBB is clone into both of the new basic blocks. The new blocks are given 535 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. 536 /// 537 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 538 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, 539 /// it does not preserve LoopSimplify (because it's complicated to handle the 540 /// case where one of the edges being split is an exit of a loop with other 541 /// exits). 542 /// 543 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 544 ArrayRef<BasicBlock *> Preds, 545 const char *Suffix1, const char *Suffix2, 546 SmallVectorImpl<BasicBlock *> &NewBBs, 547 AliasAnalysis *AA, DominatorTree *DT, 548 LoopInfo *LI, bool PreserveLCSSA) { 549 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 550 551 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 552 // it right before the original block. 553 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 554 OrigBB->getName() + Suffix1, 555 OrigBB->getParent(), OrigBB); 556 NewBBs.push_back(NewBB1); 557 558 // The new block unconditionally branches to the old block. 559 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 560 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 561 562 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 563 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 564 // This is slightly more strict than necessary; the minimum requirement 565 // is that there be no more than one indirectbr branching to BB. And 566 // all BlockAddress uses would need to be updated. 567 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 568 "Cannot split an edge from an IndirectBrInst"); 569 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 570 } 571 572 bool HasLoopExit = false; 573 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA, 574 HasLoopExit); 575 576 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 577 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, AA, HasLoopExit); 578 579 // Move the remaining edges from OrigBB to point to NewBB2. 580 SmallVector<BasicBlock*, 8> NewBB2Preds; 581 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 582 i != e; ) { 583 BasicBlock *Pred = *i++; 584 if (Pred == NewBB1) continue; 585 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 586 "Cannot split an edge from an IndirectBrInst"); 587 NewBB2Preds.push_back(Pred); 588 e = pred_end(OrigBB); 589 } 590 591 BasicBlock *NewBB2 = nullptr; 592 if (!NewBB2Preds.empty()) { 593 // Create another basic block for the rest of OrigBB's predecessors. 594 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 595 OrigBB->getName() + Suffix2, 596 OrigBB->getParent(), OrigBB); 597 NewBBs.push_back(NewBB2); 598 599 // The new block unconditionally branches to the old block. 600 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 601 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 602 603 // Move the remaining edges from OrigBB to point to NewBB2. 604 for (SmallVectorImpl<BasicBlock*>::iterator 605 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 606 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 607 608 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 609 HasLoopExit = false; 610 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, 611 PreserveLCSSA, HasLoopExit); 612 613 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 614 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, AA, HasLoopExit); 615 } 616 617 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 618 Instruction *Clone1 = LPad->clone(); 619 Clone1->setName(Twine("lpad") + Suffix1); 620 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 621 622 if (NewBB2) { 623 Instruction *Clone2 = LPad->clone(); 624 Clone2->setName(Twine("lpad") + Suffix2); 625 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 626 627 // Create a PHI node for the two cloned landingpad instructions. 628 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 629 PN->addIncoming(Clone1, NewBB1); 630 PN->addIncoming(Clone2, NewBB2); 631 LPad->replaceAllUsesWith(PN); 632 LPad->eraseFromParent(); 633 } else { 634 // There is no second clone. Just replace the landing pad with the first 635 // clone. 636 LPad->replaceAllUsesWith(Clone1); 637 LPad->eraseFromParent(); 638 } 639 } 640 641 /// FoldReturnIntoUncondBranch - This method duplicates the specified return 642 /// instruction into a predecessor which ends in an unconditional branch. If 643 /// the return instruction returns a value defined by a PHI, propagate the 644 /// right value into the return. It returns the new return instruction in the 645 /// predecessor. 646 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 647 BasicBlock *Pred) { 648 Instruction *UncondBranch = Pred->getTerminator(); 649 // Clone the return and add it to the end of the predecessor. 650 Instruction *NewRet = RI->clone(); 651 Pred->getInstList().push_back(NewRet); 652 653 // If the return instruction returns a value, and if the value was a 654 // PHI node in "BB", propagate the right value into the return. 655 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 656 i != e; ++i) { 657 Value *V = *i; 658 Instruction *NewBC = nullptr; 659 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 660 // Return value might be bitcasted. Clone and insert it before the 661 // return instruction. 662 V = BCI->getOperand(0); 663 NewBC = BCI->clone(); 664 Pred->getInstList().insert(NewRet, NewBC); 665 *i = NewBC; 666 } 667 if (PHINode *PN = dyn_cast<PHINode>(V)) { 668 if (PN->getParent() == BB) { 669 if (NewBC) 670 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 671 else 672 *i = PN->getIncomingValueForBlock(Pred); 673 } 674 } 675 } 676 677 // Update any PHI nodes in the returning block to realize that we no 678 // longer branch to them. 679 BB->removePredecessor(Pred); 680 UncondBranch->eraseFromParent(); 681 return cast<ReturnInst>(NewRet); 682 } 683 684 /// SplitBlockAndInsertIfThen - Split the containing block at the 685 /// specified instruction - everything before and including SplitBefore stays 686 /// in the old basic block, and everything after SplitBefore is moved to a 687 /// new block. The two blocks are connected by a conditional branch 688 /// (with value of Cmp being the condition). 