1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <string> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 48 void llvm::DeleteDeadBlock(BasicBlock *BB) { 49 assert((pred_begin(BB) == pred_end(BB) || 50 // Can delete self loop. 51 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 52 TerminatorInst *BBTerm = BB->getTerminator(); 53 54 // Loop through all of our successors and make sure they know that one 55 // of their predecessors is going away. 56 for (BasicBlock *Succ : BBTerm->successors()) 57 Succ->removePredecessor(BB); 58 59 // Zap all the instructions in the block. 60 while (!BB->empty()) { 61 Instruction &I = BB->back(); 62 // If this instruction is used, replace uses with an arbitrary value. 63 // Because control flow can't get here, we don't care what we replace the 64 // value with. Note that since this block is unreachable, and all values 65 // contained within it must dominate their uses, that all uses will 66 // eventually be removed (they are themselves dead). 67 if (!I.use_empty()) 68 I.replaceAllUsesWith(UndefValue::get(I.getType())); 69 BB->getInstList().pop_back(); 70 } 71 72 // Zap the block! 73 BB->eraseFromParent(); 74 } 75 76 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 77 MemoryDependenceResults *MemDep) { 78 if (!isa<PHINode>(BB->begin())) return; 79 80 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 81 if (PN->getIncomingValue(0) != PN) 82 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 83 else 84 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 85 86 if (MemDep) 87 MemDep->removeInstruction(PN); // Memdep updates AA itself. 88 89 PN->eraseFromParent(); 90 } 91 } 92 93 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 94 // Recursively deleting a PHI may cause multiple PHIs to be deleted 95 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 96 SmallVector<WeakTrackingVH, 8> PHIs; 97 for (PHINode &PN : BB->phis()) 98 PHIs.push_back(&PN); 99 100 bool Changed = false; 101 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 102 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 103 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 104 105 return Changed; 106 } 107 108 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT, 109 LoopInfo *LI, 110 MemoryDependenceResults *MemDep) { 111 // Don't merge away blocks who have their address taken. 112 if (BB->hasAddressTaken()) return false; 113 114 // Can't merge if there are multiple predecessors, or no predecessors. 115 BasicBlock *PredBB = BB->getUniquePredecessor(); 116 if (!PredBB) return false; 117 118 // Don't break self-loops. 119 if (PredBB == BB) return false; 120 // Don't break unwinding instructions. 121 if (PredBB->getTerminator()->isExceptional()) 122 return false; 123 124 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 125 BasicBlock *OnlySucc = BB; 126 for (; SI != SE; ++SI) 127 if (*SI != OnlySucc) { 128 OnlySucc = nullptr; // There are multiple distinct successors! 129 break; 130 } 131 132 // Can't merge if there are multiple successors. 133 if (!OnlySucc) return false; 134 135 // Can't merge if there is PHI loop. 136 for (PHINode &PN : BB->phis()) 137 for (Value *IncValue : PN.incoming_values()) 138 if (IncValue == &PN) 139 return false; 140 141 // Begin by getting rid of unneeded PHIs. 142 SmallVector<Value *, 4> IncomingValues; 143 if (isa<PHINode>(BB->front())) { 144 for (PHINode &PN : BB->phis()) 145 if (PN.getIncomingValue(0) != &PN) 146 IncomingValues.push_back(PN.getIncomingValue(0)); 147 FoldSingleEntryPHINodes(BB, MemDep); 148 } 149 150 // Delete the unconditional branch from the predecessor... 151 PredBB->getInstList().pop_back(); 152 153 // Make all PHI nodes that referred to BB now refer to Pred as their 154 // source... 155 BB->replaceAllUsesWith(PredBB); 156 157 // Move all definitions in the successor to the predecessor... 158 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 159 160 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 161 for (auto *Incoming : IncomingValues) { 162 if (isa<Instruction>(Incoming)) { 163 SmallVector<DbgValueInst *, 2> DbgValues; 164 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 165 DbgValueSet; 166 llvm::findDbgValues(DbgValues, Incoming); 167 for (auto &DVI : DbgValues) { 168 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 169 if (!R.second) 170 DVI->eraseFromParent(); 171 } 172 } 173 } 174 175 // Inherit predecessors name if it exists. 