1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/PseudoProbe.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/User.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include <cassert> 47 #include <cstdint> 48 #include <string> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "basicblock-utils" 55 56 static cl::opt<unsigned> MaxDeoptimizingCheckDepth( 57 "max-deopt-check-depth", cl::init(8), cl::Hidden, 58 cl::desc("Set the maximum path length when checking whether a basic block " 59 "is deoptimizing")); 60 61 void llvm::DetatchDeadBlocks( 62 ArrayRef<BasicBlock *> BBs, 63 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 64 bool KeepOneInputPHIs) { 65 for (auto *BB : BBs) { 66 // Loop through all of our successors and make sure they know that one 67 // of their predecessors is going away. 68 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 69 for (BasicBlock *Succ : successors(BB)) { 70 Succ->removePredecessor(BB, KeepOneInputPHIs); 71 if (Updates && UniqueSuccessors.insert(Succ).second) 72 Updates->push_back({DominatorTree::Delete, BB, Succ}); 73 } 74 75 // Zap all the instructions in the block. 76 while (!BB->empty()) { 77 Instruction &I = BB->back(); 78 // If this instruction is used, replace uses with an arbitrary value. 79 // Because control flow can't get here, we don't care what we replace the 80 // value with. Note that since this block is unreachable, and all values 81 // contained within it must dominate their uses, that all uses will 82 // eventually be removed (they are themselves dead). 83 if (!I.use_empty()) 84 I.replaceAllUsesWith(UndefValue::get(I.getType())); 85 BB->getInstList().pop_back(); 86 } 87 new UnreachableInst(BB->getContext(), BB); 88 assert(BB->getInstList().size() == 1 && 89 isa<UnreachableInst>(BB->getTerminator()) && 90 "The successor list of BB isn't empty before " 91 "applying corresponding DTU updates."); 92 } 93 } 94 95 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 96 bool KeepOneInputPHIs) { 97 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 98 } 99 100 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 101 bool KeepOneInputPHIs) { 102 #ifndef NDEBUG 103 // Make sure that all predecessors of each dead block is also dead. 104 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 105 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 106 for (auto *BB : Dead) 107 for (BasicBlock *Pred : predecessors(BB)) 108 assert(Dead.count(Pred) && "All predecessors must be dead!"); 109 #endif 110 111 SmallVector<DominatorTree::UpdateType, 4> Updates; 112 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 113 114 if (DTU) 115 DTU->applyUpdates(Updates); 116 117 for (BasicBlock *BB : BBs) 118 if (DTU) 119 DTU->deleteBB(BB); 120 else 121 BB->eraseFromParent(); 122 } 123 124 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 125 bool KeepOneInputPHIs) { 126 df_iterator_default_set<BasicBlock*> Reachable; 127 128 // Mark all reachable blocks. 129 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 130 (void)BB/* Mark all reachable blocks */; 131 132 // Collect all dead blocks. 133 std::vector<BasicBlock*> DeadBlocks; 134 for (BasicBlock &BB : F) 135 if (!Reachable.count(&BB)) 136 DeadBlocks.push_back(&BB); 137 138 // Delete the dead blocks. 139 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 140 141 return !DeadBlocks.empty(); 142 } 143 144 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 145 MemoryDependenceResults *MemDep) { 146 if (!isa<PHINode>(BB->begin())) 147 return false; 148 149 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 150 if (PN->getIncomingValue(0) != PN) 151 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 152 else 153 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 154 155 if (MemDep) 156 MemDep->removeInstruction(PN); // Memdep updates AA itself. 157 158 PN->eraseFromParent(); 159 } 160 return true; 161 } 162 163 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 164 MemorySSAUpdater *MSSAU) { 165 // Recursively deleting a PHI may cause multiple PHIs to be deleted 166 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 167 SmallVector<WeakTrackingVH, 8> PHIs; 168 for (PHINode &PN : BB->phis()) 169 PHIs.push_back(&PN); 170 171 bool Changed = false; 172 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 173 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 174 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 175 176 return Changed; 177 } 178 179 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 180 LoopInfo *LI, MemorySSAUpdater *MSSAU, 181 MemoryDependenceResults *MemDep, 182 bool PredecessorWithTwoSuccessors) { 183 if (BB->hasAddressTaken()) 184 return false; 185 186 // Can't merge if there are multiple predecessors, or no predecessors. 187 BasicBlock *PredBB = BB->getUniquePredecessor(); 188 if (!PredBB) return false; 189 190 // Don't break self-loops. 191 if (PredBB == BB) return false; 192 // Don't break unwinding instructions. 193 if (PredBB->getTerminator()->isExceptionalTerminator()) 194 return false; 195 196 // Can't merge if there are multiple distinct successors. 197 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 198 return false; 199 200 // Currently only allow PredBB to have two predecessors, one being BB. 201 // Update BI to branch to BB's only successor instead of BB. 202 BranchInst *PredBB_BI; 203 BasicBlock *NewSucc = nullptr; 204 unsigned FallThruPath; 205 if (PredecessorWithTwoSuccessors) { 206 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 207 return false; 208 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 209 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 210 return false; 211 NewSucc = BB_JmpI->getSuccessor(0); 212 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 213 } 214 215 // Can't merge if there is PHI loop. 216 for (PHINode &PN : BB->phis()) 217 if (llvm::is_contained(PN.incoming_values(), &PN)) 218 return false; 219 220 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 221 << PredBB->getName() << "\n"); 222 223 // Begin by getting rid of unneeded PHIs. 224 SmallVector<AssertingVH<Value>, 4> IncomingValues; 225 if (isa<PHINode>(BB->front())) { 226 for (PHINode &PN : BB->phis()) 227 if (!isa<PHINode>(PN.getIncomingValue(0)) || 228 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 229 IncomingValues.push_back(PN.getIncomingValue(0)); 230 FoldSingleEntryPHINodes(BB, MemDep); 231 } 232 233 // DTU update: Collect all the edges that exit BB. 234 // These dominator edges will be redirected from Pred. 235 std::vector<DominatorTree::UpdateType> Updates; 236 if (DTU) { 237 SmallPtrSet<BasicBlock *, 2> SuccsOfBB(succ_begin(BB), succ_end(BB)); 238 SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB), 239 succ_end(PredBB)); 240 Updates.reserve(Updates.size() + 2 * SuccsOfBB.size() + 1); 241 // Add insert edges first. Experimentally, for the particular case of two 242 // blocks that can be merged, with a single successor and single predecessor 243 // respectively, it is beneficial to have all insert updates first. Deleting 244 // edges first may lead to unreachable blocks, followed by inserting edges 245 // making the blocks reachable again. Such DT updates lead to high compile 246 // times. We add inserts before deletes here to reduce compile time. 247 for (BasicBlock *SuccOfBB : SuccsOfBB) 248 // This successor of BB may already be a PredBB's successor. 249 if (!SuccsOfPredBB.contains(SuccOfBB)) 250 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB}); 251 for (BasicBlock *SuccOfBB : SuccsOfBB) 252 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB}); 253 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 254 } 255 256 Instruction *PTI = PredBB->getTerminator(); 257 Instruction *STI = BB->getTerminator(); 258 Instruction *Start = &*BB->begin(); 259 // If there's nothing to move, mark the starting instruction as the last 260 // instruction in the block. Terminator instruction is handled separately. 261 if (Start == STI) 262 Start = PTI; 263 264 // Move all definitions in the successor to the predecessor... 265 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 266 BB->begin(), STI->getIterator()); 267 268 if (MSSAU) 269 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 270 271 // Make all PHI nodes that referred to BB now refer to Pred as their 272 // source... 