1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/PseudoProbe.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <string>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "basicblock-utils"
54 
55 void llvm::DetatchDeadBlocks(
56     ArrayRef<BasicBlock *> BBs,
57     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
58     bool KeepOneInputPHIs) {
59   for (auto *BB : BBs) {
60     // Loop through all of our successors and make sure they know that one
61     // of their predecessors is going away.
62     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
63     for (BasicBlock *Succ : successors(BB)) {
64       Succ->removePredecessor(BB, KeepOneInputPHIs);
65       if (Updates && UniqueSuccessors.insert(Succ).second)
66         Updates->push_back({DominatorTree::Delete, BB, Succ});
67     }
68 
69     // Zap all the instructions in the block.
70     while (!BB->empty()) {
71       Instruction &I = BB->back();
72       // If this instruction is used, replace uses with an arbitrary value.
73       // Because control flow can't get here, we don't care what we replace the
74       // value with.  Note that since this block is unreachable, and all values
75       // contained within it must dominate their uses, that all uses will
76       // eventually be removed (they are themselves dead).
77       if (!I.use_empty())
78         I.replaceAllUsesWith(UndefValue::get(I.getType()));
79       BB->getInstList().pop_back();
80     }
81     new UnreachableInst(BB->getContext(), BB);
82     assert(BB->getInstList().size() == 1 &&
83            isa<UnreachableInst>(BB->getTerminator()) &&
84            "The successor list of BB isn't empty before "
85            "applying corresponding DTU updates.");
86   }
87 }
88 
89 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
90                            bool KeepOneInputPHIs) {
91   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
92 }
93 
94 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
95                             bool KeepOneInputPHIs) {
96 #ifndef NDEBUG
97   // Make sure that all predecessors of each dead block is also dead.
98   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
99   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
100   for (auto *BB : Dead)
101     for (BasicBlock *Pred : predecessors(BB))
102       assert(Dead.count(Pred) && "All predecessors must be dead!");
103 #endif
104 
105   SmallVector<DominatorTree::UpdateType, 4> Updates;
106   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
107 
108   if (DTU)
109     DTU->applyUpdates(Updates);
110 
111   for (BasicBlock *BB : BBs)
112     if (DTU)
113       DTU->deleteBB(BB);
114     else
115       BB->eraseFromParent();
116 }
117 
118 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
119                                       bool KeepOneInputPHIs) {
120   df_iterator_default_set<BasicBlock*> Reachable;
121 
122   // Mark all reachable blocks.
123   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
124     (void)BB/* Mark all reachable blocks */;
125 
126   // Collect all dead blocks.
127   std::vector<BasicBlock*> DeadBlocks;
128   for (BasicBlock &BB : F)
129     if (!Reachable.count(&BB))
130       DeadBlocks.push_back(&BB);
131 
132   // Delete the dead blocks.
133   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
134 
135   return !DeadBlocks.empty();
136 }
137 
138 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
139                                    MemoryDependenceResults *MemDep) {
140   if (!isa<PHINode>(BB->begin()))
141     return false;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154   return true;
155 }
156 
157 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
158                           MemorySSAUpdater *MSSAU) {
159   // Recursively deleting a PHI may cause multiple PHIs to be deleted
160   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
161   SmallVector<WeakTrackingVH, 8> PHIs;
162   for (PHINode &PN : BB->phis())
163     PHIs.push_back(&PN);
164 
165   bool Changed = false;
166   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
167     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
168       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
169 
170   return Changed;
171 }
172 
173 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
174                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
175                                      MemoryDependenceResults *MemDep,
176                                      bool PredecessorWithTwoSuccessors) {
177   if (BB->hasAddressTaken())
178     return false;
179 
180   // Can't merge if there are multiple predecessors, or no predecessors.
181   BasicBlock *PredBB = BB->getUniquePredecessor();
182   if (!PredBB) return false;
183 
184   // Don't break self-loops.
185   if (PredBB == BB) return false;
186   // Don't break unwinding instructions.
187   if (PredBB->getTerminator()->isExceptionalTerminator())
188     return false;
189 
190   // Can't merge if there are multiple distinct successors.
191   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
192     return false;
193 
194   // Currently only allow PredBB to have two predecessors, one being BB.
195   // Update BI to branch to BB's only successor instead of BB.
196   BranchInst *PredBB_BI;
197   BasicBlock *NewSucc = nullptr;
198   unsigned FallThruPath;
199   if (PredecessorWithTwoSuccessors) {
200     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
201       return false;
202     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
203     if (!BB_JmpI || !BB_JmpI->isUnconditional())
204       return false;
205     NewSucc = BB_JmpI->getSuccessor(0);
206     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
207   }
208 
209   // Can't merge if there is PHI loop.
210   for (PHINode &PN : BB->phis())
211     if (llvm::is_contained(PN.incoming_values(), &PN))
212       return false;
213 
214   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215                     << PredBB->getName() << "\n");
216 
217   // Begin by getting rid of unneeded PHIs.
218   SmallVector<AssertingVH<Value>, 4> IncomingValues;
219   if (isa<PHINode>(BB->front())) {
220     for (PHINode &PN : BB->phis())
221       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223         IncomingValues.push_back(PN.getIncomingValue(0));
224     FoldSingleEntryPHINodes(BB, MemDep);
225   }
226 
227   // DTU update: Collect all the edges that exit BB.
228   // These dominator edges will be redirected from Pred.
229   std::vector<DominatorTree::UpdateType> Updates;
230   if (DTU) {
231     SmallSetVector<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB),
232                                                      succ_end(BB));
233     Updates.reserve(1 + (2 * UniqueSuccessors.size()));
234     // Add insert edges first. Experimentally, for the particular case of two
235     // blocks that can be merged, with a single successor and single predecessor
236     // respectively, it is beneficial to have all insert updates first. Deleting
237     // edges first may lead to unreachable blocks, followed by inserting edges
238     // making the blocks reachable again. Such DT updates lead to high compile
239     // times. We add inserts before deletes here to reduce compile time.
240     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
241       // This successor of BB may already have PredBB as a predecessor.
242       if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
243         Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
244     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
245       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
246     Updates.push_back({DominatorTree::Delete, PredBB, BB});
247   }
248 
249   Instruction *PTI = PredBB->getTerminator();
250   Instruction *STI = BB->getTerminator();
251   Instruction *Start = &*BB->begin();
252   // If there's nothing to move, mark the starting instruction as the last
253   // instruction in the block. Terminator instruction is handled separately.
