1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
55     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
56     cl::desc("Set the maximum path length when checking whether a basic block "
57              "is followed by a block that either has a terminating "
58              "deoptimizing call or is terminated with an unreachable"));
59 
60 void llvm::detachDeadBlocks(
61     ArrayRef<BasicBlock *> BBs,
62     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
63     bool KeepOneInputPHIs) {
64   for (auto *BB : BBs) {
65     // Loop through all of our successors and make sure they know that one
66     // of their predecessors is going away.
67     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
68     for (BasicBlock *Succ : successors(BB)) {
69       Succ->removePredecessor(BB, KeepOneInputPHIs);
70       if (Updates && UniqueSuccessors.insert(Succ).second)
71         Updates->push_back({DominatorTree::Delete, BB, Succ});
72     }
73 
74     // Zap all the instructions in the block.
75     while (!BB->empty()) {
76       Instruction &I = BB->back();
77       // If this instruction is used, replace uses with an arbitrary value.
78       // Because control flow can't get here, we don't care what we replace the
79       // value with.  Note that since this block is unreachable, and all values
80       // contained within it must dominate their uses, that all uses will
81       // eventually be removed (they are themselves dead).
82       if (!I.use_empty())
83         I.replaceAllUsesWith(UndefValue::get(I.getType()));
84       BB->getInstList().pop_back();
85     }
86     new UnreachableInst(BB->getContext(), BB);
87     assert(BB->getInstList().size() == 1 &&
88            isa<UnreachableInst>(BB->getTerminator()) &&
89            "The successor list of BB isn't empty before "
90            "applying corresponding DTU updates.");
91   }
92 }
93 
94 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
95                            bool KeepOneInputPHIs) {
96   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
97 }
98 
99 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
100                             bool KeepOneInputPHIs) {
101 #ifndef NDEBUG
102   // Make sure that all predecessors of each dead block is also dead.
103   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
104   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
105   for (auto *BB : Dead)
106     for (BasicBlock *Pred : predecessors(BB))
107       assert(Dead.count(Pred) && "All predecessors must be dead!");
108 #endif
109 
110   SmallVector<DominatorTree::UpdateType, 4> Updates;
111   detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
112 
113   if (DTU)
114     DTU->applyUpdates(Updates);
115 
116   for (BasicBlock *BB : BBs)
117     if (DTU)
118       DTU->deleteBB(BB);
119     else
120       BB->eraseFromParent();
121 }
122 
123 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
124                                       bool KeepOneInputPHIs) {
125   df_iterator_default_set<BasicBlock*> Reachable;
126 
127   // Mark all reachable blocks.
128   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
129     (void)BB/* Mark all reachable blocks */;
130 
131   // Collect all dead blocks.
132   std::vector<BasicBlock*> DeadBlocks;
133   for (BasicBlock &BB : F)
134     if (!Reachable.count(&BB))
135       DeadBlocks.push_back(&BB);
136 
137   // Delete the dead blocks.
138   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
139 
140   return !DeadBlocks.empty();
141 }
142 
143 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
144                                    MemoryDependenceResults *MemDep) {
145   if (!isa<PHINode>(BB->begin()))
146     return false;
147 
148   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
149     if (PN->getIncomingValue(0) != PN)
150       PN->replaceAllUsesWith(PN->getIncomingValue(0));
151     else
152       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
153 
154     if (MemDep)
155       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
156 
157     PN->eraseFromParent();
158   }
159   return true;
160 }
161 
162 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
163                           MemorySSAUpdater *MSSAU) {
164   // Recursively deleting a PHI may cause multiple PHIs to be deleted
165   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
166   SmallVector<WeakTrackingVH, 8> PHIs;
167   for (PHINode &PN : BB->phis())
168     PHIs.push_back(&PN);
169 
170   bool Changed = false;
171   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
172     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
173       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
174 
175   return Changed;
176 }
177 
178 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
179                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
180                                      MemoryDependenceResults *MemDep,
181                                      bool PredecessorWithTwoSuccessors) {
182   if (BB->hasAddressTaken())
183     return false;
184 
185   // Can't merge if there are multiple predecessors, or no predecessors.