273 BB->replaceAllUsesWith(PredBB); 274 275 if (PredecessorWithTwoSuccessors) { 276 // Delete the unconditional branch from BB. 277 BB->getInstList().pop_back(); 278 279 // Update branch in the predecessor. 280 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 281 } else { 282 // Delete the unconditional branch from the predecessor. 283 PredBB->getInstList().pop_back(); 284 285 // Move terminator instruction. 286 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 287 288 // Terminator may be a memory accessing instruction too. 289 if (MSSAU) 290 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 291 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 292 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 293 } 294 // Add unreachable to now empty BB. 295 new UnreachableInst(BB->getContext(), BB); 296 297 // Inherit predecessors name if it exists. 298 if (!PredBB->hasName()) 299 PredBB->takeName(BB); 300 301 if (LI) 302 LI->removeBlock(BB); 303 304 if (MemDep) 305 MemDep->invalidateCachedPredecessors(); 306 307 if (DTU) 308 DTU->applyUpdates(Updates); 309 310 // Finally, erase the old block and update dominator info. 311 DeleteDeadBlock(BB, DTU); 312 313 return true; 314 } 315 316 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 317 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 318 LoopInfo *LI) { 319 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 320 321 bool BlocksHaveBeenMerged = false; 322 while (!MergeBlocks.empty()) { 323 BasicBlock *BB = *MergeBlocks.begin(); 324 BasicBlock *Dest = BB->getSingleSuccessor(); 325 if (Dest && (!L || L->contains(Dest))) { 326 BasicBlock *Fold = Dest->getUniquePredecessor(); 327 (void)Fold; 328 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 329 assert(Fold == BB && 330 "Expecting BB to be unique predecessor of the Dest block"); 331 MergeBlocks.erase(Dest); 332 BlocksHaveBeenMerged = true; 333 } else 334 MergeBlocks.erase(BB); 335 } else 336 MergeBlocks.erase(BB); 337 } 338 return BlocksHaveBeenMerged; 339 } 340 341 /// Remove redundant instructions within sequences of consecutive dbg.value 342 /// instructions. This is done using a backward scan to keep the last dbg.value 343 /// describing a specific variable/fragment. 344 /// 345 /// BackwardScan strategy: 346 /// ---------------------- 347 /// Given a sequence of consecutive DbgValueInst like this 348 /// 349 /// dbg.value ..., "x", FragmentX1 (*) 350 /// dbg.value ..., "y", FragmentY1 351 /// dbg.value ..., "x", FragmentX2 352 /// dbg.value ..., "x", FragmentX1 (**) 353 /// 354 /// then the instruction marked with (*) can be removed (it is guaranteed to be 355 /// obsoleted by the instruction marked with (**) as the latter instruction is 356 /// describing the same variable using the same fragment info). 357 /// 358 /// Possible improvements: 359 /// - Check fully overlapping fragments and not only identical fragments. 360 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta 361 /// instructions being part of the sequence of consecutive instructions. 362 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 363 SmallVector<DbgValueInst *, 8> ToBeRemoved; 364 SmallDenseSet<DebugVariable> VariableSet; 365 for (auto &I : reverse(*BB)) { 366 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 367 DebugVariable Key(DVI->getVariable(), 368 DVI->getExpression(), 369 DVI->getDebugLoc()->getInlinedAt()); 370 auto R = VariableSet.insert(Key); 371 // If the same variable fragment is described more than once it is enough 372 // to keep the last one (i.e. the first found since we for reverse 373 // iteration). 374 if (!R.second) 375 ToBeRemoved.push_back(DVI); 376 continue; 377 } 378 // Sequence with consecutive dbg.value instrs ended. Clear the map to 379 // restart identifying redundant instructions if case we find another 380 // dbg.value sequence. 381 VariableSet.clear(); 382 } 383 384 for (auto &Instr : ToBeRemoved) 385 Instr->eraseFromParent(); 386 387 return !ToBeRemoved.empty(); 388 } 389 390 /// Remove redundant dbg.value instructions using a forward scan. This can 391 /// remove a dbg.value instruction that is redundant due to indicating that a 392 /// variable has the same value as already being indicated by an earlier 393 /// dbg.value. 394 /// 395 /// ForwardScan strategy: 396 /// --------------------- 397 /// Given two identical dbg.value instructions, separated by a block of 398 /// instructions that isn't describing the same variable, like this 399 /// 400 /// dbg.value X1, "x", FragmentX1 (**) 401 /// <block of instructions, none being "dbg.value ..., "x", ..."> 402 /// dbg.value X1, "x", FragmentX1 (*) 403 /// 404 /// then the instruction marked with (*) can be removed. Variable "x" is already 405 /// described as being mapped to the SSA value X1. 406 /// 407 /// Possible improvements: 408 /// - Keep track of non-overlapping fragments. 409 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 410 SmallVector<DbgValueInst *, 8> ToBeRemoved; 411 DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>> 412 VariableMap; 413 for (auto &I : *BB) { 414 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 415 DebugVariable Key(DVI->getVariable(), 416 NoneType(), 417 DVI->getDebugLoc()->getInlinedAt()); 418 auto VMI = VariableMap.find(Key); 419 // Update the map if we found a new value/expression describing the 420 // variable, or if the variable wasn't mapped already. 421 SmallVector<Value *, 4> Values(DVI->getValues()); 422 if (VMI == VariableMap.end() || VMI->second.first != Values || 423 VMI->second.second != DVI->getExpression()) { 424 VariableMap[Key] = {Values, DVI->getExpression()}; 425 continue; 426 } 427 // Found an identical mapping. Remember the instruction for later removal. 428 ToBeRemoved.push_back(DVI); 429 } 430 } 431 432 for (auto &Instr : ToBeRemoved) 433 Instr->eraseFromParent(); 434 435 return !ToBeRemoved.empty(); 436 } 437 438 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 439 bool MadeChanges = false; 440 // By using the "backward scan" strategy before the "forward scan" strategy we 441 // can remove both dbg.value (2) and (3) in a situation like this: 442 // 443 // (1) dbg.value V1, "x", DIExpression() 444 // ... 445 // (2) dbg.value V2, "x", DIExpression() 446 // (3) dbg.value V1, "x", DIExpression() 447 // 448 // The backward scan will remove (2), it is made obsolete by (3). After 449 // getting (2) out of the way, the foward scan will remove (3) since "x" 450 // already is described as having the value V1 at (1). 451 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 452 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 453 454 if (MadeChanges) 455 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 456 << BB->getName() << "\n"); 457 return MadeChanges; 458 } 459 460 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 461 BasicBlock::iterator &BI, Value *V) { 462 Instruction &I = *BI; 463 // Replaces all of the uses of the instruction with uses of the value 464 I.replaceAllUsesWith(V); 465 466 // Make sure to propagate a name if there is one already. 467 if (I.hasName() && !V->hasName()) 468 V->takeName(&I); 469 470 // Delete the unnecessary instruction now... 471 BI = BIL.erase(BI); 472 } 473 474 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 475 BasicBlock::iterator &BI, Instruction *I) { 476 assert(I->getParent() == nullptr && 477 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 478 479 // Copy debug location to newly added instruction, if it wasn't already set 480 // by the caller. 481 if (!I->getDebugLoc()) 482 I->setDebugLoc(BI->getDebugLoc()); 483 484 // Insert the new instruction into the basic block... 