254   if (Start == STI)
255     Start = PTI;
256 
257   // Move all definitions in the successor to the predecessor...
258   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
259                                BB->begin(), STI->getIterator());
260 
261   if (MSSAU)
262     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
263 
264   // Make all PHI nodes that referred to BB now refer to Pred as their
265   // source...
266   BB->replaceAllUsesWith(PredBB);
267 
268   if (PredecessorWithTwoSuccessors) {
269     // Delete the unconditional branch from BB.
270     BB->getInstList().pop_back();
271 
272     // Update branch in the predecessor.
273     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
274   } else {
275     // Delete the unconditional branch from the predecessor.
276     PredBB->getInstList().pop_back();
277 
278     // Move terminator instruction.
279     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
280 
281     // Terminator may be a memory accessing instruction too.
282     if (MSSAU)
283       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
284               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
285         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
286   }
287   // Add unreachable to now empty BB.
288   new UnreachableInst(BB->getContext(), BB);
289 
290   // Inherit predecessors name if it exists.
291   if (!PredBB->hasName())
292     PredBB->takeName(BB);
293 
294   if (LI)
295     LI->removeBlock(BB);
296 
297   if (MemDep)
298     MemDep->invalidateCachedPredecessors();
299 
300   // Finally, erase the old block and update dominator info.
301   if (DTU) {
302     assert(BB->getInstList().size() == 1 &&
303            isa<UnreachableInst>(BB->getTerminator()) &&
304            "The successor list of BB isn't empty before "
305            "applying corresponding DTU updates.");
306     DTU->applyUpdates(Updates);
307     DTU->deleteBB(BB);
308   } else {
309     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
310   }
311 
312   return true;
313 }
314 
315 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
316     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
317     LoopInfo *LI) {
318   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
319 
320   bool BlocksHaveBeenMerged = false;
321   while (!MergeBlocks.empty()) {
322     BasicBlock *BB = *MergeBlocks.begin();
323     BasicBlock *Dest = BB->getSingleSuccessor();
324     if (Dest && (!L || L->contains(Dest))) {
325       BasicBlock *Fold = Dest->getUniquePredecessor();
326       (void)Fold;
327       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
328         assert(Fold == BB &&
329                "Expecting BB to be unique predecessor of the Dest block");
330         MergeBlocks.erase(Dest);
331         BlocksHaveBeenMerged = true;
332       } else
333         MergeBlocks.erase(BB);
334     } else
335       MergeBlocks.erase(BB);
336   }
337   return BlocksHaveBeenMerged;
338 }
339 
340 /// Remove redundant instructions within sequences of consecutive dbg.value
341 /// instructions. This is done using a backward scan to keep the last dbg.value
342 /// describing a specific variable/fragment.
343 ///
344 /// BackwardScan strategy:
345 /// ----------------------
346 /// Given a sequence of consecutive DbgValueInst like this
347 ///
348 ///   dbg.value ..., "x", FragmentX1  (*)
349 ///   dbg.value ..., "y", FragmentY1
350 ///   dbg.value ..., "x", FragmentX2
351 ///   dbg.value ..., "x", FragmentX1  (**)
352 ///
353 /// then the instruction marked with (*) can be removed (it is guaranteed to be
354 /// obsoleted by the instruction marked with (**) as the latter instruction is
355 /// describing the same variable using the same fragment info).
356 ///
357 /// Possible improvements:
358 /// - Check fully overlapping fragments and not only identical fragments.
359 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
360 ///   instructions being part of the sequence of consecutive instructions.
361 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
362   SmallVector<DbgValueInst *, 8> ToBeRemoved;
363   SmallDenseSet<DebugVariable> VariableSet;
364   for (auto &I : reverse(*BB)) {
365     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
366       DebugVariable Key(DVI->getVariable(),
367                         DVI->getExpression(),
368                         DVI->getDebugLoc()->getInlinedAt());
369       auto R = VariableSet.insert(Key);
370       // If the same variable fragment is described more than once it is enough
371       // to keep the last one (i.e. the first found since we for reverse
372       // iteration).
373       if (!R.second)
374         ToBeRemoved.push_back(DVI);
375       continue;
376     }
377     // Sequence with consecutive dbg.value instrs ended. Clear the map to
378     // restart identifying redundant instructions if case we find another
379     // dbg.value sequence.
380     VariableSet.clear();
381   }
382 
383   for (auto &Instr : ToBeRemoved)
384     Instr->eraseFromParent();
385 
386   return !ToBeRemoved.empty();
387 }
388 
389 /// Remove redundant dbg.value instructions using a forward scan. This can
390 /// remove a dbg.value instruction that is redundant due to indicating that a
391 /// variable has the same value as already being indicated by an earlier
392 /// dbg.value.
393 ///
394 /// ForwardScan strategy:
395 /// ---------------------
396 /// Given two identical dbg.value instructions, separated by a block of
397 /// instructions that isn't describing the same variable, like this
398 ///
399 ///   dbg.value X1, "x", FragmentX1  (**)
400 ///   <block of instructions, none being "dbg.value ..., "x", ...">
401 ///   dbg.value X1, "x", FragmentX1  (*)
402 ///
403 /// then the instruction marked with (*) can be removed. Variable "x" is already
404 /// described as being mapped to the SSA value X1.
405 ///
406 /// Possible improvements:
407 /// - Keep track of non-overlapping fragments.
408 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
409   SmallVector<DbgValueInst *, 8> ToBeRemoved;
410   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
411       VariableMap;
412   for (auto &I : *BB) {
413     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
414       DebugVariable Key(DVI->getVariable(),
415                         NoneType(),
416                         DVI->getDebugLoc()->getInlinedAt());
417       auto VMI = VariableMap.find(Key);
418       // Update the map if we found a new value/expression describing the
419       // variable, or if the variable wasn't mapped already.
420       SmallVector<Value *, 4> Values(DVI->getValues());
421       if (VMI == VariableMap.end() || VMI->second.first != Values ||
422           VMI->second.second != DVI->getExpression()) {
423         VariableMap[Key] = {Values, DVI->getExpression()};
424         continue;
425       }
426       // Found an identical mapping. Remember the instruction for later removal.