186   BasicBlock *PredBB = BB->getUniquePredecessor();
187   if (!PredBB) return false;
188 
189   // Don't break self-loops.
190   if (PredBB == BB) return false;
191   // Don't break unwinding instructions.
192   if (PredBB->getTerminator()->isExceptionalTerminator())
193     return false;
194 
195   // Can't merge if there are multiple distinct successors.
196   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
197     return false;
198 
199   // Currently only allow PredBB to have two predecessors, one being BB.
200   // Update BI to branch to BB's only successor instead of BB.
201   BranchInst *PredBB_BI;
202   BasicBlock *NewSucc = nullptr;
203   unsigned FallThruPath;
204   if (PredecessorWithTwoSuccessors) {
205     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
206       return false;
207     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
208     if (!BB_JmpI || !BB_JmpI->isUnconditional())
209       return false;
210     NewSucc = BB_JmpI->getSuccessor(0);
211     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
212   }
213 
214   // Can't merge if there is PHI loop.
215   for (PHINode &PN : BB->phis())
216     if (llvm::is_contained(PN.incoming_values(), &PN))
217       return false;
218 
219   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
220                     << PredBB->getName() << "\n");
221 
222   // Begin by getting rid of unneeded PHIs.
223   SmallVector<AssertingVH<Value>, 4> IncomingValues;
224   if (isa<PHINode>(BB->front())) {
225     for (PHINode &PN : BB->phis())
226       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
227           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
228         IncomingValues.push_back(PN.getIncomingValue(0));
229     FoldSingleEntryPHINodes(BB, MemDep);
230   }
231 
232   // DTU update: Collect all the edges that exit BB.
233   // These dominator edges will be redirected from Pred.
234   std::vector<DominatorTree::UpdateType> Updates;
235   if (DTU) {
236     // To avoid processing the same predecessor more than once.
237     SmallPtrSet<BasicBlock *, 8> SeenSuccs;
238     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
239                                                succ_end(PredBB));
240     Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
241     // Add insert edges first. Experimentally, for the particular case of two
242     // blocks that can be merged, with a single successor and single predecessor
243     // respectively, it is beneficial to have all insert updates first. Deleting
244     // edges first may lead to unreachable blocks, followed by inserting edges
245     // making the blocks reachable again. Such DT updates lead to high compile
246     // times. We add inserts before deletes here to reduce compile time.
247     for (BasicBlock *SuccOfBB : successors(BB))
248       // This successor of BB may already be a PredBB's successor.
249       if (!SuccsOfPredBB.contains(SuccOfBB))
250         if (SeenSuccs.insert(SuccOfBB).second)
251           Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
252     SeenSuccs.clear();
253     for (BasicBlock *SuccOfBB : successors(BB))
254       if (SeenSuccs.insert(SuccOfBB).second)
255         Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
256     Updates.push_back({DominatorTree::Delete, PredBB, BB});
257   }
258 
259   Instruction *PTI = PredBB->getTerminator();
260   Instruction *STI = BB->getTerminator();
261   Instruction *Start = &*BB->begin();
262   // If there's nothing to move, mark the starting instruction as the last
263   // instruction in the block. Terminator instruction is handled separately.
264   if (Start == STI)
265     Start = PTI;
266 
267   // Move all definitions in the successor to the predecessor...
268   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
269                                BB->begin(), STI->getIterator());
270 
271   if (MSSAU)
272     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
273 
274   // Make all PHI nodes that referred to BB now refer to Pred as their
275   // source...
276   BB->replaceAllUsesWith(PredBB);
277 
278   if (PredecessorWithTwoSuccessors) {
279     // Delete the unconditional branch from BB.
280     BB->getInstList().pop_back();
281 
282     // Update branch in the predecessor.
283     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
284   } else {
285     // Delete the unconditional branch from the predecessor.
286     PredBB->getInstList().pop_back();
287 
288     // Move terminator instruction.
289     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
290 
291     // Terminator may be a memory accessing instruction too.
292     if (MSSAU)
293       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
294               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
295         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
296   }
297   // Add unreachable to now empty BB.
298   new UnreachableInst(BB->getContext(), BB);
299 
300   // Inherit predecessors name if it exists.