485 BasicBlock::iterator New = BIL.insert(BI, I); 486 487 // Replace all uses of the old instruction, and delete it. 488 ReplaceInstWithValue(BIL, BI, I); 489 490 // Move BI back to point to the newly inserted instruction 491 BI = New; 492 } 493 494 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) { 495 // Remember visited blocks to avoid infinite loop 496 SmallPtrSet<const BasicBlock *, 8> VisitedBlocks; 497 unsigned Depth = 0; 498 while (BB && Depth++ < MaxDeoptimizingCheckDepth && 499 VisitedBlocks.insert(BB).second) { 500 if (BB->getTerminatingDeoptimizeCall() || 501 isa<UnreachableInst>(BB->getTerminator())) 502 return true; 503 BB = BB->getSingleSuccessor(); 504 } 505 return false; 506 } 507 508 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 509 BasicBlock::iterator BI(From); 510 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 511 } 512 513 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 514 LoopInfo *LI, MemorySSAUpdater *MSSAU, 515 const Twine &BBName) { 516 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 517 518 Instruction *LatchTerm = BB->getTerminator(); 519 520 CriticalEdgeSplittingOptions Options = 521 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(); 522 523 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) { 524 // If it is a critical edge, and the succesor is an exception block, handle 525 // the split edge logic in this specific function 526 if (Succ->isEHPad()) 527 return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName); 528 529 // If this is a critical edge, let SplitKnownCriticalEdge do it. 530 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName); 531 } 532 533 // If the edge isn't critical, then BB has a single successor or Succ has a 534 // single pred. Split the block. 535 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 536 // If the successor only has a single pred, split the top of the successor 537 // block. 538 assert(SP == BB && "CFG broken"); 539 SP = nullptr; 540 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName, 541 /*Before=*/true); 542 } 543 544 // Otherwise, if BB has a single successor, split it at the bottom of the 545 // block. 546 assert(BB->getTerminator()->getNumSuccessors() == 1 && 547 "Should have a single succ!"); 548 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName); 549 } 550 551 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) { 552 if (auto *II = dyn_cast<InvokeInst>(TI)) 553 II->setUnwindDest(Succ); 554 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI)) 555 CS->setUnwindDest(Succ); 556 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI)) 557 CR->setUnwindDest(Succ); 558 else 559 llvm_unreachable("unexpected terminator instruction"); 560 } 561 562 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, 563 BasicBlock *NewPred, PHINode *Until) { 564 int BBIdx = 0; 565 for (PHINode &PN : DestBB->phis()) { 566 // We manually update the LandingPadReplacement PHINode and it is the last 567 // PHI Node. So, if we find it, we are done. 568 if (Until == &PN) 569 break; 570 571 // Reuse the previous value of BBIdx if it lines up. In cases where we 572 // have multiple phi nodes with *lots* of predecessors, this is a speed 573 // win because we don't have to scan the PHI looking for TIBB. This 574 // happens because the BB list of PHI nodes are usually in the same 575 // order. 576 if (PN.getIncomingBlock(BBIdx) != OldPred) 577 BBIdx = PN.getBasicBlockIndex(OldPred); 578 579 assert(BBIdx != -1 && "Invalid PHI Index!"); 580 PN.setIncomingBlock(BBIdx, NewPred); 581 } 582 } 583 584 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, 585 LandingPadInst *OriginalPad, 586 PHINode *LandingPadReplacement, 587 const CriticalEdgeSplittingOptions &Options, 588 const Twine &BBName) { 589 590 auto *PadInst = Succ->getFirstNonPHI(); 591 if (!LandingPadReplacement && !PadInst->isEHPad()) 592 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName); 593 594 auto *LI = Options.LI; 595 SmallVector<BasicBlock *, 4> LoopPreds; 596 // Check if extra modifications will be required to preserve loop-simplify 597 // form after splitting. If it would require splitting blocks with IndirectBr 598 // terminators, bail out if preserving loop-simplify form is requested. 599 if (Options.PreserveLoopSimplify && LI) { 600 if (Loop *BBLoop = LI->getLoopFor(BB)) { 601 602 // The only way that we can break LoopSimplify form by splitting a 603 // critical edge is when there exists some edge from BBLoop to Succ *and* 604 // the only edge into Succ from outside of BBLoop is that of NewBB after 605 // the split. If the first isn't true, then LoopSimplify still holds, 606 // NewBB is the new exit block and it has no non-loop predecessors. If the 607 // second isn't true, then Succ was not in LoopSimplify form prior to 608 // the split as it had a non-loop predecessor. In both of these cases, 609 // the predecessor must be directly in BBLoop, not in a subloop, or again 610 // LoopSimplify doesn't hold. 611 for (BasicBlock *P : predecessors(Succ)) { 612 if (P == BB) 613 continue; // The new block is known. 614 if (LI->getLoopFor(P) != BBLoop) { 615 // Loop is not in LoopSimplify form, no need to re simplify after 616 // splitting edge. 617 LoopPreds.clear(); 618 break; 619 } 620 LoopPreds.push_back(P); 621 } 622 // Loop-simplify form can be preserved, if we can split all in-loop 623 // predecessors. 624 if (any_of(LoopPreds, [](BasicBlock *Pred) { 625 return isa<IndirectBrInst>(Pred->getTerminator()); 626 })) { 627 return nullptr; 628 } 629 } 630 } 631 632 auto *NewBB = 633 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ); 634 setUnwindEdgeTo(BB->getTerminator(), NewBB); 635 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement); 636 637 if (LandingPadReplacement) { 638 auto *NewLP = OriginalPad->clone(); 639 auto *Terminator = BranchInst::Create(Succ, NewBB); 640 NewLP->insertBefore(Terminator); 641 LandingPadReplacement->addIncoming(NewLP, NewBB); 642 } else { 643 Value *ParentPad = nullptr; 644 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst)) 645 ParentPad = FuncletPad->getParentPad(); 646 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst)) 647 ParentPad = CatchSwitch->getParentPad(); 648 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst)) 649 ParentPad = CleanupPad->getParentPad(); 650 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst)) 651 ParentPad = LandingPad->getParent(); 652 else 653 llvm_unreachable("handling for other EHPads not implemented yet"); 654 655 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB); 656 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB); 657 } 658 659 auto *DT = Options.DT; 660 auto *MSSAU = Options.MSSAU; 661 if (!DT && !LI) 662 return NewBB; 663 664 if (DT) { 665 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 666 SmallVector<DominatorTree::UpdateType, 3> Updates; 667 668 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 669 Updates.push_back({DominatorTree::Insert, NewBB, Succ}); 670 Updates.push_back({DominatorTree::Delete, BB, Succ}); 671 672 DTU.applyUpdates(Updates); 673 DTU.flush(); 674 675 if (MSSAU) { 676 MSSAU->applyUpdates(Updates, *DT); 677 if (VerifyMemorySSA) 678 MSSAU->getMemorySSA()->verifyMemorySSA(); 679 } 680 } 681 682 if (LI) { 683 if (Loop *BBLoop = LI->getLoopFor(BB)) { 684 // If one or the other blocks were not in a loop, the new block is not 685 // either, and thus LI doesn't need to be updated. 686 if (Loop *SuccLoop = LI->getLoopFor(Succ)) { 687 if (BBLoop == SuccLoop) { 688 // Both in the same loop, the NewBB joins loop. 689 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 690 } else if (BBLoop->contains(SuccLoop)) { 691 // Edge from an outer loop to an inner loop. Add to the outer loop. 692 BBLoop->addBasicBlockToLoop(NewBB, *LI); 693 } else if (SuccLoop->contains(BBLoop)) { 694 // Edge from an inner loop to an outer loop. Add to the outer loop. 695 SuccLoop->addBasicBlockToLoop(NewBB, *LI); 696 } else { 697 // Edge from two loops with no containment relation. Because these 698 // are natural loops, we know that the destination block must be the 699 // header of its loop (adding a branch into a loop elsewhere would 700 // create an irreducible loop). 701 assert(SuccLoop->getHeader() == Succ && 702 "Should not create irreducible loops!"); 703 if (Loop *P = SuccLoop->getParentLoop()) 704 P->addBasicBlockToLoop(NewBB, *LI); 705 } 706 } 707 708 // If BB is in a loop and Succ is outside of that loop, we may need to 709 // update LoopSimplify form and LCSSA form. 710 if (!BBLoop->contains(Succ)) { 711 assert(!BBLoop->contains(NewBB) && 712 "Split point for loop exit is contained in loop!"); 713 714 // Update LCSSA form in the newly created exit block. 