427       ToBeRemoved.push_back(DVI);
428     }
429   }
430 
431   for (auto &Instr : ToBeRemoved)
432     Instr->eraseFromParent();
433 
434   return !ToBeRemoved.empty();
435 }
436 
437 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB, bool RemovePseudoOp) {
438   bool MadeChanges = false;
439   // By using the "backward scan" strategy before the "forward scan" strategy we
440   // can remove both dbg.value (2) and (3) in a situation like this:
441   //
442   //   (1) dbg.value V1, "x", DIExpression()
443   //       ...
444   //   (2) dbg.value V2, "x", DIExpression()
445   //   (3) dbg.value V1, "x", DIExpression()
446   //
447   // The backward scan will remove (2), it is made obsolete by (3). After
448   // getting (2) out of the way, the foward scan will remove (3) since "x"
449   // already is described as having the value V1 at (1).
450   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
451   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
452   if (RemovePseudoOp)
453     MadeChanges |= removeRedundantPseudoProbes(BB);
454 
455   if (MadeChanges)
456     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
457                       << BB->getName() << "\n");
458   return MadeChanges;
459 }
460 
461 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
462                                 BasicBlock::iterator &BI, Value *V) {
463   Instruction &I = *BI;
464   // Replaces all of the uses of the instruction with uses of the value
465   I.replaceAllUsesWith(V);
466 
467   // Make sure to propagate a name if there is one already.
468   if (I.hasName() && !V->hasName())
469     V->takeName(&I);
470 
471   // Delete the unnecessary instruction now...
472   BI = BIL.erase(BI);
473 }
474 
475 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
476                                BasicBlock::iterator &BI, Instruction *I) {
477   assert(I->getParent() == nullptr &&
478          "ReplaceInstWithInst: Instruction already inserted into basic block!");
479 
480   // Copy debug location to newly added instruction, if it wasn't already set
481   // by the caller.
482   if (!I->getDebugLoc())
483     I->setDebugLoc(BI->getDebugLoc());
484 
485   // Insert the new instruction into the basic block...
486   BasicBlock::iterator New = BIL.insert(BI, I);
487 
488   // Replace all uses of the old instruction, and delete it.
489   ReplaceInstWithValue(BIL, BI, I);
490 
491   // Move BI back to point to the newly inserted instruction
492   BI = New;
493 }
494 
495 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
496   BasicBlock::iterator BI(From);
497   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
498 }
499 
500 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
501                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
502                             const Twine &BBName) {
503   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
504 
505   // If this is a critical edge, let SplitCriticalEdge do it.
506   Instruction *LatchTerm = BB->getTerminator();
507   if (SplitCriticalEdge(
508           LatchTerm, SuccNum,
509           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
510           BBName))
511     return LatchTerm->getSuccessor(SuccNum);
512 
513   // If the edge isn't critical, then BB has a single successor or Succ has a
514   // single pred.  Split the block.
515   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
516     // If the successor only has a single pred, split the top of the successor
517     // block.
518     assert(SP == BB && "CFG broken");
519     SP = nullptr;
520     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
521                       /*Before=*/true);
522   }
523 
524   // Otherwise, if BB has a single successor, split it at the bottom of the
525   // block.
526   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
527          "Should have a single succ!");
528   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
529 }
530 
531 unsigned
532 llvm::SplitAllCriticalEdges(Function &F,
533                             const CriticalEdgeSplittingOptions &Options) {
534   unsigned NumBroken = 0;
535   for (BasicBlock &BB : F) {
536     Instruction *TI = BB.getTerminator();
537     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
538         !isa<CallBrInst>(TI))
539       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
540         if (SplitCriticalEdge(TI, i, Options))
541           ++NumBroken;
542   }
543   return NumBroken;
544 }
545 
546 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
547                                   DomTreeUpdater *DTU, DominatorTree *DT,
548                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
549                                   const Twine &BBName, bool Before) {
550   if (Before) {
551     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
552     return splitBlockBefore(Old, SplitPt,
553                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
554                             BBName);
555   }
556   BasicBlock::iterator SplitIt = SplitPt->getIterator();
557   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
558     ++SplitIt;
559   std::string Name = BBName.str();
560   BasicBlock *New = Old->splitBasicBlock(
561       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
562 
563   // The new block lives in whichever loop the old one did. This preserves
564   // LCSSA as well, because we force the split point to be after any PHI nodes.
565   if (LI)
566     if (Loop *L = LI->getLoopFor(Old))
567       L->addBasicBlockToLoop(New, *LI);
568 
569   if (DTU) {
570     SmallVector<DominatorTree::UpdateType, 8> Updates;
571     // Old dominates New. New node dominates all other nodes dominated by Old.
572     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
573                                                           succ_end(New));
574     Updates.push_back({DominatorTree::Insert, Old, New});
575     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
576     for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
577       Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
578       Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
579     }
580 
581     DTU->applyUpdates(Updates);
582   } else if (DT)
583     // Old dominates New. New node dominates all other nodes dominated by Old.
584     if (DomTreeNode *OldNode = DT->getNode(Old)) {
585       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
586 
587       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
588       for (DomTreeNode *I : Children)
589         DT->changeImmediateDominator(I, NewNode);
590     }
591 
592   // Move MemoryAccesses still tracked in Old, but part of New now.
593   // Update accesses in successor blocks accordingly.
594   if (MSSAU)
595     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
596 
597   return New;
598 }
599 
600 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
601                              DominatorTree *DT, LoopInfo *LI,
602                              MemorySSAUpdater *MSSAU, const Twine &BBName,
603                              bool Before) {
604   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
605                         Before);
606 }
607 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
608                              DomTreeUpdater *DTU, LoopInfo *LI,
609                              MemorySSAUpdater *MSSAU, const Twine &BBName,
610                              bool Before) {
611   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
612                         Before);
613 }
614 
615 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
616                                    DomTreeUpdater *DTU, LoopInfo *LI,
617                                    MemorySSAUpdater *MSSAU,
618                                    const Twine &BBName) {
619 
620   BasicBlock::iterator SplitIt = SplitPt->getIterator();
621   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
622     ++SplitIt;
623   std::string Name = BBName.str();
624   BasicBlock *New = Old->splitBasicBlock(
625       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
626       /* Before=*/true);
627 
628   // The new block lives in whichever loop the old one did. This preserves
629   // LCSSA as well, because we force the split point to be after any PHI nodes.