301   if (!PredBB->hasName())
302     PredBB->takeName(BB);
303 
304   if (LI)
305     LI->removeBlock(BB);
306 
307   if (MemDep)
308     MemDep->invalidateCachedPredecessors();
309 
310   if (DTU)
311     DTU->applyUpdates(Updates);
312 
313   // Finally, erase the old block and update dominator info.
314   DeleteDeadBlock(BB, DTU);
315 
316   return true;
317 }
318 
319 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
320     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
321     LoopInfo *LI) {
322   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
323 
324   bool BlocksHaveBeenMerged = false;
325   while (!MergeBlocks.empty()) {
326     BasicBlock *BB = *MergeBlocks.begin();
327     BasicBlock *Dest = BB->getSingleSuccessor();
328     if (Dest && (!L || L->contains(Dest))) {
329       BasicBlock *Fold = Dest->getUniquePredecessor();
330       (void)Fold;
331       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
332         assert(Fold == BB &&
333                "Expecting BB to be unique predecessor of the Dest block");
334         MergeBlocks.erase(Dest);
335         BlocksHaveBeenMerged = true;
336       } else
337         MergeBlocks.erase(BB);
338     } else
339       MergeBlocks.erase(BB);
340   }
341   return BlocksHaveBeenMerged;
342 }
343 
344 /// Remove redundant instructions within sequences of consecutive dbg.value
345 /// instructions. This is done using a backward scan to keep the last dbg.value
346 /// describing a specific variable/fragment.
347 ///
348 /// BackwardScan strategy:
349 /// ----------------------
350 /// Given a sequence of consecutive DbgValueInst like this
351 ///
352 ///   dbg.value ..., "x", FragmentX1  (*)
353 ///   dbg.value ..., "y", FragmentY1
354 ///   dbg.value ..., "x", FragmentX2
355 ///   dbg.value ..., "x", FragmentX1  (**)
356 ///
357 /// then the instruction marked with (*) can be removed (it is guaranteed to be
358 /// obsoleted by the instruction marked with (**) as the latter instruction is
359 /// describing the same variable using the same fragment info).
360 ///
361 /// Possible improvements:
362 /// - Check fully overlapping fragments and not only identical fragments.
363 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
364 ///   instructions being part of the sequence of consecutive instructions.
365 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
366   SmallVector<DbgValueInst *, 8> ToBeRemoved;
367   SmallDenseSet<DebugVariable> VariableSet;
368   for (auto &I : reverse(*BB)) {
369     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
370       DebugVariable Key(DVI->getVariable(),
371                         DVI->getExpression(),
372                         DVI->getDebugLoc()->getInlinedAt());
373       auto R = VariableSet.insert(Key);
374       // If the same variable fragment is described more than once it is enough
375       // to keep the last one (i.e. the first found since we for reverse
376       // iteration).
377       if (!R.second)
378         ToBeRemoved.push_back(DVI);
379       continue;
380     }
381     // Sequence with consecutive dbg.value instrs ended. Clear the map to
382     // restart identifying redundant instructions if case we find another
383     // dbg.value sequence.
384     VariableSet.clear();
385   }
386 
387   for (auto &Instr : ToBeRemoved)
388     Instr->eraseFromParent();
389 
390   return !ToBeRemoved.empty();
391 }
392 
393 /// Remove redundant dbg.value instructions using a forward scan. This can
394 /// remove a dbg.value instruction that is redundant due to indicating that a
395 /// variable has the same value as already being indicated by an earlier
396 /// dbg.value.
397 ///
398 /// ForwardScan strategy:
399 /// ---------------------
400 /// Given two identical dbg.value instructions, separated by a block of
401 /// instructions that isn't describing the same variable, like this
402 ///
403 ///   dbg.value X1, "x", FragmentX1  (**)
404 ///   <block of instructions, none being "dbg.value ..., "x", ...">
405 ///   dbg.value X1, "x", FragmentX1  (*)
406 ///
407 /// then the instruction marked with (*) can be removed. Variable "x" is already
408 /// described as being mapped to the SSA value X1.
409 ///
410 /// Possible improvements:
411 /// - Keep track of non-overlapping fragments.