715 if (Options.PreserveLCSSA) { 716 createPHIsForSplitLoopExit(BB, NewBB, Succ); 717 } 718 719 if (!LoopPreds.empty()) { 720 BasicBlock *NewExitBB = SplitBlockPredecessors( 721 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA); 722 if (Options.PreserveLCSSA) 723 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ); 724 } 725 } 726 } 727 } 728 729 return NewBB; 730 } 731 732 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 733 BasicBlock *SplitBB, BasicBlock *DestBB) { 734 // SplitBB shouldn't have anything non-trivial in it yet. 735 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 736 SplitBB->isLandingPad()) && 737 "SplitBB has non-PHI nodes!"); 738 739 // For each PHI in the destination block. 740 for (PHINode &PN : DestBB->phis()) { 741 int Idx = PN.getBasicBlockIndex(SplitBB); 742 assert(Idx >= 0 && "Invalid Block Index"); 743 Value *V = PN.getIncomingValue(Idx); 744 745 // If the input is a PHI which already satisfies LCSSA, don't create 746 // a new one. 747 if (const PHINode *VP = dyn_cast<PHINode>(V)) 748 if (VP->getParent() == SplitBB) 749 continue; 750 751 // Otherwise a new PHI is needed. Create one and populate it. 752 PHINode *NewPN = PHINode::Create( 753 PN.getType(), Preds.size(), "split", 754 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 755 for (BasicBlock *BB : Preds) 756 NewPN->addIncoming(V, BB); 757 758 // Update the original PHI. 759 PN.setIncomingValue(Idx, NewPN); 760 } 761 } 762 763 unsigned 764 llvm::SplitAllCriticalEdges(Function &F, 765 const CriticalEdgeSplittingOptions &Options) { 766 unsigned NumBroken = 0; 767 for (BasicBlock &BB : F) { 768 Instruction *TI = BB.getTerminator(); 769 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) && 770 !isa<CallBrInst>(TI)) 771 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 772 if (SplitCriticalEdge(TI, i, Options)) 773 ++NumBroken; 774 } 775 return NumBroken; 776 } 777 778 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt, 779 DomTreeUpdater *DTU, DominatorTree *DT, 780 LoopInfo *LI, MemorySSAUpdater *MSSAU, 781 const Twine &BBName, bool Before) { 782 if (Before) { 783 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 784 return splitBlockBefore(Old, SplitPt, 785 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU, 786 BBName); 787 } 788 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 789 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) { 790 ++SplitIt; 791 assert(SplitIt != SplitPt->getParent()->end()); 792 } 793 std::string Name = BBName.str(); 794 BasicBlock *New = Old->splitBasicBlock( 795 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 796 797 // The new block lives in whichever loop the old one did. This preserves 798 // LCSSA as well, because we force the split point to be after any PHI nodes. 799 if (LI) 800 if (Loop *L = LI->getLoopFor(Old)) 801 L->addBasicBlockToLoop(New, *LI); 802 803 if (DTU) { 804 SmallVector<DominatorTree::UpdateType, 8> Updates; 805 // Old dominates New. New node dominates all other nodes dominated by Old. 806 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New), 807 succ_end(New)); 808 Updates.push_back({DominatorTree::Insert, Old, New}); 809 Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size()); 810 for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) { 811 Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld}); 812 Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld}); 813 } 814 815 DTU->applyUpdates(Updates); 816 } else if (DT) 817 // Old dominates New. New node dominates all other nodes dominated by Old. 818 if (DomTreeNode *OldNode = DT->getNode(Old)) { 819 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 820 821 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 822 for (DomTreeNode *I : Children) 823 DT->changeImmediateDominator(I, NewNode); 824 } 825 826 // Move MemoryAccesses still tracked in Old, but part of New now. 827 // Update accesses in successor blocks accordingly. 828 if (MSSAU) 829 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 830 831 return New; 832 } 833 834 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 835 DominatorTree *DT, LoopInfo *LI, 836 MemorySSAUpdater *MSSAU, const Twine &BBName, 837 bool Before) { 838 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName, 839 Before); 840 } 841 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 842 DomTreeUpdater *DTU, LoopInfo *LI, 843 MemorySSAUpdater *MSSAU, const Twine &BBName, 844 bool Before) { 845 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName, 846 Before); 847 } 848 849 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt, 850 DomTreeUpdater *DTU, LoopInfo *LI, 851 MemorySSAUpdater *MSSAU, 852 const Twine &BBName) { 853 854 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 855 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 856 ++SplitIt; 857 std::string Name = BBName.str(); 858 BasicBlock *New = Old->splitBasicBlock( 859 SplitIt, Name.empty() ? Old->getName() + ".split" : Name, 860 /* Before=*/true); 861 862 // The new block lives in whichever loop the old one did. This preserves 863 // LCSSA as well, because we force the split point to be after any PHI nodes. 864 if (LI) 865 if (Loop *L = LI->getLoopFor(Old)) 866 L->addBasicBlockToLoop(New, *LI); 867 868 if (DTU) { 869 SmallVector<DominatorTree::UpdateType, 8> DTUpdates; 870 // New dominates Old. The predecessor nodes of the Old node dominate 871 // New node. 872 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New), 873 pred_end(New)); 874 DTUpdates.push_back({DominatorTree::Insert, New, Old}); 875 DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size()); 876 for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) { 877 DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New}); 878 DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old}); 879 } 880 881 DTU->applyUpdates(DTUpdates); 882 883 // Move MemoryAccesses still tracked in Old, but part of New now. 884 // Update accesses in successor blocks accordingly. 885 if (MSSAU) { 886 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree()); 887 if (VerifyMemorySSA) 888 MSSAU->getMemorySSA()->verifyMemorySSA(); 889 } 890 } 891 return New; 892 } 893 894 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 895 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 896 ArrayRef<BasicBlock *> Preds, 897 DomTreeUpdater *DTU, DominatorTree *DT, 898 LoopInfo *LI, MemorySSAUpdater *MSSAU, 899 bool PreserveLCSSA, bool &HasLoopExit) { 900 // Update dominator tree if available. 901 if (DTU) { 902 // Recalculation of DomTree is needed when updating a forward DomTree and 903 // the Entry BB is replaced. 904 if (NewBB->isEntryBlock() && DTU->hasDomTree()) { 905 // The entry block was removed and there is no external interface for 906 // the dominator tree to be notified of this change. In this corner-case 907 // we recalculate the entire tree. 908 DTU->recalculate(*NewBB->getParent()); 909 } else { 910 // Split block expects NewBB to have a non-empty set of predecessors. 911 SmallVector<DominatorTree::UpdateType, 8> Updates; 912 SmallPtrSet<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end()); 913 Updates.push_back({DominatorTree::Insert, NewBB, OldBB}); 914 Updates.reserve(Updates.size() + 2 * UniquePreds.size()); 915 for (auto *UniquePred : UniquePreds) { 916 Updates.push_back({DominatorTree::Insert, UniquePred, NewBB}); 917 Updates.push_back({DominatorTree::Delete, UniquePred, OldBB}); 918 } 919 DTU->applyUpdates(Updates); 920 } 921 } else if (DT) { 922 if (OldBB == DT->getRootNode()->getBlock()) { 923 assert(NewBB->isEntryBlock()); 924 DT->setNewRoot(NewBB); 925 } else { 926 // Split block expects NewBB to have a non-empty set of predecessors. 927 DT->splitBlock(NewBB); 928 } 929 } 930 931 // Update MemoryPhis after split if MemorySSA is available 932 if (MSSAU) 933 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 934 935 // The rest of the logic is only relevant for updating the loop structures. 936 if (!LI) 937 return; 938 939 if (DTU && DTU->hasDomTree()) 940 DT = &DTU->getDomTree(); 941 assert(DT && "DT should be available to update LoopInfo!"); 942 Loop *L = LI->getLoopFor(OldBB); 943 944 // If we need to preserve loop analyses, collect some information about how 945 // this split will affect loops. 