176 if (!PredBB->hasName()) 177 PredBB->takeName(BB); 178 179 // Finally, erase the old block and update dominator info. 180 if (DT) 181 if (DomTreeNode *DTN = DT->getNode(BB)) { 182 DomTreeNode *PredDTN = DT->getNode(PredBB); 183 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 184 for (DomTreeNode *DI : Children) 185 DT->changeImmediateDominator(DI, PredDTN); 186 187 DT->eraseNode(BB); 188 } 189 190 if (LI) 191 LI->removeBlock(BB); 192 193 if (MemDep) 194 MemDep->invalidateCachedPredecessors(); 195 196 BB->eraseFromParent(); 197 return true; 198 } 199 200 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 201 BasicBlock::iterator &BI, Value *V) { 202 Instruction &I = *BI; 203 // Replaces all of the uses of the instruction with uses of the value 204 I.replaceAllUsesWith(V); 205 206 // Make sure to propagate a name if there is one already. 207 if (I.hasName() && !V->hasName()) 208 V->takeName(&I); 209 210 // Delete the unnecessary instruction now... 211 BI = BIL.erase(BI); 212 } 213 214 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 215 BasicBlock::iterator &BI, Instruction *I) { 216 assert(I->getParent() == nullptr && 217 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 218 219 // Copy debug location to newly added instruction, if it wasn't already set 220 // by the caller. 221 if (!I->getDebugLoc()) 222 I->setDebugLoc(BI->getDebugLoc()); 223 224 // Insert the new instruction into the basic block... 225 BasicBlock::iterator New = BIL.insert(BI, I); 226 227 // Replace all uses of the old instruction, and delete it. 228 ReplaceInstWithValue(BIL, BI, I); 229 230 // Move BI back to point to the newly inserted instruction 231 BI = New; 232 } 233 234 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 235 BasicBlock::iterator BI(From); 236 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 237 } 238 239 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 240 LoopInfo *LI) { 241 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 242 243 // If this is a critical edge, let SplitCriticalEdge do it. 244 TerminatorInst *LatchTerm = BB->getTerminator(); 245 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI) 246 .setPreserveLCSSA())) 247 return LatchTerm->getSuccessor(SuccNum); 248 249 // If the edge isn't critical, then BB has a single successor or Succ has a 250 // single pred. Split the block. 251 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 252 // If the successor only has a single pred, split the top of the successor 253 // block. 254 assert(SP == BB && "CFG broken"); 255 SP = nullptr; 256 return SplitBlock(Succ, &Succ->front(), DT, LI); 257 } 258 259 // Otherwise, if BB has a single successor, split it at the bottom of the 260 // block. 261 assert(BB->getTerminator()->getNumSuccessors() == 1 && 262 "Should have a single succ!"); 263 return SplitBlock(BB, BB->getTerminator(), DT, LI); 264 } 265 266 unsigned 267 llvm::SplitAllCriticalEdges(Function &F, 268 const CriticalEdgeSplittingOptions &Options) { 269 unsigned NumBroken = 0; 270 for (BasicBlock &BB : F) { 271 TerminatorInst *TI = BB.getTerminator(); 272 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 273 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 274 if (SplitCriticalEdge(TI, i, Options)) 275 ++NumBroken; 276 } 277 return NumBroken; 278 } 279 280 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 281 DominatorTree *DT, LoopInfo *LI) { 282 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 283 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 284 ++SplitIt; 285 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 286 287 // The new block lives in whichever loop the old one did. This preserves 288 // LCSSA as well, because we force the split point to be after any PHI nodes. 289 if (LI) 290 if (Loop *L = LI->getLoopFor(Old)) 291 L->addBasicBlockToLoop(New, *LI); 292 293 if (DT) 294 // Old dominates New. New node dominates all other nodes dominated by Old. 295 if (DomTreeNode *OldNode = DT->getNode(Old)) { 296 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 297 298 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 299 for (DomTreeNode *I : Children) 300 DT->changeImmediateDominator(I, NewNode); 301 } 302 303 return New; 304 } 305 306 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 307 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 308 ArrayRef<BasicBlock *> Preds, 309 DominatorTree *DT, LoopInfo *LI, 310 bool PreserveLCSSA, bool &HasLoopExit) { 311 // Update dominator tree if available. 312 if (DT) 313 DT->splitBlock(NewBB); 314 315 // The rest of the logic is only relevant for updating the loop structures. 