630   if (LI)
631     if (Loop *L = LI->getLoopFor(Old))
632       L->addBasicBlockToLoop(New, *LI);
633 
634   if (DTU) {
635     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
636     // New dominates Old. The predecessor nodes of the Old node dominate
637     // New node.
638     SmallSetVector<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
639                                                             pred_end(New));
640     DTUpdates.push_back({DominatorTree::Insert, New, Old});
641     DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
642     for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
643       DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
644       DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
645     }
646 
647     DTU->applyUpdates(DTUpdates);
648 
649     // Move MemoryAccesses still tracked in Old, but part of New now.
650     // Update accesses in successor blocks accordingly.
651     if (MSSAU) {
652       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
653       if (VerifyMemorySSA)
654         MSSAU->getMemorySSA()->verifyMemorySSA();
655     }
656   }
657   return New;
658 }
659 
660 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
661 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
662                                       ArrayRef<BasicBlock *> Preds,
663                                       DomTreeUpdater *DTU, DominatorTree *DT,
664                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
665                                       bool PreserveLCSSA, bool &HasLoopExit) {
666   // Update dominator tree if available.
667   if (DTU) {
668     // Recalculation of DomTree is needed when updating a forward DomTree and
669     // the Entry BB is replaced.
670     if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
671       // The entry block was removed and there is no external interface for
672       // the dominator tree to be notified of this change. In this corner-case
673       // we recalculate the entire tree.
674       DTU->recalculate(*NewBB->getParent());
675     } else {
676       // Split block expects NewBB to have a non-empty set of predecessors.
677       SmallVector<DominatorTree::UpdateType, 8> Updates;
678       SmallSetVector<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
679       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
680       Updates.reserve(Updates.size() + 2 * UniquePreds.size());
681       for (auto *UniquePred : UniquePreds) {
682         Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
683         Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
684       }
685       DTU->applyUpdates(Updates);
686     }
687   } else if (DT) {
688     if (OldBB == DT->getRootNode()->getBlock()) {
689       assert(NewBB == &NewBB->getParent()->getEntryBlock());
690       DT->setNewRoot(NewBB);
691     } else {
692       // Split block expects NewBB to have a non-empty set of predecessors.
693       DT->splitBlock(NewBB);
694     }
695   }
696 
697   // Update MemoryPhis after split if MemorySSA is available
698   if (MSSAU)
699     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
700 
701   // The rest of the logic is only relevant for updating the loop structures.
702   if (!LI)
703     return;
704 
705   if (DTU && DTU->hasDomTree())
706     DT = &DTU->getDomTree();
707   assert(DT && "DT should be available to update LoopInfo!");
708   Loop *L = LI->getLoopFor(OldBB);
709 
710   // If we need to preserve loop analyses, collect some information about how
711   // this split will affect loops.
712   bool IsLoopEntry = !!L;
713   bool SplitMakesNewLoopHeader = false;
714   for (BasicBlock *Pred : Preds) {
715     // Preds that are not reachable from entry should not be used to identify if
716     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
717     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
718     // as true and make the NewBB the header of some loop. This breaks LI.
719     if (!DT->isReachableFromEntry(Pred))
720       continue;
721     // If we need to preserve LCSSA, determine if any of the preds is a loop
722     // exit.
723     if (PreserveLCSSA)
724       if (Loop *PL = LI->getLoopFor(Pred))
725         if (!PL->contains(OldBB))
726           HasLoopExit = true;
727 
728     // If we need to preserve LoopInfo, note whether any of the preds crosses
729     // an interesting loop boundary.
730     if (!L)
731       continue;
732     if (L->contains(Pred))
733       IsLoopEntry = false;
734     else
735       SplitMakesNewLoopHeader = true;
736   }
737 
738   // Unless we have a loop for OldBB, nothing else to do here.
739   if (!L)
740     return;
741 
742   if (IsLoopEntry) {
743     // Add the new block to the nearest enclosing loop (and not an adjacent
744     // loop). To find this, examine each of the predecessors and determine which
745     // loops enclose them, and select the most-nested loop which contains the
746     // loop containing the block being split.
747     Loop *InnermostPredLoop = nullptr;
748     for (BasicBlock *Pred : Preds) {
749       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
750         // Seek a loop which actually contains the block being split (to avoid
751         // adjacent loops).
752         while (PredLoop && !PredLoop->contains(OldBB))
753           PredLoop = PredLoop->getParentLoop();
754 
755         // Select the most-nested of these loops which contains the block.
756         if (PredLoop && PredLoop->contains(OldBB) &&
757             (!InnermostPredLoop ||
758              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
759           InnermostPredLoop = PredLoop;
760       }
761     }
762 
763     if (InnermostPredLoop)
764       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
765   } else {
766     L->addBasicBlockToLoop(NewBB, *LI);
767     if (SplitMakesNewLoopHeader)
768       L->moveToHeader(NewBB);
769   }
770 }
771 
772 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
773 /// This also updates AliasAnalysis, if available.
774 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
775                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
776                            bool HasLoopExit) {
777   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
778   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
779   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
780     PHINode *PN = cast<PHINode>(I++);
781 
782     // Check to see if all of the values coming in are the same.  If so, we
783     // don't need to create a new PHI node, unless it's needed for LCSSA.
784     Value *InVal = nullptr;
785     if (!HasLoopExit) {
786       InVal = PN->getIncomingValueForBlock(Preds[0]);
787       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
788         if (!PredSet.count(PN->getIncomingBlock(i)))
789           continue;
790         if (!InVal)
791           InVal = PN->getIncomingValue(i);
792         else if (InVal != PN->getIncomingValue(i)) {
793           InVal = nullptr;
794           break;
795         }
796       }
797     }
798 
799     if (InVal) {
800       // If all incoming values for the new PHI would be the same, just don't
801       // make a new PHI.  Instead, just remove the incoming values from the old
802       // PHI.
803 
804       // NOTE! This loop walks backwards for a reason! First off, this minimizes
805       // the cost of removal if we end up removing a large number of values, and
806       // second off, this ensures that the indices for the incoming values
807       // aren't invalidated when we remove one.
808       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
809         if (PredSet.count(PN->getIncomingBlock(i)))
810           PN->removeIncomingValue(i, false);
811 
812       // Add an incoming value to the PHI node in the loop for the preheader
813       // edge.