946 bool IsLoopEntry = !!L; 947 bool SplitMakesNewLoopHeader = false; 948 for (BasicBlock *Pred : Preds) { 949 // Preds that are not reachable from entry should not be used to identify if 950 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 951 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 952 // as true and make the NewBB the header of some loop. This breaks LI. 953 if (!DT->isReachableFromEntry(Pred)) 954 continue; 955 // If we need to preserve LCSSA, determine if any of the preds is a loop 956 // exit. 957 if (PreserveLCSSA) 958 if (Loop *PL = LI->getLoopFor(Pred)) 959 if (!PL->contains(OldBB)) 960 HasLoopExit = true; 961 962 // If we need to preserve LoopInfo, note whether any of the preds crosses 963 // an interesting loop boundary. 964 if (!L) 965 continue; 966 if (L->contains(Pred)) 967 IsLoopEntry = false; 968 else 969 SplitMakesNewLoopHeader = true; 970 } 971 972 // Unless we have a loop for OldBB, nothing else to do here. 973 if (!L) 974 return; 975 976 if (IsLoopEntry) { 977 // Add the new block to the nearest enclosing loop (and not an adjacent 978 // loop). To find this, examine each of the predecessors and determine which 979 // loops enclose them, and select the most-nested loop which contains the 980 // loop containing the block being split. 981 Loop *InnermostPredLoop = nullptr; 982 for (BasicBlock *Pred : Preds) { 983 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 984 // Seek a loop which actually contains the block being split (to avoid 985 // adjacent loops). 986 while (PredLoop && !PredLoop->contains(OldBB)) 987 PredLoop = PredLoop->getParentLoop(); 988 989 // Select the most-nested of these loops which contains the block. 990 if (PredLoop && PredLoop->contains(OldBB) && 991 (!InnermostPredLoop || 992 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 993 InnermostPredLoop = PredLoop; 994 } 995 } 996 997 if (InnermostPredLoop) 998 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 999 } else { 1000 L->addBasicBlockToLoop(NewBB, *LI); 1001 if (SplitMakesNewLoopHeader) 1002 L->moveToHeader(NewBB); 1003 } 1004 } 1005 1006 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 1007 /// This also updates AliasAnalysis, if available. 1008 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 1009 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 1010 bool HasLoopExit) { 1011 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 1012 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 1013 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 1014 PHINode *PN = cast<PHINode>(I++); 1015 1016 // Check to see if all of the values coming in are the same. If so, we 1017 // don't need to create a new PHI node, unless it's needed for LCSSA. 1018 Value *InVal = nullptr; 1019 if (!HasLoopExit) { 1020 InVal = PN->getIncomingValueForBlock(Preds[0]); 1021 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1022 if (!PredSet.count(PN->getIncomingBlock(i))) 1023 continue; 1024 if (!InVal) 1025 InVal = PN->getIncomingValue(i); 1026 else if (InVal != PN->getIncomingValue(i)) { 1027 InVal = nullptr; 1028 break; 1029 } 1030 } 1031 } 1032 1033 if (InVal) { 1034 // If all incoming values for the new PHI would be the same, just don't 1035 // make a new PHI. Instead, just remove the incoming values from the old 1036 // PHI. 1037 1038 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1039 // the cost of removal if we end up removing a large number of values, and 1040 // second off, this ensures that the indices for the incoming values 1041 // aren't invalidated when we remove one. 1042 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 1043 if (PredSet.count(PN->getIncomingBlock(i))) 1044 PN->removeIncomingValue(i, false); 1045 1046 // Add an incoming value to the PHI node in the loop for the preheader 1047 // edge. 1048 PN->addIncoming(InVal, NewBB); 1049 continue; 1050 } 1051 1052 // If the values coming into the block are not the same, we need a new 1053 // PHI. 1054 // Create the new PHI node, insert it into NewBB at the end of the block 1055 PHINode *NewPHI = 1056 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 1057 1058 // NOTE! This loop walks backwards for a reason! First off, this minimizes 1059 // the cost of removal if we end up removing a large number of values, and 1060 // second off, this ensures that the indices for the incoming values aren't 1061 // invalidated when we remove one. 1062 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 1063 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 1064 if (PredSet.count(IncomingBB)) { 1065 Value *V = PN->removeIncomingValue(i, false); 1066 NewPHI->addIncoming(V, IncomingBB); 1067 } 1068 } 1069 1070 PN->addIncoming(NewPHI, NewBB); 1071 } 1072 } 1073 1074 static void SplitLandingPadPredecessorsImpl( 1075 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1076 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1077 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1078 MemorySSAUpdater *MSSAU, bool PreserveLCSSA); 1079 1080 static BasicBlock * 1081 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds, 1082 const char *Suffix, DomTreeUpdater *DTU, 1083 DominatorTree *DT, LoopInfo *LI, 1084 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1085 // Do not attempt to split that which cannot be split. 1086 if (!BB->canSplitPredecessors()) 1087 return nullptr; 1088 1089 // For the landingpads we need to act a bit differently. 1090 // Delegate this work to the SplitLandingPadPredecessors. 1091 if (BB->isLandingPad()) { 1092 SmallVector<BasicBlock*, 2> NewBBs; 1093 std::string NewName = std::string(Suffix) + ".split-lp"; 1094 1095 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs, 1096 DTU, DT, LI, MSSAU, PreserveLCSSA); 1097 return NewBBs[0]; 1098 } 1099 1100 // Create new basic block, insert right before the original block. 1101 BasicBlock *NewBB = BasicBlock::Create( 1102 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 1103 1104 // The new block unconditionally branches to the old block. 1105 BranchInst *BI = BranchInst::Create(BB, NewBB); 1106 1107 Loop *L = nullptr; 1108 BasicBlock *OldLatch = nullptr; 1109 // Splitting the predecessors of a loop header creates a preheader block. 1110 if (LI && LI->isLoopHeader(BB)) { 1111 L = LI->getLoopFor(BB); 1112 // Using the loop start line number prevents debuggers stepping into the 1113 // loop body for this instruction. 1114 BI->setDebugLoc(L->getStartLoc()); 1115 1116 // If BB is the header of the Loop, it is possible that the loop is 1117 // modified, such that the current latch does not remain the latch of the 1118 // loop. If that is the case, the loop metadata from the current latch needs 1119 // to be applied to the new latch. 1120 OldLatch = L->getLoopLatch(); 1121 } else 1122 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 1123 1124 // Move the edges from Preds to point to NewBB instead of BB. 1125 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1126 // This is slightly more strict than necessary; the minimum requirement 1127 // is that there be no more than one indirectbr branching to BB. And 1128 // all BlockAddress uses would need to be updated. 1129 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1130 "Cannot split an edge from an IndirectBrInst"); 1131 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 1132 "Cannot split an edge from a CallBrInst"); 1133 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 1134 } 1135 1136 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 1137 // node becomes an incoming value for BB's phi node. However, if the Preds 1138 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 1139 // account for the newly created predecessor. 1140 if (Preds.empty()) { 1141 // Insert dummy values as the incoming value. 1142 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 1143 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 1144 } 1145 1146 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1147 bool HasLoopExit = false; 1148 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA, 1149 HasLoopExit); 1150 1151 if (!Preds.empty()) { 1152 // Update the PHI nodes in BB with the values coming from NewBB. 