1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <string>
43 #include <utility>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 void llvm::DeleteDeadBlock(BasicBlock *BB) {
49   assert((pred_begin(BB) == pred_end(BB) ||
50          // Can delete self loop.
51          BB->getSinglePredecessor() == BB) && "Block is not dead!");
52   TerminatorInst *BBTerm = BB->getTerminator();
53 
54   // Loop through all of our successors and make sure they know that one
55   // of their predecessors is going away.
56   for (BasicBlock *Succ : BBTerm->successors())
57     Succ->removePredecessor(BB);
58 
59   // Zap all the instructions in the block.
60   while (!BB->empty()) {
61     Instruction &I = BB->back();
62     // If this instruction is used, replace uses with an arbitrary value.
63     // Because control flow can't get here, we don't care what we replace the
64     // value with.  Note that since this block is unreachable, and all values
65     // contained within it must dominate their uses, that all uses will
66     // eventually be removed (they are themselves dead).
67     if (!I.use_empty())
68       I.replaceAllUsesWith(UndefValue::get(I.getType()));
69     BB->getInstList().pop_back();
70   }
71 
72   // Zap the block!
73   BB->eraseFromParent();
74 }
75 
76 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
77                                    MemoryDependenceResults *MemDep) {
78   if (!isa<PHINode>(BB->begin())) return;
79 
80   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
81     if (PN->getIncomingValue(0) != PN)
82       PN->replaceAllUsesWith(PN->getIncomingValue(0));
83     else
84       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
85 
86     if (MemDep)
87       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
88 
89     PN->eraseFromParent();
90   }
91 }
92 
93 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
94   // Recursively deleting a PHI may cause multiple PHIs to be deleted
95   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
96   SmallVector<WeakTrackingVH, 8> PHIs;
97   for (PHINode &PN : BB->phis())
98     PHIs.push_back(&PN);
99 
100   bool Changed = false;
101   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
102     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
103       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
104 
105   return Changed;
106 }
107 
108 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
109                                      LoopInfo *LI,
110                                      MemoryDependenceResults *MemDep) {
111   // Don't merge away blocks who have their address taken.
112   if (BB->hasAddressTaken()) return false;
113 
114   // Can't merge if there are multiple predecessors, or no predecessors.
115   BasicBlock *PredBB = BB->getUniquePredecessor();
116   if (!PredBB) return false;
117 
118   // Don't break self-loops.
119   if (PredBB == BB) return false;
120   // Don't break unwinding instructions.
121   if (PredBB->getTerminator()->isExceptional())
122     return false;
123 
124   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
125   BasicBlock *OnlySucc = BB;
126   for (; SI != SE; ++SI)
127     if (*SI != OnlySucc) {
128       OnlySucc = nullptr;     // There are multiple distinct successors!
129       break;
130     }
131 
132   // Can't merge if there are multiple successors.
133   if (!OnlySucc) return false;
134 
135   // Can't merge if there is PHI loop.
136   for (PHINode &PN : BB->phis())
137     for (Value *IncValue : PN.incoming_values())
138       if (IncValue == &PN)
139         return false;
140 
141   // Begin by getting rid of unneeded PHIs.
142   SmallVector<Value *, 4> IncomingValues;
143   if (isa<PHINode>(BB->front())) {
144     for (PHINode &PN : BB->phis())
145       if (PN.getIncomingValue(0) != &PN)
146         IncomingValues.push_back(PN.getIncomingValue(0));
147     FoldSingleEntryPHINodes(BB, MemDep);
148   }
149 
150   // Delete the unconditional branch from the predecessor...
151   PredBB->getInstList().pop_back();
152 
153   // Make all PHI nodes that referred to BB now refer to Pred as their
154   // source...
155   BB->replaceAllUsesWith(PredBB);
156 
157   // Move all definitions in the successor to the predecessor...
158   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
159 
160   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
161   for (auto *Incoming : IncomingValues) {
162     if (isa<Instruction>(Incoming)) {
163       SmallVector<DbgValueInst *, 2> DbgValues;
164       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
165           DbgValueSet;
166       llvm::findDbgValues(DbgValues, Incoming);
167       for (auto &DVI : DbgValues) {
168         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
169         if (!R.second)
170           DVI->eraseFromParent();
171       }
172     }
173   }
174 
175   // Inherit predecessors name if it exists.