814       PN->addIncoming(InVal, NewBB);
815       continue;
816     }
817 
818     // If the values coming into the block are not the same, we need a new
819     // PHI.
820     // Create the new PHI node, insert it into NewBB at the end of the block
821     PHINode *NewPHI =
822         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
823 
824     // NOTE! This loop walks backwards for a reason! First off, this minimizes
825     // the cost of removal if we end up removing a large number of values, and
826     // second off, this ensures that the indices for the incoming values aren't
827     // invalidated when we remove one.
828     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
829       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
830       if (PredSet.count(IncomingBB)) {
831         Value *V = PN->removeIncomingValue(i, false);
832         NewPHI->addIncoming(V, IncomingBB);
833       }
834     }
835 
836     PN->addIncoming(NewPHI, NewBB);
837   }
838 }
839 
840 static void SplitLandingPadPredecessorsImpl(
841     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
842     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
843     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
844     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
845 
846 static BasicBlock *
847 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
848                            const char *Suffix, DomTreeUpdater *DTU,
849                            DominatorTree *DT, LoopInfo *LI,
850                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
851   // Do not attempt to split that which cannot be split.
852   if (!BB->canSplitPredecessors())
853     return nullptr;
854 
855   // For the landingpads we need to act a bit differently.
856   // Delegate this work to the SplitLandingPadPredecessors.
857   if (BB->isLandingPad()) {
858     SmallVector<BasicBlock*, 2> NewBBs;
859     std::string NewName = std::string(Suffix) + ".split-lp";
860 
861     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
862                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
863     return NewBBs[0];
864   }
865 
866   // Create new basic block, insert right before the original block.
867   BasicBlock *NewBB = BasicBlock::Create(
868       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
869 
870   // The new block unconditionally branches to the old block.
871   BranchInst *BI = BranchInst::Create(BB, NewBB);
872 
873   Loop *L = nullptr;
874   BasicBlock *OldLatch = nullptr;
875   // Splitting the predecessors of a loop header creates a preheader block.
876   if (LI && LI->isLoopHeader(BB)) {
877     L = LI->getLoopFor(BB);
878     // Using the loop start line number prevents debuggers stepping into the
879     // loop body for this instruction.
880     BI->setDebugLoc(L->getStartLoc());
881 
882     // If BB is the header of the Loop, it is possible that the loop is
883     // modified, such that the current latch does not remain the latch of the
884     // loop. If that is the case, the loop metadata from the current latch needs
885     // to be applied to the new latch.
886     OldLatch = L->getLoopLatch();
887   } else
888     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
889 
890   // Move the edges from Preds to point to NewBB instead of BB.
891   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
892     // This is slightly more strict than necessary; the minimum requirement
893     // is that there be no more than one indirectbr branching to BB. And
894     // all BlockAddress uses would need to be updated.
895     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
896            "Cannot split an edge from an IndirectBrInst");
897     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
898            "Cannot split an edge from a CallBrInst");
899     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
900   }
901 
902   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
903   // node becomes an incoming value for BB's phi node.  However, if the Preds
904   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
905   // account for the newly created predecessor.
906   if (Preds.empty()) {
907     // Insert dummy values as the incoming value.
908     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
909       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
910   }
911 
912   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
913   bool HasLoopExit = false;
914   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
915                             HasLoopExit);
916 
917   if (!Preds.empty()) {
918     // Update the PHI nodes in BB with the values coming from NewBB.
919     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
920   }
921 
922   if (OldLatch) {
923     BasicBlock *NewLatch = L->getLoopLatch();
924     if (NewLatch != OldLatch) {
925       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
926       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
927       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
928     }
929   }
930 
931   return NewBB;
932 }
933 
934 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
935                                          ArrayRef<BasicBlock *> Preds,
936                                          const char *Suffix, DominatorTree *DT,
937                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
938                                          bool PreserveLCSSA) {
939   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
940                                     MSSAU, PreserveLCSSA);
941 }
942 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
943                                          ArrayRef<BasicBlock *> Preds,
944                                          const char *Suffix,
945                                          DomTreeUpdater *DTU, LoopInfo *LI,
946                                          MemorySSAUpdater *MSSAU,
947                                          bool PreserveLCSSA) {
948   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
949                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
950 }
951 
952 static void SplitLandingPadPredecessorsImpl(
953     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
954     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
955     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
956     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
957   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
958 
959   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
960   // it right before the original block.
961   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
962                                           OrigBB->getName() + Suffix1,
963                                           OrigBB->getParent(), OrigBB);
964   NewBBs.push_back(NewBB1);
965 
966   // The new block unconditionally branches to the old block.
967   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
968   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
969 
970   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
971   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
972     // This is slightly more strict than necessary; the minimum requirement
973     // is that there be no more than one indirectbr branching to BB. And
974     // all BlockAddress uses would need to be updated.
975     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
976            "Cannot split an edge from an IndirectBrInst");
977     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
978   }
979 
980   bool HasLoopExit = false;
981   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
982                             PreserveLCSSA, HasLoopExit);
983 
984   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
985   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
986 
987   // Move the remaining edges from OrigBB to point to NewBB2.
988   SmallVector<BasicBlock*, 8> NewBB2Preds;
989   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
990        i != e; ) {
991     BasicBlock *Pred = *i++;
992     if (Pred == NewBB1) continue;
993     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
994            "Cannot split an edge from an IndirectBrInst");
995     NewBB2Preds.push_back(Pred);
996     e = pred_end(OrigBB);
997   }
998 
999   BasicBlock *NewBB2 = nullptr;
1000   if (!NewBB2Preds.empty()) {
1001     // Create another basic block for the rest of OrigBB's predecessors.
1002     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1003                                 OrigBB->getName() + Suffix2,
1004                                 OrigBB->getParent(), OrigBB);
1005     NewBBs.push_back(NewBB2);
1006 
1007     // The new block unconditionally branches to the old block.
1008     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1009     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1010 
1011     // Move the remaining edges from OrigBB to point to NewBB2.