316 if (!LI) 317 return; 318 319 assert(DT && "DT should be available to update LoopInfo!"); 320 Loop *L = LI->getLoopFor(OldBB); 321 322 // If we need to preserve loop analyses, collect some information about how 323 // this split will affect loops. 324 bool IsLoopEntry = !!L; 325 bool SplitMakesNewLoopHeader = false; 326 for (BasicBlock *Pred : Preds) { 327 // Preds that are not reachable from entry should not be used to identify if 328 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 329 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 330 // as true and make the NewBB the header of some loop. This breaks LI. 331 if (!DT->isReachableFromEntry(Pred)) 332 continue; 333 // If we need to preserve LCSSA, determine if any of the preds is a loop 334 // exit. 335 if (PreserveLCSSA) 336 if (Loop *PL = LI->getLoopFor(Pred)) 337 if (!PL->contains(OldBB)) 338 HasLoopExit = true; 339 340 // If we need to preserve LoopInfo, note whether any of the preds crosses 341 // an interesting loop boundary. 342 if (!L) 343 continue; 344 if (L->contains(Pred)) 345 IsLoopEntry = false; 346 else 347 SplitMakesNewLoopHeader = true; 348 } 349 350 // Unless we have a loop for OldBB, nothing else to do here. 351 if (!L) 352 return; 353 354 if (IsLoopEntry) { 355 // Add the new block to the nearest enclosing loop (and not an adjacent 356 // loop). To find this, examine each of the predecessors and determine which 357 // loops enclose them, and select the most-nested loop which contains the 358 // loop containing the block being split. 359 Loop *InnermostPredLoop = nullptr; 360 for (BasicBlock *Pred : Preds) { 361 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 362 // Seek a loop which actually contains the block being split (to avoid 363 // adjacent loops). 364 while (PredLoop && !PredLoop->contains(OldBB)) 365 PredLoop = PredLoop->getParentLoop(); 366 367 // Select the most-nested of these loops which contains the block. 368 if (PredLoop && PredLoop->contains(OldBB) && 369 (!InnermostPredLoop || 370 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 371 InnermostPredLoop = PredLoop; 372 } 373 } 374 375 if (InnermostPredLoop) 376 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 377 } else { 378 L->addBasicBlockToLoop(NewBB, *LI); 379 if (SplitMakesNewLoopHeader) 380 L->moveToHeader(NewBB); 381 } 382 } 383 384 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 385 /// This also updates AliasAnalysis, if available. 386 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 387 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 388 bool HasLoopExit) { 389 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 390 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 391 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 392 PHINode *PN = cast<PHINode>(I++); 393 394 // Check to see if all of the values coming in are the same. If so, we 395 // don't need to create a new PHI node, unless it's needed for LCSSA. 396 Value *InVal = nullptr; 397 if (!HasLoopExit) { 398 InVal = PN->getIncomingValueForBlock(Preds[0]); 399 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 400 if (!PredSet.count(PN->getIncomingBlock(i))) 401 continue; 402 if (!InVal) 403 InVal = PN->getIncomingValue(i); 404 else if (InVal != PN->getIncomingValue(i)) { 405 InVal = nullptr; 406 break; 407 } 408 } 409 } 410 411 if (InVal) { 412 // If all incoming values for the new PHI would be the same, just don't 413 // make a new PHI. Instead, just remove the incoming values from the old 414 // PHI. 415 416 // NOTE! This loop walks backwards for a reason! First off, this minimizes 417 // the cost of removal if we end up removing a large number of values, and 418 // second off, this ensures that the indices for the incoming values 419 // aren't invalidated when we remove one. 420 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 421 if (PredSet.count(PN->getIncomingBlock(i))) 422 PN->removeIncomingValue(i, false); 423 424 // Add an incoming value to the PHI node in the loop for the preheader 425 // edge. 426 PN->addIncoming(InVal, NewBB); 427 continue; 428 } 429 430 // If the values coming into the block are not the same, we need a new 431 // PHI. 432 // Create the new PHI node, insert it into NewBB at the end of the block 433 PHINode *NewPHI = 434 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 435 436 // NOTE! This loop walks backwards for a reason! First off, this minimizes 437 // the cost of removal if we end up removing a large number