176   if (!PredBB->hasName())
177     PredBB->takeName(BB);
178 
179   // Finally, erase the old block and update dominator info.
180   if (DT)
181     if (DomTreeNode *DTN = DT->getNode(BB)) {
182       DomTreeNode *PredDTN = DT->getNode(PredBB);
183       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
184       for (DomTreeNode *DI : Children)
185         DT->changeImmediateDominator(DI, PredDTN);
186 
187       DT->eraseNode(BB);
188     }
189 
190   if (LI)
191     LI->removeBlock(BB);
192 
193   if (MemDep)
194     MemDep->invalidateCachedPredecessors();
195 
196   BB->eraseFromParent();
197   return true;
198 }
199 
200 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
201                                 BasicBlock::iterator &BI, Value *V) {
202   Instruction &I = *BI;
203   // Replaces all of the uses of the instruction with uses of the value
204   I.replaceAllUsesWith(V);
205 
206   // Make sure to propagate a name if there is one already.
207   if (I.hasName() && !V->hasName())
208     V->takeName(&I);
209 
210   // Delete the unnecessary instruction now...
211   BI = BIL.erase(BI);
212 }
213 
214 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
215                                BasicBlock::iterator &BI, Instruction *I) {
216   assert(I->getParent() == nullptr &&
217          "ReplaceInstWithInst: Instruction already inserted into basic block!");
218 
219   // Copy debug location to newly added instruction, if it wasn't already set
220   // by the caller.
221   if (!I->getDebugLoc())
222     I->setDebugLoc(BI->getDebugLoc());
223 
224   // Insert the new instruction into the basic block...
225   BasicBlock::iterator New = BIL.insert(BI, I);
226 
227   // Replace all uses of the old instruction, and delete it.
228   ReplaceInstWithValue(BIL, BI, I);
229 
230   // Move BI back to point to the newly inserted instruction
231   BI = New;
232 }
233 
234 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
235   BasicBlock::iterator BI(From);
236   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
237 }
238 
239 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
240                             LoopInfo *LI) {
241   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
242 
243   // If this is a critical edge, let SplitCriticalEdge do it.
244   TerminatorInst *LatchTerm = BB->getTerminator();
245   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
246                                                 .setPreserveLCSSA()))
247     return LatchTerm->getSuccessor(SuccNum);
248 
249   // If the edge isn't critical, then BB has a single successor or Succ has a
250   // single pred.  Split the block.
251   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
252     // If the successor only has a single pred, split the top of the successor
253     // block.
254     assert(SP == BB && "CFG broken");
255     SP = nullptr;
256     return SplitBlock(Succ, &Succ->front(), DT, LI);
257   }
258 
259   // Otherwise, if BB has a single successor, split it at the bottom of the
260   // block.
261   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
262          "Should have a single succ!");
263   return SplitBlock(BB, BB->getTerminator(), DT, LI);
264 }
265 
266 unsigned
267 llvm::SplitAllCriticalEdges(Function &F,
268                             const CriticalEdgeSplittingOptions &Options) {
269   unsigned NumBroken = 0;
270   for (BasicBlock &BB : F) {
271     TerminatorInst *TI = BB.getTerminator();
272     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
273       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
274         if (SplitCriticalEdge(TI, i, Options))
275           ++NumBroken;
276   }
277   return NumBroken;
278 }
279 
280 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
281                              DominatorTree *DT, LoopInfo *LI) {
282   BasicBlock::iterator SplitIt = SplitPt->getIterator();
283   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
284     ++SplitIt;
285   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
286 
287   // The new block lives in whichever loop the old one did. This preserves
288   // LCSSA as well, because we force the split point to be after any PHI nodes.
289   if (LI)
290     if (Loop *L = LI->getLoopFor(Old))
291       L->addBasicBlockToLoop(New, *LI);
292 
293   if (DT)
294     // Old dominates New. New node dominates all other nodes dominated by Old.