1012     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1013       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1014 
1015     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1016     HasLoopExit = false;
1017     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1018                               PreserveLCSSA, HasLoopExit);
1019 
1020     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1021     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1022   }
1023 
1024   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1025   Instruction *Clone1 = LPad->clone();
1026   Clone1->setName(Twine("lpad") + Suffix1);
1027   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1028 
1029   if (NewBB2) {
1030     Instruction *Clone2 = LPad->clone();
1031     Clone2->setName(Twine("lpad") + Suffix2);
1032     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1033 
1034     // Create a PHI node for the two cloned landingpad instructions only
1035     // if the original landingpad instruction has some uses.
1036     if (!LPad->use_empty()) {
1037       assert(!LPad->getType()->isTokenTy() &&
1038              "Split cannot be applied if LPad is token type. Otherwise an "
1039              "invalid PHINode of token type would be created.");
1040       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1041       PN->addIncoming(Clone1, NewBB1);
1042       PN->addIncoming(Clone2, NewBB2);
1043       LPad->replaceAllUsesWith(PN);
1044     }
1045     LPad->eraseFromParent();
1046   } else {
1047     // There is no second clone. Just replace the landing pad with the first
1048     // clone.
1049     LPad->replaceAllUsesWith(Clone1);
1050     LPad->eraseFromParent();
1051   }
1052 }
1053 
1054 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1055                                        ArrayRef<BasicBlock *> Preds,
1056                                        const char *Suffix1, const char *Suffix2,
1057                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1058                                        DominatorTree *DT, LoopInfo *LI,
1059                                        MemorySSAUpdater *MSSAU,
1060                                        bool PreserveLCSSA) {
1061   return SplitLandingPadPredecessorsImpl(
1062       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1063       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1064 }
1065 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1066                                        ArrayRef<BasicBlock *> Preds,
1067                                        const char *Suffix1, const char *Suffix2,
1068                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1069                                        DomTreeUpdater *DTU, LoopInfo *LI,
1070                                        MemorySSAUpdater *MSSAU,
1071                                        bool PreserveLCSSA) {
1072   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1073                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1074                                          PreserveLCSSA);
1075 }
1076 
1077 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1078                                              BasicBlock *Pred,
1079                                              DomTreeUpdater *DTU) {
1080   Instruction *UncondBranch = Pred->getTerminator();
1081   // Clone the return and add it to the end of the predecessor.
1082   Instruction *NewRet = RI->clone();
1083   Pred->getInstList().push_back(NewRet);
1084 
1085   // If the return instruction returns a value, and if the value was a
1086   // PHI node in "BB", propagate the right value into the return.
1087   for (Use &Op : NewRet->operands()) {
1088     Value *V = Op;
1089     Instruction *NewBC = nullptr;
1090     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1091       // Return value might be bitcasted. Clone and insert it before the
1092       // return instruction.
1093       V = BCI->getOperand(0);
1094       NewBC = BCI->clone();
1095       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1096       Op = NewBC;
1097     }
1098 
1099     Instruction *NewEV = nullptr;
1100     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1101       V = EVI->getOperand(0);
1102       NewEV = EVI->clone();
1103       if (NewBC) {
1104         NewBC->setOperand(0, NewEV);
1105         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1106       } else {
1107         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1108         Op = NewEV;
1109       }
1110     }
1111 
1112     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1113       if (PN->getParent() == BB) {
1114         if (NewEV) {
1115           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1116         } else if (NewBC)
1117           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1118         else
1119           Op = PN->getIncomingValueForBlock(Pred);
1120       }
1121     }
1122   }
1123 
1124   // Update any PHI nodes in the returning block to realize that we no
1125   // longer branch to them.
1126   BB->removePredecessor(Pred);
1127   UncondBranch->eraseFromParent();
1128 
1129   if (DTU)
1130     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1131 
1132   return cast<ReturnInst>(NewRet);
1133 }
1134 
1135 static Instruction *
1136 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1137                               bool Unreachable, MDNode *BranchWeights,
1138                               DomTreeUpdater *DTU, DominatorTree *DT,
1139                               LoopInfo *LI, BasicBlock *ThenBlock) {
1140   SmallVector<DominatorTree::UpdateType, 8> Updates;
1141   BasicBlock *Head = SplitBefore->getParent();
1142   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1143   if (DTU) {
1144     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
1145                                                            succ_end(Tail));
1146     Updates.push_back({DominatorTree::Insert, Head, Tail});
1147     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
1148     for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
1149       Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
1150       Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
1151     }
1152   }
1153   Instruction *HeadOldTerm = Head->getTerminator();
1154   LLVMContext &C = Head->getContext();
1155   Instruction *CheckTerm;
1156   bool CreateThenBlock = (ThenBlock == nullptr);
1157   if (CreateThenBlock) {
1158     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1159     if (Unreachable)
1160       CheckTerm = new UnreachableInst(C, ThenBlock);
1161     else {
1162       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1163       if (DTU)
1164         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1165     }
1166     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1167   } else
1168     CheckTerm = ThenBlock->getTerminator();
1169   BranchInst *HeadNewTerm =
1170       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1171   if (DTU)
1172     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1173   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1174   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1175 
1176   if (DTU)
1177     DTU->applyUpdates(Updates);
1178   else if (DT) {
1179     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1180       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1181 
1182       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1183       for (DomTreeNode *Child : Children)
1184         DT->changeImmediateDominator(Child, NewNode);
1185 
1186       // Head dominates ThenBlock.