689 /// Before: 690 /// Head 691 /// SplitBefore 692 /// Tail 693 /// After: 694 /// Head 695 /// if (Cond) 696 /// ThenBlock 697 /// SplitBefore 698 /// Tail 699 /// 700 /// If Unreachable is true, then ThenBlock ends with 701 /// UnreachableInst, otherwise it branches to Tail. 702 /// Returns the NewBasicBlock's terminator. 703 704 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond, 705 Instruction *SplitBefore, 706 bool Unreachable, 707 MDNode *BranchWeights, 708 DominatorTree *DT) { 709 BasicBlock *Head = SplitBefore->getParent(); 710 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 711 TerminatorInst *HeadOldTerm = Head->getTerminator(); 712 LLVMContext &C = Head->getContext(); 713 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 714 TerminatorInst *CheckTerm; 715 if (Unreachable) 716 CheckTerm = new UnreachableInst(C, ThenBlock); 717 else 718 CheckTerm = BranchInst::Create(Tail, ThenBlock); 719 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 720 BranchInst *HeadNewTerm = 721 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 722 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 723 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 724 725 if (DT) { 726 if (DomTreeNode *OldNode = DT->getNode(Head)) { 727 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 728 729 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 730 for (auto Child : Children) 731 DT->changeImmediateDominator(Child, NewNode); 732 733 // Head dominates ThenBlock. 734 DT->addNewBlock(ThenBlock, Head); 735 } 736 } 737 738 return CheckTerm; 739 } 740 741 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, 742 /// but also creates the ElseBlock. 743 /// Before: 744 /// Head 745 /// SplitBefore 746 /// Tail 747 /// After: 748 /// Head 749 /// if (Cond) 750 /// ThenBlock 751 /// else 752 /// ElseBlock 753 /// SplitBefore 754 /// Tail 755 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 756 TerminatorInst **ThenTerm, 757 TerminatorInst **ElseTerm, 758 MDNode *BranchWeights) { 759 BasicBlock *Head = SplitBefore->getParent(); 760 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 761 TerminatorInst *HeadOldTerm = Head->getTerminator(); 762 LLVMContext &C = Head->getContext(); 763 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 764 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 765 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 766 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 767 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 768 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 769 BranchInst *HeadNewTerm = 770 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 771 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 772 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 773 } 774 775 776 /// GetIfCondition - Given a basic block (BB) with two predecessors, 777 /// check to see if the merge at this block is due 778 /// to an "if condition". If so, return the boolean condition that determines 779 /// which entry into BB will be taken. Also, return by references the block 780 /// that will be entered from if the condition is true, and the block that will 781 /// be entered if the condition is false. 782 /// 783 /// This does no checking to see if the true/false blocks have large or unsavory 784 /// instructions in them. 785 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 786 BasicBlock *&IfFalse) { 787 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 788 BasicBlock *Pred1 = nullptr; 789 BasicBlock *Pred2 = nullptr; 790 791 if (SomePHI) { 792 if (SomePHI->getNumIncomingValues() != 2) 793 return nullptr; 794 Pred1 = SomePHI->getIncomingBlock(0); 795 Pred2 = SomePHI->getIncomingBlock(1); 796 } else { 797 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 798 if (PI == PE) // No predecessor 799 return nullptr; 800 Pred1 = *PI++; 801 if (PI == PE) // Only one predecessor 802 return nullptr; 803 Pred2 = *PI++; 804 if (PI != PE) // More than two predecessors 805 return nullptr; 806 } 807 808 // We can only handle branches. Other control flow will be lowered to 809 // branches if possible anyway. 810 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 811 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 812 if (!Pred1Br || !Pred2Br) 813 return nullptr; 814 815 // Eliminate code duplication by ensuring that Pred1Br is conditional if 816 // either are. 817 if (Pred2Br->isConditional()) { 818 // If both branches are conditional, we don't have an "if statement". In 819 // reality, we could transform this case, but since the condition will be 820 // required anyway, we stand no chance of eliminating it, so the xform is 821 // probably not profitable. 822 if (Pred1Br->isConditional()) 823 return nullptr; 824 825 std::swap(Pred1, Pred2); 826 std::swap(Pred1Br, Pred2Br); 827 } 828 829 if (Pred1Br->isConditional()) { 830 // The only thing we have to watch out for here is to make sure that Pred2 831 // doesn't have incoming edges from other blocks. If it does, the condition 832 // doesn't dominate BB. 833 if (!Pred2->getSinglePredecessor()) 834 return nullptr; 835 836 // If we found a conditional branch predecessor, make sure that it branches 837 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 838 if (Pred1Br->getSuccessor(0) == BB && 839 Pred1Br->getSuccessor(1) == Pred2) { 840 IfTrue = Pred1; 841 IfFalse = Pred2; 842 } else if (Pred1Br->getSuccessor(0) == Pred2 && 843 Pred1Br->getSuccessor(1) == BB) { 844 IfTrue = Pred2; 845 IfFalse = Pred1; 846 } else { 847 // We know that one arm of the conditional goes to BB, so the other must 848 // go somewhere unrelated, and this must not be an "if statement". 849 return nullptr; 850 } 851 852 return Pred1Br->getCondition(); 853 } 854 855 // Ok, if we got here, both predecessors end with an unconditional branch to 856 // BB. Don't panic! If both blocks only have a single (identical) 857 // predecessor, and THAT is a conditional branch, then we're all ok! 858 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 859 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 860 return nullptr; 861 862 // Otherwise, if this is a conditional branch, then we can use it! 863 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 864 if (!BI) return nullptr; 865 866 assert(BI->isConditional() && "Two successors but not conditional?"); 867 if (BI->getSuccessor(0) == Pred1) { 868 IfTrue = Pred1; 869 IfFalse = Pred2; 870 } else { 871 IfTrue = Pred2; 872 IfFalse = Pred1; 873 } 874 return BI->getCondition(); 875 } 876