295     if (DomTreeNode *OldNode = DT->getNode(Old)) {
296       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
297 
298       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
299       for (DomTreeNode *I : Children)
300         DT->changeImmediateDominator(I, NewNode);
301     }
302 
303   return New;
304 }
305 
306 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
307 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
308                                       ArrayRef<BasicBlock *> Preds,
309                                       DominatorTree *DT, LoopInfo *LI,
310                                       bool PreserveLCSSA, bool &HasLoopExit) {
311   // Update dominator tree if available.
312   if (DT)
313     DT->splitBlock(NewBB);
314 
315   // The rest of the logic is only relevant for updating the loop structures.
316   if (!LI)
317     return;
318 
319   assert(DT && "DT should be available to update LoopInfo!");
320   Loop *L = LI->getLoopFor(OldBB);
321 
322   // If we need to preserve loop analyses, collect some information about how
323   // this split will affect loops.
324   bool IsLoopEntry = !!L;
325   bool SplitMakesNewLoopHeader = false;
326   for (BasicBlock *Pred : Preds) {
327     // Preds that are not reachable from entry should not be used to identify if
328     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
329     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
330     // as true and make the NewBB the header of some loop. This breaks LI.
331     if (!DT->isReachableFromEntry(Pred))
332       continue;
333     // If we need to preserve LCSSA, determine if any of the preds is a loop
334     // exit.
335     if (PreserveLCSSA)
336       if (Loop *PL = LI->getLoopFor(Pred))
337         if (!PL->contains(OldBB))
338           HasLoopExit = true;
339 
340     // If we need to preserve LoopInfo, note whether any of the preds crosses
341     // an interesting loop boundary.
342     if (!L)
343       continue;
344     if (L->contains(Pred))
345       IsLoopEntry = false;
346     else
347       SplitMakesNewLoopHeader = true;
348   }
349 
350   // Unless we have a loop for OldBB, nothing else to do here.
351   if (!L)
352     return;
353 
354   if (IsLoopEntry) {
355     // Add the new block to the nearest enclosing loop (and not an adjacent
356     // loop). To find this, examine each of the predecessors and determine which
357     // loops enclose them, and select the most-nested loop which contains the
358     // loop containing the block being split.
359     Loop *InnermostPredLoop = nullptr;
360     for (BasicBlock *Pred : Preds) {
361       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
362         // Seek a loop which actually contains the block being split (to avoid
363         // adjacent loops).
364         while (PredLoop && !PredLoop->contains(OldBB))
365           PredLoop = PredLoop->getParentLoop();
366 
367         // Select the most-nested of these loops which contains the block.
368         if (PredLoop && PredLoop->contains(OldBB) &&
369             (!InnermostPredLoop ||
370              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
371           InnermostPredLoop = PredLoop;
372       }
373     }
374 
375     if (InnermostPredLoop)
376       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
377   } else {
378     L->addBasicBlockToLoop(NewBB, *LI);
379     if (SplitMakesNewLoopHeader)
380       L->moveToHeader(NewBB);
381   }
382 }
383 
384 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
385 /// This also updates AliasAnalysis, if available.
386 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
387                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
388                            bool HasLoopExit) {
389   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
390   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
391   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
392     PHINode *PN = cast<PHINode>(I++);
393 
394     // Check to see if all of the values coming in are the same.  If so, we
395     // don't need to create a new PHI node, unless it's needed for LCSSA.
396     Value *InVal = nullptr;
397     if (!HasLoopExit) {
398       InVal = PN->getIncomingValueForBlock(Preds[0]);
399       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
400         if (!PredSet.count(PN->getIncomingBlock(i)))
401           continue;
402         if (!InVal)
403           InVal = PN->getIncomingValue(i);
404         else if (InVal != PN->getIncomingValue(i)) {
405           InVal = nullptr;
406           break;
407         }
408       }
409     }
410 
411     if (InVal) {
412       // If all incoming values for the new PHI would be the same, just don't
413       // make a new PHI.  Instead, just remove the incoming values from the old
414       // PHI.
415 
416       // NOTE! This loop walks backwards for a reason! First off, this minimizes
417       // the cost of removal if we end up removing a large number of values, and
418       // second off, this ensures that the indices for the incoming values
419       // aren't invalidated when we remove one.