1187       if (CreateThenBlock)
1188         DT->addNewBlock(ThenBlock, Head);
1189       else
1190         DT->changeImmediateDominator(ThenBlock, Head);
1191     }
1192   }
1193 
1194   if (LI) {
1195     if (Loop *L = LI->getLoopFor(Head)) {
1196       L->addBasicBlockToLoop(ThenBlock, *LI);
1197       L->addBasicBlockToLoop(Tail, *LI);
1198     }
1199   }
1200 
1201   return CheckTerm;
1202 }
1203 
1204 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1205                                              Instruction *SplitBefore,
1206                                              bool Unreachable,
1207                                              MDNode *BranchWeights,
1208                                              DominatorTree *DT, LoopInfo *LI,
1209                                              BasicBlock *ThenBlock) {
1210   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1211                                        BranchWeights,
1212                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1213 }
1214 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1215                                              Instruction *SplitBefore,
1216                                              bool Unreachable,
1217                                              MDNode *BranchWeights,
1218                                              DomTreeUpdater *DTU, LoopInfo *LI,
1219                                              BasicBlock *ThenBlock) {
1220   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1221                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1222                                        ThenBlock);
1223 }
1224 
1225 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1226                                          Instruction **ThenTerm,
1227                                          Instruction **ElseTerm,
1228                                          MDNode *BranchWeights) {
1229   BasicBlock *Head = SplitBefore->getParent();
1230   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1231   Instruction *HeadOldTerm = Head->getTerminator();
1232   LLVMContext &C = Head->getContext();
1233   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1234   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1235   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1236   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1237   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1238   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1239   BranchInst *HeadNewTerm =
1240     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1241   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1242   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1243 }
1244 
1245 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1246                              BasicBlock *&IfFalse) {
1247   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1248   BasicBlock *Pred1 = nullptr;
1249   BasicBlock *Pred2 = nullptr;
1250 
1251   if (SomePHI) {
1252     if (SomePHI->getNumIncomingValues() != 2)
1253       return nullptr;
1254     Pred1 = SomePHI->getIncomingBlock(0);
1255     Pred2 = SomePHI->getIncomingBlock(1);
1256   } else {
1257     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1258     if (PI == PE) // No predecessor
1259       return nullptr;
1260     Pred1 = *PI++;
1261     if (PI == PE) // Only one predecessor
1262       return nullptr;
1263     Pred2 = *PI++;
1264     if (PI != PE) // More than two predecessors
1265       return nullptr;
1266   }
1267 
1268   // We can only handle branches.  Other control flow will be lowered to
1269   // branches if possible anyway.
1270   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1271   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1272   if (!Pred1Br || !Pred2Br)
1273     return nullptr;
1274 
1275   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1276   // either are.
1277   if (Pred2Br->isConditional()) {
1278     // If both branches are conditional, we don't have an "if statement".  In
1279     // reality, we could transform this case, but since the condition will be
1280     // required anyway, we stand no chance of eliminating it, so the xform is
1281     // probably not profitable.
1282     if (Pred1Br->isConditional())
1283       return nullptr;
1284 
1285     std::swap(Pred1, Pred2);
1286     std::swap(Pred1Br, Pred2Br);
1287   }
1288 
1289   if (Pred1Br->isConditional()) {
1290     // The only thing we have to watch out for here is to make sure that Pred2
1291     // doesn't have incoming edges from other blocks.  If it does, the condition
1292     // doesn't dominate BB.
1293     if (!Pred2->getSinglePredecessor())
1294       return nullptr;
1295 
1296     // If we found a conditional branch predecessor, make sure that it branches
1297     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1298     if (Pred1Br->getSuccessor(0) == BB &&
1299         Pred1Br->getSuccessor(1) == Pred2) {
1300       IfTrue = Pred1;
1301       IfFalse = Pred2;
1302     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1303                Pred1Br->getSuccessor(1) == BB) {
1304       IfTrue = Pred2;
1305       IfFalse = Pred1;
1306     } else {
1307       // We know that one arm of the conditional goes to BB, so the other must
1308       // go somewhere unrelated, and this must not be an "if statement".
1309       return nullptr;
1310     }
1311 
1312     return Pred1Br->getCondition();
1313   }
1314 
1315   // Ok, if we got here, both predecessors end with an unconditional branch to
1316   // BB.  Don't panic!  If both blocks only have a single (identical)
1317   // predecessor, and THAT is a conditional branch, then we're all ok!
1318   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1319   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1320     return nullptr;
1321 
1322   // Otherwise, if this is a conditional branch, then we can use it!
1323   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1324   if (!BI) return nullptr;
1325 
1326   assert(BI->isConditional() && "Two successors but not conditional?");
1327   if (BI->getSuccessor(0) == Pred1) {
1328     IfTrue = Pred1;
1329     IfFalse = Pred2;
1330   } else {
1331     IfTrue = Pred2;
1332     IfFalse = Pred1;
1333   }
1334   return BI->getCondition();
1335 }
1336 
1337 // After creating a control flow hub, the operands of PHINodes in an outgoing
1338 // block Out no longer match the predecessors of that block. Predecessors of Out
1339 // that are incoming blocks to the hub are now replaced by just one edge from
1340 // the hub. To match this new control flow, the corresponding values from each
1341 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1342 //
1343 // This operation cannot be performed with SSAUpdater, because it involves one
1344 // new use: If the block Out is in the list of Incoming blocks, then the newly
1345 // created PHI in the Hub will use itself along that edge from Out to Hub.
1346 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1347                           const SetVector<BasicBlock *> &Incoming,
1348                           BasicBlock *FirstGuardBlock) {
1349   auto I = Out->begin();
1350   while (I != Out->end() && isa<PHINode>(I)) {
1351     auto Phi = cast<PHINode>(I);
1352     auto NewPhi =
1353         PHINode::Create(Phi->getType(), Incoming.size(),
1354                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1355     for (auto In : Incoming) {
1356       Value *V = UndefValue::get(Phi->getType());
1357       if (In == Out) {
1358         V = NewPhi;
1359       } else if (Phi->getBasicBlockIndex(In) != -1) {
1360         V = Phi->removeIncomingValue(In, false);
1361       }
1362       NewPhi->addIncoming(V, In);
1363     }
1364     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1365     if (Phi->getNumOperands() == 0) {
1366       Phi->replaceAllUsesWith(NewPhi);
1367       I = Phi->eraseFromParent();
1368       continue;
1369     }
1370     Phi->addIncoming(NewPhi, GuardBlock);
1371     ++I;
1372   }
1373 }
1374 
1375 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1376 using BBSetVector = SetVector<BasicBlock *>;
1377 
1378 // Redirects the terminator of the incoming block to the first guard
1379 // block in the hub. The condition of the original terminator (if it
1380 // was conditional) and its original successors are returned as a
1381 // tuple <condition, succ0, succ1>. The function additionally filters
1382 // out successors that are not in the set of outgoing blocks.
1383 //
1384 // - condition is non-null iff the branch is conditional.
1385 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1386 // - Succ2 is non-null iff condition is non-null and the fallthrough
1387 //         target is an outgoing block.