412 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
413   SmallVector<DbgValueInst *, 8> ToBeRemoved;
414   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
415       VariableMap;
416   for (auto &I : *BB) {
417     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
418       DebugVariable Key(DVI->getVariable(),
419                         NoneType(),
420                         DVI->getDebugLoc()->getInlinedAt());
421       auto VMI = VariableMap.find(Key);
422       // Update the map if we found a new value/expression describing the
423       // variable, or if the variable wasn't mapped already.
424       SmallVector<Value *, 4> Values(DVI->getValues());
425       if (VMI == VariableMap.end() || VMI->second.first != Values ||
426           VMI->second.second != DVI->getExpression()) {
427         VariableMap[Key] = {Values, DVI->getExpression()};
428         continue;
429       }
430       // Found an identical mapping. Remember the instruction for later removal.
431       ToBeRemoved.push_back(DVI);
432     }
433   }
434 
435   for (auto &Instr : ToBeRemoved)
436     Instr->eraseFromParent();
437 
438   return !ToBeRemoved.empty();
439 }
440 
441 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
442   bool MadeChanges = false;
443   // By using the "backward scan" strategy before the "forward scan" strategy we
444   // can remove both dbg.value (2) and (3) in a situation like this:
445   //
446   //   (1) dbg.value V1, "x", DIExpression()
447   //       ...
448   //   (2) dbg.value V2, "x", DIExpression()
449   //   (3) dbg.value V1, "x", DIExpression()
450   //
451   // The backward scan will remove (2), it is made obsolete by (3). After
452   // getting (2) out of the way, the foward scan will remove (3) since "x"
453   // already is described as having the value V1 at (1).
454   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
455   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
456 
457   if (MadeChanges)
458     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
459                       << BB->getName() << "\n");
460   return MadeChanges;
461 }
462 
463 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
464                                 BasicBlock::iterator &BI, Value *V) {
465   Instruction &I = *BI;
466   // Replaces all of the uses of the instruction with uses of the value
467   I.replaceAllUsesWith(V);
468 
469   // Make sure to propagate a name if there is one already.
470   if (I.hasName() && !V->hasName())
471     V->takeName(&I);
472 
473   // Delete the unnecessary instruction now...
474   BI = BIL.erase(BI);
475 }
476 
477 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
478                                BasicBlock::iterator &BI, Instruction *I) {
479   assert(I->getParent() == nullptr &&
480          "ReplaceInstWithInst: Instruction already inserted into basic block!");
481 
482   // Copy debug location to newly added instruction, if it wasn't already set
483   // by the caller.
484   if (!I->getDebugLoc())
485     I->setDebugLoc(BI->getDebugLoc());
486 
487   // Insert the new instruction into the basic block...
488   BasicBlock::iterator New = BIL.insert(BI, I);
489 
490   // Replace all uses of the old instruction, and delete it.
491   ReplaceInstWithValue(BIL, BI, I);
492 
493   // Move BI back to point to the newly inserted instruction
494   BI = New;
495 }
496 
497 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
498   // Remember visited blocks to avoid infinite loop
499   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
500   unsigned Depth = 0;
501   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
502          VisitedBlocks.insert(BB).second) {
503     if (BB->getTerminatingDeoptimizeCall() ||
504         isa<UnreachableInst>(BB->getTerminator()))
505       return true;
506     BB = BB->getUniqueSuccessor();
507   }
508   return false;
509 }
510 
511 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
512   BasicBlock::iterator BI(From);
513   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
514 }
515 
516 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
517                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
518                             const Twine &BBName) {
519   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
520 
521   Instruction *LatchTerm = BB->getTerminator();
522 
523   CriticalEdgeSplittingOptions Options =
524       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
525 
526   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
527     // If it is a critical edge, and the succesor is an exception block, handle
528     // the split edge logic in this specific function
529     if (Succ->isEHPad())
530       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
531 
532     // If this is a critical edge, let SplitKnownCriticalEdge do it.
533     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
534   }
535 
536   // If the edge isn't critical, then BB has a single successor or Succ has a
537   // single pred.  Split the block.
538   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
539     // If the successor only has a single pred, split the top of the successor
540     // block.