420       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
421         if (PredSet.count(PN->getIncomingBlock(i)))
422           PN->removeIncomingValue(i, false);
423 
424       // Add an incoming value to the PHI node in the loop for the preheader
425       // edge.
426       PN->addIncoming(InVal, NewBB);
427       continue;
428     }
429 
430     // If the values coming into the block are not the same, we need a new
431     // PHI.
432     // Create the new PHI node, insert it into NewBB at the end of the block
433     PHINode *NewPHI =
434         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
435 
436     // NOTE! This loop walks backwards for a reason! First off, this minimizes
437     // the cost of removal if we end up removing a large number of values, and
438     // second off, this ensures that the indices for the incoming values aren't
439     // invalidated when we remove one.
440     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
441       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
442       if (PredSet.count(IncomingBB)) {
443         Value *V = PN->removeIncomingValue(i, false);
444         NewPHI->addIncoming(V, IncomingBB);
445       }
446     }
447 
448     PN->addIncoming(NewPHI, NewBB);
449   }
450 }
451 
452 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
453                                          ArrayRef<BasicBlock *> Preds,
454                                          const char *Suffix, DominatorTree *DT,
455                                          LoopInfo *LI, bool PreserveLCSSA) {
456   // Do not attempt to split that which cannot be split.
457   if (!BB->canSplitPredecessors())
458     return nullptr;
459 
460   // For the landingpads we need to act a bit differently.
461   // Delegate this work to the SplitLandingPadPredecessors.
462   if (BB->isLandingPad()) {
463     SmallVector<BasicBlock*, 2> NewBBs;
464     std::string NewName = std::string(Suffix) + ".split-lp";
465 
466     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
467                                 LI, PreserveLCSSA);
468     return NewBBs[0];
469   }
470 
471   // Create new basic block, insert right before the original block.
472   BasicBlock *NewBB = BasicBlock::Create(
473       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
474 
475   // The new block unconditionally branches to the old block.
476   BranchInst *BI = BranchInst::Create(BB, NewBB);
477   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
478 
479   // Move the edges from Preds to point to NewBB instead of BB.
480   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
481     // This is slightly more strict than necessary; the minimum requirement
482     // is that there be no more than one indirectbr branching to BB. And
483     // all BlockAddress uses would need to be updated.
484     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
485            "Cannot split an edge from an IndirectBrInst");
486     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
487   }
488 
489   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
490   // node becomes an incoming value for BB's phi node.  However, if the Preds
491   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
492   // account for the newly created predecessor.
493   if (Preds.empty()) {
494     // Insert dummy values as the incoming value.
495     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
496       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
497     return NewBB;
498   }
499 
500   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
501   bool HasLoopExit = false;
502   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
503                             HasLoopExit);
504 
505   // Update the PHI nodes in BB with the values coming from NewBB.
506   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
507   return NewBB;
508 }
509 
510 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
511                                        ArrayRef<BasicBlock *> Preds,
512                                        const char *Suffix1, const char *Suffix2,
513                                        SmallVectorImpl<BasicBlock *> &NewBBs,
514                                        DominatorTree *DT, LoopInfo *LI,
515                                        bool PreserveLCSSA) {
516   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
517 
518   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
519   // it right before the original block.
520   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
521                                           OrigBB->getName() + Suffix1,
522                                           OrigBB->getParent(), OrigBB);
523   NewBBs.push_back(NewBB1);
524 
525   // The new block unconditionally branches to the old block.
526   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
527   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
528 
529   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
530   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
531     // This is slightly more strict than necessary; the minimum requirement
532     // is that there be no more than one indirectbr branching to BB. And
533     // all BlockAddress uses would need to be updated.
534     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
535            "Cannot split an edge from an IndirectBrInst");
536     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
537   }
538 
539   bool HasLoopExit = false;
540   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
541                             HasLoopExit);
542 
543   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
544   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
545 
546   // Move the remaining edges from OrigBB to point to NewBB2.