of values, and 438 // second off, this ensures that the indices for the incoming values aren't 439 // invalidated when we remove one. 440 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 441 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 442 if (PredSet.count(IncomingBB)) { 443 Value *V = PN->removeIncomingValue(i, false); 444 NewPHI->addIncoming(V, IncomingBB); 445 } 446 } 447 448 PN->addIncoming(NewPHI, NewBB); 449 } 450 } 451 452 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 453 ArrayRef<BasicBlock *> Preds, 454 const char *Suffix, DominatorTree *DT, 455 LoopInfo *LI, bool PreserveLCSSA) { 456 // Do not attempt to split that which cannot be split. 457 if (!BB->canSplitPredecessors()) 458 return nullptr; 459 460 // For the landingpads we need to act a bit differently. 461 // Delegate this work to the SplitLandingPadPredecessors. 462 if (BB->isLandingPad()) { 463 SmallVector<BasicBlock*, 2> NewBBs; 464 std::string NewName = std::string(Suffix) + ".split-lp"; 465 466 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 467 LI, PreserveLCSSA); 468 return NewBBs[0]; 469 } 470 471 // Create new basic block, insert right before the original block. 472 BasicBlock *NewBB = BasicBlock::Create( 473 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 474 475 // The new block unconditionally branches to the old block. 476 BranchInst *BI = BranchInst::Create(BB, NewBB); 477 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 478 479 // Move the edges from Preds to point to NewBB instead of BB. 480 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 481 // This is slightly more strict than necessary; the minimum requirement 482 // is that there be no more than one indirectbr branching to BB. And 483 // all BlockAddress uses would need to be updated. 484 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 485 "Cannot split an edge from an IndirectBrInst"); 486 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 487 } 488 489 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 490 // node becomes an incoming value for BB's phi node. However, if the Preds 491 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 492 // account for the newly created predecessor. 493 if (Preds.empty()) { 494 // Insert dummy values as the incoming value. 495 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 496 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 497 return NewBB; 498 } 499 500 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 501 bool HasLoopExit = false; 502 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA, 503 HasLoopExit); 504 505 // Update the PHI nodes in BB with the values coming from NewBB. 506 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 507 return NewBB; 508 } 509 510 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 511 ArrayRef<BasicBlock *> Preds, 512 const char *Suffix1, const char *Suffix2, 513 SmallVectorImpl<BasicBlock *> &NewBBs, 514 DominatorTree *DT, LoopInfo *LI, 515 bool PreserveLCSSA) { 516 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 517 518 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 519 // it right before the original block. 520 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 521 OrigBB->getName() + Suffix1, 522 OrigBB->getParent(), OrigBB); 523 NewBBs.push_back(NewBB1); 524 525 // The new block unconditionally branches to the old block. 526 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 527 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 528 529 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 530 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 531 // This is slightly more strict than necessary; the minimum requirement 532 // is that there be no more than one indirectbr branching to BB. And 533 // all BlockAddress uses would need to be updated. 534 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 535 "Cannot split an edge from an IndirectBrInst"); 536 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 537 } 538 539 bool HasLoopExit = false; 540 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA, 541 HasLoopExit); 542 543 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 544 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 545 546 // Move the remaining edges from OrigBB to point to NewBB2. 