541     assert(SP == BB && "CFG broken");
542     SP = nullptr;
543     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
544                       /*Before=*/true);
545   }
546 
547   // Otherwise, if BB has a single successor, split it at the bottom of the
548   // block.
549   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
550          "Should have a single succ!");
551   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
552 }
553 
554 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
555   if (auto *II = dyn_cast<InvokeInst>(TI))
556     II->setUnwindDest(Succ);
557   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
558     CS->setUnwindDest(Succ);
559   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
560     CR->setUnwindDest(Succ);
561   else
562     llvm_unreachable("unexpected terminator instruction");
563 }
564 
565 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
566                           BasicBlock *NewPred, PHINode *Until) {
567   int BBIdx = 0;
568   for (PHINode &PN : DestBB->phis()) {
569     // We manually update the LandingPadReplacement PHINode and it is the last
570     // PHI Node. So, if we find it, we are done.
571     if (Until == &PN)
572       break;
573 
574     // Reuse the previous value of BBIdx if it lines up.  In cases where we
575     // have multiple phi nodes with *lots* of predecessors, this is a speed
576     // win because we don't have to scan the PHI looking for TIBB.  This
577     // happens because the BB list of PHI nodes are usually in the same
578     // order.
579     if (PN.getIncomingBlock(BBIdx) != OldPred)
580       BBIdx = PN.getBasicBlockIndex(OldPred);
581 
582     assert(BBIdx != -1 && "Invalid PHI Index!");
583     PN.setIncomingBlock(BBIdx, NewPred);
584   }
585 }
586 
587 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
588                                    LandingPadInst *OriginalPad,
589                                    PHINode *LandingPadReplacement,
590                                    const CriticalEdgeSplittingOptions &Options,
591                                    const Twine &BBName) {
592 
593   auto *PadInst = Succ->getFirstNonPHI();
594   if (!LandingPadReplacement && !PadInst->isEHPad())
595     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
596 
597   auto *LI = Options.LI;
598   SmallVector<BasicBlock *, 4> LoopPreds;
599   // Check if extra modifications will be required to preserve loop-simplify
600   // form after splitting. If it would require splitting blocks with IndirectBr
601   // terminators, bail out if preserving loop-simplify form is requested.
602   if (Options.PreserveLoopSimplify && LI) {
603     if (Loop *BBLoop = LI->getLoopFor(BB)) {
604 
605       // The only way that we can break LoopSimplify form by splitting a
606       // critical edge is when there exists some edge from BBLoop to Succ *and*
607       // the only edge into Succ from outside of BBLoop is that of NewBB after
608       // the split. If the first isn't true, then LoopSimplify still holds,
609       // NewBB is the new exit block and it has no non-loop predecessors. If the
610       // second isn't true, then Succ was not in LoopSimplify form prior to
611       // the split as it had a non-loop predecessor. In both of these cases,
612       // the predecessor must be directly in BBLoop, not in a subloop, or again
613       // LoopSimplify doesn't hold.
614       for (BasicBlock *P : predecessors(Succ)) {
615         if (P == BB)
616           continue; // The new block is known.
617         if (LI->getLoopFor(P) != BBLoop) {
618           // Loop is not in LoopSimplify form, no need to re simplify after
619           // splitting edge.
620           LoopPreds.clear();
621           break;
622         }
623         LoopPreds.push_back(P);
624       }
625       // Loop-simplify form can be preserved, if we can split all in-loop
626       // predecessors.