1153 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 1154 } 1155 1156 if (OldLatch) { 1157 BasicBlock *NewLatch = L->getLoopLatch(); 1158 if (NewLatch != OldLatch) { 1159 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 1160 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 1161 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 1162 } 1163 } 1164 1165 return NewBB; 1166 } 1167 1168 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1169 ArrayRef<BasicBlock *> Preds, 1170 const char *Suffix, DominatorTree *DT, 1171 LoopInfo *LI, MemorySSAUpdater *MSSAU, 1172 bool PreserveLCSSA) { 1173 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI, 1174 MSSAU, PreserveLCSSA); 1175 } 1176 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 1177 ArrayRef<BasicBlock *> Preds, 1178 const char *Suffix, 1179 DomTreeUpdater *DTU, LoopInfo *LI, 1180 MemorySSAUpdater *MSSAU, 1181 bool PreserveLCSSA) { 1182 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU, 1183 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA); 1184 } 1185 1186 static void SplitLandingPadPredecessorsImpl( 1187 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1, 1188 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs, 1189 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, 1190 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { 1191 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 1192 1193 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 1194 // it right before the original block. 1195 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 1196 OrigBB->getName() + Suffix1, 1197 OrigBB->getParent(), OrigBB); 1198 NewBBs.push_back(NewBB1); 1199 1200 // The new block unconditionally branches to the old block. 1201 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 1202 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1203 1204 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 1205 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 1206 // This is slightly more strict than necessary; the minimum requirement 1207 // is that there be no more than one indirectbr branching to BB. And 1208 // all BlockAddress uses would need to be updated. 1209 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 1210 "Cannot split an edge from an IndirectBrInst"); 1211 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 1212 } 1213 1214 bool HasLoopExit = false; 1215 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU, 1216 PreserveLCSSA, HasLoopExit); 1217 1218 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 1219 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 1220 1221 // Move the remaining edges from OrigBB to point to NewBB2. 1222 SmallVector<BasicBlock*, 8> NewBB2Preds; 1223 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 1224 i != e; ) { 1225 BasicBlock *Pred = *i++; 1226 if (Pred == NewBB1) continue; 1227 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 1228 "Cannot split an edge from an IndirectBrInst"); 1229 NewBB2Preds.push_back(Pred); 1230 e = pred_end(OrigBB); 1231 } 1232 1233 BasicBlock *NewBB2 = nullptr; 1234 if (!NewBB2Preds.empty()) { 1235 // Create another basic block for the rest of OrigBB's predecessors. 1236 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 1237 OrigBB->getName() + Suffix2, 1238 OrigBB->getParent(), OrigBB); 1239 NewBBs.push_back(NewBB2); 1240 1241 // The new block unconditionally branches to the old block. 1242 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 1243 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 1244 1245 // Move the remaining edges from OrigBB to point to NewBB2. 1246 for (BasicBlock *NewBB2Pred : NewBB2Preds) 1247 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 1248 1249 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 1250 HasLoopExit = false; 1251 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU, 1252 PreserveLCSSA, HasLoopExit); 1253 1254 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 1255 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 1256 } 1257 1258 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 1259 Instruction *Clone1 = LPad->clone(); 1260 Clone1->setName(Twine("lpad") + Suffix1); 1261 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 1262 1263 if (NewBB2) { 1264 Instruction *Clone2 = LPad->clone(); 1265 Clone2->setName(Twine("lpad") + Suffix2); 1266 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 1267 1268 // Create a PHI node for the two cloned landingpad instructions only 1269 // if the original landingpad instruction has some uses. 1270 if (!LPad->use_empty()) { 1271 assert(!LPad->getType()->isTokenTy() && 1272 "Split cannot be applied if LPad is token type. Otherwise an " 1273 "invalid PHINode of token type would be created."); 1274 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 1275 PN->addIncoming(Clone1, NewBB1); 1276 PN->addIncoming(Clone2, NewBB2); 1277 LPad->replaceAllUsesWith(PN); 1278 } 1279 LPad->eraseFromParent(); 1280 } else { 1281 // There is no second clone. Just replace the landing pad with the first 1282 // clone. 1283 LPad->replaceAllUsesWith(Clone1); 1284 LPad->eraseFromParent(); 1285 } 1286 } 1287 1288 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1289 ArrayRef<BasicBlock *> Preds, 1290 const char *Suffix1, const char *Suffix2, 1291 SmallVectorImpl<BasicBlock *> &NewBBs, 1292 DominatorTree *DT, LoopInfo *LI, 1293 MemorySSAUpdater *MSSAU, 1294 bool PreserveLCSSA) { 1295 return SplitLandingPadPredecessorsImpl( 1296 OrigBB, Preds, Suffix1, Suffix2, NewBBs, 1297 /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA); 1298 } 1299 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 1300 ArrayRef<BasicBlock *> Preds, 1301 const char *Suffix1, const char *Suffix2, 1302 SmallVectorImpl<BasicBlock *> &NewBBs, 1303 DomTreeUpdater *DTU, LoopInfo *LI, 1304 MemorySSAUpdater *MSSAU, 1305 bool PreserveLCSSA) { 1306 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2, 1307 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU, 1308 PreserveLCSSA); 1309 } 1310 1311 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 1312 BasicBlock *Pred, 1313 DomTreeUpdater *DTU) { 1314 Instruction *UncondBranch = Pred->getTerminator(); 1315 // Clone the return and add it to the end of the predecessor. 1316 Instruction *NewRet = RI->clone(); 1317 Pred->getInstList().push_back(NewRet); 1318 1319 // If the return instruction returns a value, and if the value was a 1320 // PHI node in "BB", propagate the right value into the return. 1321 for (Use &Op : NewRet->operands()) { 1322 Value *V = Op; 1323 Instruction *NewBC = nullptr; 1324 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 1325 // Return value might be bitcasted. Clone and insert it before the 1326 // return instruction. 1327 V = BCI->getOperand(0); 1328 NewBC = BCI->clone(); 1329 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 1330 Op = NewBC; 1331 } 1332 1333 Instruction *NewEV = nullptr; 1334 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 1335 V = EVI->getOperand(0); 1336 NewEV = EVI->clone(); 1337 if (NewBC) { 1338 NewBC->setOperand(0, NewEV); 1339 Pred->getInstList().insert(NewBC->getIterator(), NewEV); 1340 } else { 1341 Pred->getInstList().insert(NewRet->getIterator(), NewEV); 1342 Op = NewEV; 1343 } 1344 } 1345 1346 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1347 if (PN->getParent() == BB) { 1348 if (NewEV) { 1349 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1350 } else if (NewBC) 1351 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 1352 else 1353 Op = PN->getIncomingValueForBlock(Pred); 1354 } 1355 } 1356 } 1357 1358 // Update any PHI nodes in the returning block to realize that we no 1359 // longer branch to them. 1360 BB->removePredecessor(Pred); 1361 UncondBranch->eraseFromParent(); 1362 1363 if (DTU) 1364 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 1365 1366 return cast<ReturnInst>(NewRet); 1367 } 1368 1369 static Instruction * 1370 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore, 1371 bool Unreachable, MDNode *BranchWeights, 1372 DomTreeUpdater *DTU, DominatorTree *DT, 1373 LoopInfo *LI, BasicBlock *ThenBlock) { 1374 SmallVector<DominatorTree::UpdateType, 8> Updates; 1375 BasicBlock *Head = SplitBefore->getParent(); 1376 