547 SmallVector<BasicBlock*, 8> NewBB2Preds; 548 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 549 i != e; ) { 550 BasicBlock *Pred = *i++; 551 if (Pred == NewBB1) continue; 552 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 553 "Cannot split an edge from an IndirectBrInst"); 554 NewBB2Preds.push_back(Pred); 555 e = pred_end(OrigBB); 556 } 557 558 BasicBlock *NewBB2 = nullptr; 559 if (!NewBB2Preds.empty()) { 560 // Create another basic block for the rest of OrigBB's predecessors. 561 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 562 OrigBB->getName() + Suffix2, 563 OrigBB->getParent(), OrigBB); 564 NewBBs.push_back(NewBB2); 565 566 // The new block unconditionally branches to the old block. 567 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 568 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 569 570 // Move the remaining edges from OrigBB to point to NewBB2. 571 for (BasicBlock *NewBB2Pred : NewBB2Preds) 572 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 573 574 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 575 HasLoopExit = false; 576 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, 577 PreserveLCSSA, HasLoopExit); 578 579 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 580 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 581 } 582 583 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 584 Instruction *Clone1 = LPad->clone(); 585 Clone1->setName(Twine("lpad") + Suffix1); 586 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 587 588 if (NewBB2) { 589 Instruction *Clone2 = LPad->clone(); 590 Clone2->setName(Twine("lpad") + Suffix2); 591 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 592 593 // Create a PHI node for the two cloned landingpad instructions only 594 // if the original landingpad instruction has some uses. 595 if (!LPad->use_empty()) { 596 assert(!LPad->getType()->isTokenTy() && 597 "Split cannot be applied if LPad is token type. Otherwise an " 598 "invalid PHINode of token type would be created."); 599 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 600 PN->addIncoming(Clone1, NewBB1); 601 PN->addIncoming(Clone2, NewBB2); 602 LPad->replaceAllUsesWith(PN); 603 } 604 LPad->eraseFromParent(); 605 } else { 606 // There is no second clone. Just replace the landing pad with the first 607 // clone. 608 LPad->replaceAllUsesWith(Clone1); 609 LPad->eraseFromParent(); 610 } 611 } 612 613 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 614 BasicBlock *Pred) { 615 Instruction *UncondBranch = Pred->getTerminator(); 616 // Clone the return and add it to the end of the predecessor. 617 Instruction *NewRet = RI->clone(); 618 Pred->getInstList().push_back(NewRet); 619 620 // If the return instruction returns a value, and if the value was a 621 // PHI node in "BB", propagate the right value into the return. 622 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 623 i != e; ++i) { 624 Value *V = *i; 625 Instruction *NewBC = nullptr; 626 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 627 // Return value might be bitcasted. Clone and insert it before the 628 // return instruction. 629 V = BCI->getOperand(0); 630 NewBC = BCI->clone(); 631 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 632 *i = NewBC; 633 } 634 if (PHINode *PN = dyn_cast<PHINode>(V)) { 635 if (PN->getParent() == BB) { 636 if (NewBC) 637 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 638 else 639 *i = PN->getIncomingValueForBlock(Pred); 640 } 641 } 642 } 643 644 // Update any PHI nodes in the returning block to realize that we no 645 // longer branch to them. 646 BB->removePredecessor(Pred); 647 UncondBranch->eraseFromParent(); 648 return cast<ReturnInst>(NewRet); 649 } 650 651 TerminatorInst * 652 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore, 653 bool Unreachable, MDNode *BranchWeights, 654 DominatorTree *DT, LoopInfo *LI) { 655 BasicBlock *Head = SplitBefore->getParent(); 656 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 657 TerminatorInst *HeadOldTerm = Head->getTerminator(); 658 LLVMContext &C = Head->getContext(); 659 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 660 TerminatorInst *CheckTerm; 661 if (Unreachable) 662 CheckTerm = new UnreachableInst(C, ThenBlock); 663 else 664 CheckTerm = BranchInst::Create(Tail, ThenBlock); 665 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 666 BranchInst *HeadNewTerm = 667 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 668 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 669 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 670 671 if (DT) { 672 if (DomTreeNode *OldNode = DT->getNode(Head)) { 673 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 674 675 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 676 for (DomTreeNode *Child : Children) 677 DT->changeImmediateDominator(Child, NewNode); 678 679 // Head dominates ThenBlock. 