547   SmallVector<BasicBlock*, 8> NewBB2Preds;
548   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
549        i != e; ) {
550     BasicBlock *Pred = *i++;
551     if (Pred == NewBB1) continue;
552     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
553            "Cannot split an edge from an IndirectBrInst");
554     NewBB2Preds.push_back(Pred);
555     e = pred_end(OrigBB);
556   }
557 
558   BasicBlock *NewBB2 = nullptr;
559   if (!NewBB2Preds.empty()) {
560     // Create another basic block for the rest of OrigBB's predecessors.
561     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
562                                 OrigBB->getName() + Suffix2,
563                                 OrigBB->getParent(), OrigBB);
564     NewBBs.push_back(NewBB2);
565 
566     // The new block unconditionally branches to the old block.
567     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
568     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
569 
570     // Move the remaining edges from OrigBB to point to NewBB2.
571     for (BasicBlock *NewBB2Pred : NewBB2Preds)
572       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
573 
574     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
575     HasLoopExit = false;
576     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
577                               PreserveLCSSA, HasLoopExit);
578 
579     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
580     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
581   }
582 
583   LandingPadInst *LPad = OrigBB->getLandingPadInst();
584   Instruction *Clone1 = LPad->clone();
585   Clone1->setName(Twine("lpad") + Suffix1);
586   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
587 
588   if (NewBB2) {
589     Instruction *Clone2 = LPad->clone();
590     Clone2->setName(Twine("lpad") + Suffix2);
591     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
592 
593     // Create a PHI node for the two cloned landingpad instructions only
594     // if the original landingpad instruction has some uses.
595     if (!LPad->use_empty()) {
596       assert(!LPad->getType()->isTokenTy() &&
597              "Split cannot be applied if LPad is token type. Otherwise an "
598              "invalid PHINode of token type would be created.");
599       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
600       PN->addIncoming(Clone1, NewBB1);
601       PN->addIncoming(Clone2, NewBB2);
602       LPad->replaceAllUsesWith(PN);
603     }
604     LPad->eraseFromParent();
605   } else {
606     // There is no second clone. Just replace the landing pad with the first
607     // clone.
608     LPad->replaceAllUsesWith(Clone1);
609     LPad->eraseFromParent();
610   }
611 }
612 
613 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
614                                              BasicBlock *Pred) {
615   Instruction *UncondBranch = Pred->getTerminator();
616   // Clone the return and add it to the end of the predecessor.
617   Instruction *NewRet = RI->clone();
618   Pred->getInstList().push_back(NewRet);
619 
620   // If the return instruction returns a value, and if the value was a
621   // PHI node in "BB", propagate the right value into the return.
622   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
623        i != e; ++i) {
624     Value *V = *i;
625     Instruction *NewBC = nullptr;
626     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
627       // Return value might be bitcasted. Clone and insert it before the
628       // return instruction.
629       V = BCI->getOperand(0);
630       NewBC = BCI->clone();
631       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
632       *i = NewBC;
633     }
634     if (PHINode *PN = dyn_cast<PHINode>(V)) {
635       if (PN->getParent() == BB) {
636         if (NewBC)
637           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
638         else
639           *i = PN->getIncomingValueForBlock(Pred);
640       }
641     }
642   }
643 
644   // Update any PHI nodes in the returning block to realize that we no
645   // longer branch to them.
646   BB->removePredecessor(Pred);
647   UncondBranch->eraseFromParent();
648   return cast<ReturnInst>(NewRet);
649 }
650 
651 TerminatorInst *
652 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
653                                 bool Unreachable, MDNode *BranchWeights,
654                                 DominatorTree *DT, LoopInfo *LI) {
655   BasicBlock *Head = SplitBefore->getParent();
656   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
657   TerminatorInst *HeadOldTerm = Head->getTerminator();
658   LLVMContext &C = Head->getContext();
659   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
660   TerminatorInst *CheckTerm;
661   if (Unreachable)
662     CheckTerm = new UnreachableInst(C, ThenBlock);
663   else
664     CheckTerm = BranchInst::Create(Tail, ThenBlock);
665   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
666   BranchInst *HeadNewTerm =
667     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
668   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
669   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
670 
671   if (DT) {
672     if (DomTreeNode *OldNode = DT->getNode(Head)) {
673       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
674 
675       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
676       for (DomTreeNode *Child : Children)
677         DT->changeImmediateDominator(Child, NewNode);
678 
679       // Head dominates ThenBlock.