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1377 if (DTU) { 1378 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail), 1379 succ_end(Tail)); 1380 Updates.push_back({DominatorTree::Insert, Head, Tail}); 1381 Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size()); 1382 for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) { 1383 Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead}); 1384 Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead}); 1385 } 1386 } 1387 Instruction *HeadOldTerm = Head->getTerminator(); 1388 LLVMContext &C = Head->getContext(); 1389 Instruction *CheckTerm; 1390 bool CreateThenBlock = (ThenBlock == nullptr); 1391 if (CreateThenBlock) { 1392 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1393 if (Unreachable) 1394 CheckTerm = new UnreachableInst(C, ThenBlock); 1395 else { 1396 CheckTerm = BranchInst::Create(Tail, ThenBlock); 1397 if (DTU) 1398 Updates.push_back({DominatorTree::Insert, ThenBlock, Tail}); 1399 } 1400 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 1401 } else 1402 CheckTerm = ThenBlock->getTerminator(); 1403 BranchInst *HeadNewTerm = 1404 BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond); 1405 if (DTU) 1406 Updates.push_back({DominatorTree::Insert, Head, ThenBlock}); 1407 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1408 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1409 1410 if (DTU) 1411 DTU->applyUpdates(Updates); 1412 else if (DT) { 1413 if (DomTreeNode *OldNode = DT->getNode(Head)) { 1414 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1415 1416 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 1417 for (DomTreeNode *Child : Children) 1418 DT->changeImmediateDominator(Child, NewNode); 1419 1420 // Head dominates ThenBlock. 1421 if (CreateThenBlock) 1422 DT->addNewBlock(ThenBlock, Head); 1423 else 1424 DT->changeImmediateDominator(ThenBlock, Head); 1425 } 1426 } 1427 1428 if (LI) { 1429 if (Loop *L = LI->getLoopFor(Head)) { 1430 L->addBasicBlockToLoop(ThenBlock, *LI); 1431 L->addBasicBlockToLoop(Tail, *LI); 1432 } 1433 } 1434 1435 return CheckTerm; 1436 } 1437 1438 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1439 Instruction *SplitBefore, 1440 bool Unreachable, 1441 MDNode *BranchWeights, 1442 DominatorTree *DT, LoopInfo *LI, 1443 BasicBlock *ThenBlock) { 1444 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1445 BranchWeights, 1446 /*DTU=*/nullptr, DT, LI, ThenBlock); 1447 } 1448 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 1449 Instruction *SplitBefore, 1450 bool Unreachable, 1451 MDNode *BranchWeights, 1452 DomTreeUpdater *DTU, LoopInfo *LI, 1453 BasicBlock *ThenBlock) { 1454 return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable, 1455 BranchWeights, DTU, /*DT=*/nullptr, LI, 1456 ThenBlock); 1457 } 1458 1459 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1460 Instruction **ThenTerm, 1461 Instruction **ElseTerm, 1462 MDNode *BranchWeights) { 1463 BasicBlock *Head = SplitBefore->getParent(); 1464 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1465 Instruction *HeadOldTerm = Head->getTerminator(); 1466 LLVMContext &C = Head->getContext(); 1467 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1468 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1469 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 1470 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1471 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 1472 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1473 BranchInst *HeadNewTerm = 1474 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 1475 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1476 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1477 } 1478 1479 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1480 BasicBlock *&IfFalse) { 1481 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1482 BasicBlock *Pred1 = nullptr; 1483 BasicBlock *Pred2 = nullptr; 1484 1485 if (SomePHI) { 1486 if (SomePHI->getNumIncomingValues() != 2) 1487 return nullptr; 1488 Pred1 = SomePHI->getIncomingBlock(0); 1489 Pred2 = SomePHI->getIncomingBlock(1); 1490 } else { 1491 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1492 if (PI == PE) // No predecessor 1493 return nullptr; 1494 Pred1 = *PI++; 1495 if (PI == PE) // Only one predecessor 1496 return nullptr; 1497 Pred2 = *PI++; 1498 if (PI != PE) // More than two predecessors 1499 return nullptr; 1500 } 1501 1502 // We can only handle branches. Other control flow will be lowered to 1503 // branches if possible anyway. 1504 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1505 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1506 if (!Pred1Br || !Pred2Br) 1507 return nullptr; 1508 1509 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1510 // either are. 1511 if (Pred2Br->isConditional()) { 1512 // If both branches are conditional, we don't have an "if statement". In 1513 // reality, we could transform this case, but since the condition will be 1514 // required anyway, we stand no chance of eliminating it, so the xform is 1515 // probably not profitable. 1516 if (Pred1Br->isConditional()) 1517 return nullptr; 1518 1519 std::swap(Pred1, Pred2); 1520 std::swap(Pred1Br, Pred2Br); 1521 } 1522 1523 if (Pred1Br->isConditional()) { 1524 // The only thing we have to watch out for here is to make sure that Pred2 1525 // doesn't have incoming edges from other blocks. If it does, the condition 1526 // doesn't dominate BB. 1527 if (!Pred2->getSinglePredecessor()) 1528 return nullptr; 1529 1530 // If we found a conditional branch predecessor, make sure that it branches 1531 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1532 if (Pred1Br->getSuccessor(0) == BB && 1533 Pred1Br->getSuccessor(1) == Pred2) { 1534 IfTrue = Pred1; 1535 IfFalse = Pred2; 1536 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1537 Pred1Br->getSuccessor(1) == BB) { 1538 IfTrue = Pred2; 1539 IfFalse = Pred1; 1540 } else { 1541 // We know that one arm of the conditional goes to BB, so the other must 1542 // go somewhere unrelated, and this must not be an "if statement". 1543 return nullptr; 1544 } 1545 1546 return Pred1Br; 1547 } 1548 1549 // Ok, if we got here, both predecessors end with an unconditional branch to 1550 // BB. Don't panic! If both blocks only have a single (identical) 1551 // predecessor, and THAT is a conditional branch, then we're all ok! 1552 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1553 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1554 return nullptr; 1555 1556 // Otherwise, if this is a conditional branch, then we can use it! 1557 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1558 if (!BI) return nullptr; 1559 1560 assert(BI->isConditional() && "Two successors but not conditional?"); 1561 if (BI->getSuccessor(0) == Pred1) { 1562 IfTrue = Pred1; 1563 IfFalse = Pred2; 1564 } else { 1565 IfTrue = Pred2; 1566 IfFalse = Pred1; 1567 } 1568 return BI; 1569 } 1570 1571 // After creating a control flow hub, the operands of PHINodes in an outgoing 1572 // block Out no longer match the predecessors of that block. Predecessors of Out 1573 // that are incoming blocks to the hub are now replaced by just one edge from 1574 // the hub. To match this new control flow, the corresponding values from each 1575 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1576 // 1577 // This operation cannot be performed with SSAUpdater, because it involves one 1578 // new use: If the block Out is in the list of Incoming blocks, then the newly 1579 // created PHI in the Hub will use itself along that edge from Out to Hub. 1580 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1581 const SetVector<BasicBlock *> &Incoming, 1582 BasicBlock *FirstGuardBlock) { 1583 auto I = Out->begin(); 1584 while (I != Out->end() && isa<PHINode>(I)) { 1585 auto Phi = cast<PHINode>(I); 1586 auto NewPhi = 1587 PHINode::Create(Phi->getType(), Incoming.size(), 1588 Phi->getName() + ".moved", &FirstGuardBlock->back()); 1589 for (auto In : Incoming) { 1590 Value *V = UndefValue::get(Phi->getType()); 1591 if (In == Out) { 1592 V = NewPhi; 1593 } else if (Phi->getBasicBlockIndex(In) != -1) { 1594 V = Phi->removeIncomingValue(In, false); 1595 } 1596 NewPhi->addIncoming(V, In); 1597 } 1598 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1599 if (Phi->getNumOperands() == 0) { 1600 Phi->replaceAllUsesWith(NewPhi); 1601 I = Phi->eraseFromParent(); 1602 continue; 1603 } 1604 Phi->addIncoming(NewPhi, GuardBlock); 1605 ++I; 1606 } 1607 } 1608 1609 using BBPredicates = DenseMap<BasicBlock *, PHINode *>; 1610 using BBSetVector = SetVector<BasicBlock *>; 1611 1612 // Redirects the terminator of the incoming block to the first guard 1613 // block in the hub. The condition of the original terminator (if it 1614 // was conditional) and its original successors are returned as a 1615 // tuple <condition, succ0, succ1>. The function additionally filters 1616 // out successors that are not in the set of outgoing blocks. 