1388 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1389 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1390               const BBSetVector &Outgoing) {
1391   auto Branch = cast<BranchInst>(BB->getTerminator());
1392   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1393 
1394   BasicBlock *Succ0 = Branch->getSuccessor(0);
1395   BasicBlock *Succ1 = nullptr;
1396   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1397 
1398   if (Branch->isUnconditional()) {
1399     Branch->setSuccessor(0, FirstGuardBlock);
1400     assert(Succ0);
1401   } else {
1402     Succ1 = Branch->getSuccessor(1);
1403     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1404     assert(Succ0 || Succ1);
1405     if (Succ0 && !Succ1) {
1406       Branch->setSuccessor(0, FirstGuardBlock);
1407     } else if (Succ1 && !Succ0) {
1408       Branch->setSuccessor(1, FirstGuardBlock);
1409     } else {
1410       Branch->eraseFromParent();
1411       BranchInst::Create(FirstGuardBlock, BB);
1412     }
1413   }
1414 
1415   assert(Succ0 || Succ1);
1416   return std::make_tuple(Condition, Succ0, Succ1);
1417 }
1418 
1419 // Capture the existing control flow as guard predicates, and redirect
1420 // control flow from every incoming block to the first guard block in
1421 // the hub.
1422 //
1423 // There is one guard predicate for each outgoing block OutBB. The
1424 // predicate is a PHINode with one input for each InBB which
1425 // represents whether the hub should transfer control flow to OutBB if
1426 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1427 // evaluates them in the same order as the Outgoing set-vector, and
1428 // control branches to the first outgoing block whose predicate
1429 // evaluates to true.
1430 static void convertToGuardPredicates(
1431     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1432     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1433     const BBSetVector &Outgoing) {
1434   auto &Context = Incoming.front()->getContext();
1435   auto BoolTrue = ConstantInt::getTrue(Context);
1436   auto BoolFalse = ConstantInt::getFalse(Context);
1437 
1438   // The predicate for the last outgoing is trivially true, and so we
1439   // process only the first N-1 successors.
1440   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1441     auto Out = Outgoing[i];
1442     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1443     auto Phi =
1444         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1445                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1446     GuardPredicates[Out] = Phi;
1447   }
1448 
1449   for (auto In : Incoming) {
1450     Value *Condition;
1451     BasicBlock *Succ0;
1452     BasicBlock *Succ1;
1453     std::tie(Condition, Succ0, Succ1) =
1454         redirectToHub(In, FirstGuardBlock, Outgoing);
1455 
1456     // Optimization: Consider an incoming block A with both successors
1457     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1458     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1459     // first in the loop below, control will branch to Succ0 using the
1460     // corresponding predicate. But if that branch is not taken, then
1461     // control must reach Succ1, which means that the predicate for
1462     // Succ1 is always true.
1463     bool OneSuccessorDone = false;
1464     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1465       auto Out = Outgoing[i];
1466       auto Phi = GuardPredicates[Out];
1467       if (Out != Succ0 && Out != Succ1) {
1468         Phi->addIncoming(BoolFalse, In);
1469         continue;
1470       }
1471       // Optimization: When only one successor is an outgoing block,
1472       // the predicate is always true.
1473       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1474         Phi->addIncoming(BoolTrue, In);
1475         continue;
1476       }
1477       assert(Succ0 && Succ1);
1478       OneSuccessorDone = true;
1479       if (Out == Succ0) {
1480         Phi->addIncoming(Condition, In);
1481         continue;
1482       }
1483       auto Inverted = invertCondition(Condition);
1484       DeletionCandidates.push_back(Condition);
1485       Phi->addIncoming(Inverted, In);
1486     }
1487   }
1488 }
1489 
1490 // For each outgoing block OutBB, create a guard block in the Hub. The
1491 // first guard block was already created outside, and available as the
1492 // first element in the vector of guard blocks.
1493 //
1494 // Each guard block terminates in a conditional branch that transfers
1495 // control to the corresponding outgoing block or the next guard
1496 // block. The last guard block has two outgoing blocks as successors
1497 // since the condition for the final outgoing block is trivially
1498 // true. So we create one less block (including the first guard block)
1499 // than the number of outgoing blocks.
1500 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1501                               Function *F, const BBSetVector &Outgoing,
1502                               BBPredicates &GuardPredicates, StringRef Prefix) {
1503   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1504     GuardBlocks.push_back(
1505         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1506   }
1507   assert(GuardBlocks.size() == GuardPredicates.size());
1508 
1509   // To help keep the loop simple, temporarily append the last
1510   // outgoing block to the list of guard blocks.
1511   GuardBlocks.push_back(Outgoing.back());
1512 
1513   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1514     auto Out = Outgoing[i];
1515     assert(GuardPredicates.count(Out));
1516     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1517                        GuardBlocks[i]);
1518   }
1519 
1520   // Remove the last block from the guard list.
1521   GuardBlocks.pop_back();
1522 }
1523 
1524 BasicBlock *llvm::CreateControlFlowHub(
1525     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1526     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1527     const StringRef Prefix) {
1528   auto F = Incoming.front()->getParent();
1529   auto FirstGuardBlock =
1530       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1531 
1532   SmallVector<DominatorTree::UpdateType, 16> Updates;
1533   if (DTU) {
1534     for (auto In : Incoming) {
1535       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1536       for (auto Succ : successors(In)) {
1537         if (Outgoing.count(Succ))
1538           Updates.push_back({DominatorTree::Delete, In, Succ});
1539       }
1540     }
1541   }
1542 
1543   BBPredicates GuardPredicates;
1544   SmallVector<WeakVH, 8> DeletionCandidates;
1545   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1546                            Incoming, Outgoing);
1547 
1548   GuardBlocks.push_back(FirstGuardBlock);
1549   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1550 
1551   // Update the PHINodes in each outgoing block to match the new control flow.
1552   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1553     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1554   }
1555   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1556 
1557   if (DTU) {
1558     int NumGuards = GuardBlocks.size();
1559     assert((int)Outgoing.size() == NumGuards + 1);
1560     for (int i = 0; i != NumGuards - 1; ++i) {
1561       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1562       Updates.push_back(
1563           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1564     }
1565     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1566                        Outgoing[NumGuards - 1]});
1567     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1568                        Outgoing[NumGuards]});
1569     DTU->applyUpdates(Updates);
1570   }
1571 
1572   for (auto I : DeletionCandidates) {
1573     if (I->use_empty())
1574       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1575         Inst->eraseFromParent();
1576   }
1577 
1578   return FirstGuardBlock;
1579 }
1580