680       DT->addNewBlock(ThenBlock, Head);
681     }
682   }
683 
684   if (LI) {
685     if (Loop *L = LI->getLoopFor(Head)) {
686       L->addBasicBlockToLoop(ThenBlock, *LI);
687       L->addBasicBlockToLoop(Tail, *LI);
688     }
689   }
690 
691   return CheckTerm;
692 }
693 
694 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
695                                          TerminatorInst **ThenTerm,
696                                          TerminatorInst **ElseTerm,
697                                          MDNode *BranchWeights) {
698   BasicBlock *Head = SplitBefore->getParent();
699   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
700   TerminatorInst *HeadOldTerm = Head->getTerminator();
701   LLVMContext &C = Head->getContext();
702   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
703   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
704   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
705   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
706   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
707   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
708   BranchInst *HeadNewTerm =
709     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
710   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
711   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
712 }
713 
714 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
715                              BasicBlock *&IfFalse) {
716   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
717   BasicBlock *Pred1 = nullptr;
718   BasicBlock *Pred2 = nullptr;
719 
720   if (SomePHI) {
721     if (SomePHI->getNumIncomingValues() != 2)
722       return nullptr;
723     Pred1 = SomePHI->getIncomingBlock(0);
724     Pred2 = SomePHI->getIncomingBlock(1);
725   } else {
726     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
727     if (PI == PE) // No predecessor
728       return nullptr;
729     Pred1 = *PI++;
730     if (PI == PE) // Only one predecessor
731       return nullptr;
732     Pred2 = *PI++;
733     if (PI != PE) // More than two predecessors
734       return nullptr;
735   }
736 
737   // We can only handle branches.  Other control flow will be lowered to
738   // branches if possible anyway.
739   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
740   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
741   if (!Pred1Br || !Pred2Br)
742     return nullptr;
743 
744   // Eliminate code duplication by ensuring that Pred1Br is conditional if
745   // either are.
746   if (Pred2Br->isConditional()) {
747     // If both branches are conditional, we don't have an "if statement".  In
748     // reality, we could transform this case, but since the condition will be
749     // required anyway, we stand no chance of eliminating it, so the xform is
750     // probably not profitable.
751     if (Pred1Br->isConditional())
752       return nullptr;
753 
754     std::swap(Pred1, Pred2);
755     std::swap(Pred1Br, Pred2Br);
756   }
757 
758   if (Pred1Br->isConditional()) {
759     // The only thing we have to watch out for here is to make sure that Pred2
760     // doesn't have incoming edges from other blocks.  If it does, the condition
761     // doesn't dominate BB.
762     if (!Pred2->getSinglePredecessor())
763       return nullptr;
764 
765     // If we found a conditional branch predecessor, make sure that it branches
766     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
767     if (Pred1Br->getSuccessor(0) == BB &&
768         Pred1Br->getSuccessor(1) == Pred2) {
769       IfTrue = Pred1;
770       IfFalse = Pred2;
771     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
772                Pred1Br->getSuccessor(1) == BB) {
773       IfTrue = Pred2;
774       IfFalse = Pred1;
775     } else {
776       // We know that one arm of the conditional goes to BB, so the other must
777       // go somewhere unrelated, and this must not be an "if statement".
778       return nullptr;
779     }
780 
781     return Pred1Br->getCondition();
782   }
783 
784   // Ok, if we got here, both predecessors end with an unconditional branch to
785   // BB.  Don't panic!  If both blocks only have a single (identical)
786   // predecessor, and THAT is a conditional branch, then we're all ok!
787   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
788   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
789     return nullptr;
790 
791   // Otherwise, if this is a conditional branch, then we can use it!
792   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
793   if (!BI) return nullptr;
794 
795   assert(BI->isConditional() && "Two successors but not conditional?");
796   if (BI->getSuccessor(0) == Pred1) {
797     IfTrue = Pred1;
798     IfFalse = Pred2;
799   } else {
800     IfTrue = Pred2;
801     IfFalse = Pred1;
802   }
803   return BI->getCondition();
804 }
805