1617 // 1618 // - condition is non-null iff the branch is conditional. 1619 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1620 // - Succ2 is non-null iff condition is non-null and the fallthrough 1621 // target is an outgoing block. 1622 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1623 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1624 const BBSetVector &Outgoing) { 1625 auto Branch = cast<BranchInst>(BB->getTerminator()); 1626 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1627 1628 BasicBlock *Succ0 = Branch->getSuccessor(0); 1629 BasicBlock *Succ1 = nullptr; 1630 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1631 1632 if (Branch->isUnconditional()) { 1633 Branch->setSuccessor(0, FirstGuardBlock); 1634 assert(Succ0); 1635 } else { 1636 Succ1 = Branch->getSuccessor(1); 1637 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1638 assert(Succ0 || Succ1); 1639 if (Succ0 && !Succ1) { 1640 Branch->setSuccessor(0, FirstGuardBlock); 1641 } else if (Succ1 && !Succ0) { 1642 Branch->setSuccessor(1, FirstGuardBlock); 1643 } else { 1644 Branch->eraseFromParent(); 1645 BranchInst::Create(FirstGuardBlock, BB); 1646 } 1647 } 1648 1649 assert(Succ0 || Succ1); 1650 return std::make_tuple(Condition, Succ0, Succ1); 1651 } 1652 1653 // Capture the existing control flow as guard predicates, and redirect 1654 // control flow from every incoming block to the first guard block in 1655 // the hub. 1656 // 1657 // There is one guard predicate for each outgoing block OutBB. The 1658 // predicate is a PHINode with one input for each InBB which 1659 // represents whether the hub should transfer control flow to OutBB if 1660 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub 1661 // evaluates them in the same order as the Outgoing set-vector, and 1662 // control branches to the first outgoing block whose predicate 1663 // evaluates to true. 1664 static void convertToGuardPredicates( 1665 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, 1666 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, 1667 const BBSetVector &Outgoing) { 1668 auto &Context = Incoming.front()->getContext(); 1669 auto BoolTrue = ConstantInt::getTrue(Context); 1670 auto BoolFalse = ConstantInt::getFalse(Context); 1671 1672 // The predicate for the last outgoing is trivially true, and so we 1673 // process only the first N-1 successors. 1674 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1675 auto Out = Outgoing[i]; 1676 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1677 auto Phi = 1678 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1679 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1680 GuardPredicates[Out] = Phi; 1681 } 1682 1683 for (auto In : Incoming) { 1684 Value *Condition; 1685 BasicBlock *Succ0; 1686 BasicBlock *Succ1; 1687 std::tie(Condition, Succ0, Succ1) = 1688 redirectToHub(In, FirstGuardBlock, Outgoing); 1689 1690 // Optimization: Consider an incoming block A with both successors 1691 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1692 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1693 // first in the loop below, control will branch to Succ0 using the 1694 // corresponding predicate. But if that branch is not taken, then 1695 // control must reach Succ1, which means that the predicate for 1696 // Succ1 is always true. 1697 bool OneSuccessorDone = false; 1698 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1699 auto Out = Outgoing[i]; 1700 auto Phi = GuardPredicates[Out]; 1701 if (Out != Succ0 && Out != Succ1) { 1702 Phi->addIncoming(BoolFalse, In); 1703 continue; 1704 } 1705 // Optimization: When only one successor is an outgoing block, 1706 // the predicate is always true. 1707 if (!Succ0 || !Succ1 || OneSuccessorDone) { 1708 Phi->addIncoming(BoolTrue, In); 1709 continue; 1710 } 1711 assert(Succ0 && Succ1); 1712 OneSuccessorDone = true; 1713 if (Out == Succ0) { 1714 Phi->addIncoming(Condition, In); 1715 continue; 1716 } 1717 auto Inverted = invertCondition(Condition); 1718 DeletionCandidates.push_back(Condition); 1719 Phi->addIncoming(Inverted, In); 1720 } 1721 } 1722 } 1723 1724 // For each outgoing block OutBB, create a guard block in the Hub. The 1725 // first guard block was already created outside, and available as the 1726 // first element in the vector of guard blocks. 1727 // 1728 // Each guard block terminates in a conditional branch that transfers 1729 // control to the corresponding outgoing block or the next guard 1730 // block. The last guard block has two outgoing blocks as successors 1731 // since the condition for the final outgoing block is trivially 1732 // true. So we create one less block (including the first guard block) 1733 // than the number of outgoing blocks. 1734 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1735 Function *F, const BBSetVector &Outgoing, 1736 BBPredicates &GuardPredicates, StringRef Prefix) { 1737 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { 1738 GuardBlocks.push_back( 1739 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1740 } 1741 assert(GuardBlocks.size() == GuardPredicates.size()); 1742 1743 // To help keep the loop simple, temporarily append the last 1744 // outgoing block to the list of guard blocks. 1745 GuardBlocks.push_back(Outgoing.back()); 1746 1747 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1748 auto Out = Outgoing[i]; 1749 assert(GuardPredicates.count(Out)); 1750 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1751 GuardBlocks[i]); 1752 } 1753 1754 // Remove the last block from the guard list. 1755 GuardBlocks.pop_back(); 1756 } 1757 1758 BasicBlock *llvm::CreateControlFlowHub( 1759 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 1760 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1761 const StringRef Prefix) { 1762 auto F = Incoming.front()->getParent(); 1763 auto FirstGuardBlock = 1764 BasicBlock::Create(F->getContext(), Prefix + ".guard", F); 1765 1766 SmallVector<DominatorTree::UpdateType, 16> Updates; 1767 if (DTU) { 1768 for (auto In : Incoming) { 1769 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 1770 for (auto Succ : successors(In)) { 1771 if (Outgoing.count(Succ)) 1772 Updates.push_back({DominatorTree::Delete, In, Succ}); 1773 } 1774 } 1775 } 1776 1777 BBPredicates GuardPredicates; 1778 SmallVector<WeakVH, 8> DeletionCandidates; 1779 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, 1780 Incoming, Outgoing); 1781 1782 GuardBlocks.push_back(FirstGuardBlock); 1783 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); 1784 1785 // Update the PHINodes in each outgoing block to match the new control flow. 1786 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { 1787 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 1788 } 1789 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 1790 1791 if (DTU) { 1792 int NumGuards = GuardBlocks.size(); 1793 assert((int)Outgoing.size() == NumGuards + 1); 1794 for (int i = 0; i != NumGuards - 1; ++i) { 1795 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 1796 Updates.push_back( 1797 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 1798 } 1799 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1800 Outgoing[NumGuards - 1]}); 1801 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1802 Outgoing[NumGuards]}); 1803 DTU->applyUpdates(Updates); 1804 } 1805 1806 for (auto I : DeletionCandidates) { 1807 if (I->use_empty()) 1808 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 1809 Inst->eraseFromParent(); 1810 } 1811 1812 return FirstGuardBlock; 1813 } 1814