680 DT->addNewBlock(ThenBlock, Head); 681 } 682 } 683 684 if (LI) { 685 if (Loop *L = LI->getLoopFor(Head)) { 686 L->addBasicBlockToLoop(ThenBlock, *LI); 687 L->addBasicBlockToLoop(Tail, *LI); 688 } 689 } 690 691 return CheckTerm; 692 } 693 694 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 695 TerminatorInst **ThenTerm, 696 TerminatorInst **ElseTerm, 697 MDNode *BranchWeights) { 698 BasicBlock *Head = SplitBefore->getParent(); 699 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 700 TerminatorInst *HeadOldTerm = Head->getTerminator(); 701 LLVMContext &C = Head->getContext(); 702 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 703 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 704 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 705 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 706 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 707 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 708 BranchInst *HeadNewTerm = 709 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 710 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 711 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 712 } 713 714 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 715 BasicBlock *&IfFalse) { 716 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 717 BasicBlock *Pred1 = nullptr; 718 BasicBlock *Pred2 = nullptr; 719 720 if (SomePHI) { 721 if (SomePHI->getNumIncomingValues() != 2) 722 return nullptr; 723 Pred1 = SomePHI->getIncomingBlock(0); 724 Pred2 = SomePHI->getIncomingBlock(1); 725 } else { 726 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 727 if (PI == PE) // No predecessor 728 return nullptr; 729 Pred1 = *PI++; 730 if (PI == PE) // Only one predecessor 731 return nullptr; 732 Pred2 = *PI++; 733 if (PI != PE) // More than two predecessors 734 return nullptr; 735 } 736 737 // We can only handle branches. Other control flow will be lowered to 738 // branches if possible anyway. 739 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 740 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 741 if (!Pred1Br || !Pred2Br) 742 return nullptr; 743 744 // Eliminate code duplication by ensuring that Pred1Br is conditional if 745 // either are. 746 if (Pred2Br->isConditional()) { 747 // If both branches are conditional, we don't have an "if statement". In 748 // reality, we could transform this case, but since the condition will be 749 // required anyway, we stand no chance of eliminating it, so the xform is 750 // probably not profitable. 751 if (Pred1Br->isConditional()) 752 return nullptr; 753 754 std::swap(Pred1, Pred2); 755 std::swap(Pred1Br, Pred2Br); 756 } 757 758 if (Pred1Br->isConditional()) { 759 // The only thing we have to watch out for here is to make sure that Pred2 760 // doesn't have incoming edges from other blocks. If it does, the condition 761 // doesn't dominate BB. 762 if (!Pred2->getSinglePredecessor()) 763 return nullptr; 764 765 // If we found a conditional branch predecessor, make sure that it branches 766 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 767 if (Pred1Br->getSuccessor(0) == BB && 768 Pred1Br->getSuccessor(1) == Pred2) { 769 IfTrue = Pred1; 770 IfFalse = Pred2; 771 } else if (Pred1Br->getSuccessor(0) == Pred2 && 772 Pred1Br->getSuccessor(1) == BB) { 773 IfTrue = Pred2; 774 IfFalse = Pred1; 775 } else { 776 // We know that one arm of the conditional goes to BB, so the other must 777 // go somewhere unrelated, and this must not be an "if statement". 778 return nullptr; 779 } 780 781 return Pred1Br->getCondition(); 782 } 783 784 // Ok, if we got here, both predecessors end with an unconditional branch to 785 // BB. Don't panic! If both blocks only have a single (identical) 786 // predecessor, and THAT is a conditional branch, then we're all ok! 787 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 788 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 789 return nullptr; 790 791 // Otherwise, if this is a conditional branch, then we can use it! 792 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 793 if (!BI) return nullptr; 794 795 assert(BI->isConditional() && "Two successors but not conditional?"); 796 if (BI->getSuccessor(0) == Pred1) { 797 IfTrue = Pred1; 798 IfFalse = Pred2; 799 } else { 800 IfTrue = Pred2; 801 IfFalse = Pred1; 802 } 803 return BI->getCondition(); 804 } 805