627       if (any_of(LoopPreds, [](BasicBlock *Pred) {
628             return isa<IndirectBrInst>(Pred->getTerminator());
629           })) {
630         return nullptr;
631       }
632     }
633   }
634 
635   auto *NewBB =
636       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
637   setUnwindEdgeTo(BB->getTerminator(), NewBB);
638   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
639 
640   if (LandingPadReplacement) {
641     auto *NewLP = OriginalPad->clone();
642     auto *Terminator = BranchInst::Create(Succ, NewBB);
643     NewLP->insertBefore(Terminator);
644     LandingPadReplacement->addIncoming(NewLP, NewBB);
645   } else {
646     Value *ParentPad = nullptr;
647     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
648       ParentPad = FuncletPad->getParentPad();
649     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
650       ParentPad = CatchSwitch->getParentPad();
651     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
652       ParentPad = CleanupPad->getParentPad();
653     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
654       ParentPad = LandingPad->getParent();
655     else
656       llvm_unreachable("handling for other EHPads not implemented yet");
657 
658     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
659     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
660   }
661 
662   auto *DT = Options.DT;
663   auto *MSSAU = Options.MSSAU;
664   if (!DT && !LI)
665     return NewBB;
666 
667   if (DT) {
668     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
669     SmallVector<DominatorTree::UpdateType, 3> Updates;
670 
671     Updates.push_back({DominatorTree::Insert, BB, NewBB});
672     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
673     Updates.push_back({DominatorTree::Delete, BB, Succ});
674 
675     DTU.applyUpdates(Updates);
676     DTU.flush();
677 
678     if (MSSAU) {
679       MSSAU->applyUpdates(Updates, *DT);
680       if (VerifyMemorySSA)
681         MSSAU->getMemorySSA()->verifyMemorySSA();
682     }
683   }
684 
685   if (LI) {
686     if (Loop *BBLoop = LI->getLoopFor(BB)) {
687       // If one or the other blocks were not in a loop, the new block is not
688       // either, and thus LI doesn't need to be updated.
689       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
690         if (BBLoop == SuccLoop) {
691           // Both in the same loop, the NewBB joins loop.
692           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
693         } else if (BBLoop->contains(SuccLoop)) {
694           // Edge from an outer loop to an inner loop.  Add to the outer loop.
695           BBLoop->addBasicBlockToLoop(NewBB, *LI);
696         } else if (SuccLoop->contains(BBLoop)) {
697           // Edge from an inner loop to an outer loop.  Add to the outer loop.
698           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
699         } else {
700           // Edge from two loops with no containment relation.  Because these
701           // are natural loops, we know that the destination block must be the
702           // header of its loop (adding a branch into a loop elsewhere would
703           // create an irreducible loop).
704           assert(SuccLoop->getHeader() == Succ &&
705                  "Should not create irreducible loops!");
706           if (Loop *P = SuccLoop->getParentLoop())
707             P->addBasicBlockToLoop(NewBB, *LI);
708         }
709       }
710 
711       // If BB is in a loop and Succ is outside of that loop, we may need to
712       // update LoopSimplify form and LCSSA form.
713       if (!BBLoop->contains(Succ)) {
714         assert(!BBLoop->contains(NewBB) &&
715                "Split point for loop exit is contained in loop!");
716 
717         // Update LCSSA form in the newly created exit block.
718         if (Options.PreserveLCSSA) {
719           createPHIsForSplitLoopExit(BB, NewBB, Succ);
720         }
721 
722         if (!LoopPreds.empty()) {
723           BasicBlock *NewExitBB = SplitBlockPredecessors(
724               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
725           if (Options.PreserveLCSSA)
726             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
727         }
728       }
729     }
730   }
731 
732   return NewBB;
733 }
734 
735 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
736                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
737   // SplitBB shouldn't have anything non-trivial in it yet.
738   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
739           SplitBB->isLandingPad()) &&
740          "SplitBB has non-PHI nodes!");
741 
742   // For each PHI in the destination block.
743   for (PHINode &PN : DestBB->phis()) {
744     int Idx = PN.getBasicBlockIndex(SplitBB);
745     assert(Idx >= 0 && "Invalid Block Index");
746     Value *V = PN.getIncomingValue(Idx);
747 
748     // If the input is a PHI which already satisfies LCSSA, don't create
749     // a new one.
750     if (const PHINode *VP = dyn_cast<PHINode>(V))
751       if (VP->getParent() == SplitBB)
752         continue;
753 
754     // Otherwise a new PHI is needed. Create one and populate it.
755     PHINode *NewPN = PHINode::Create(
756         PN.getType(), Preds.size(), "split",
757         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
758     for (BasicBlock *BB : Preds)
759       NewPN->addIncoming(V, BB);
760 
761     // Update the original PHI.
762     PN.setIncomingValue(Idx, NewPN);
763   }
764 }
765 
766 unsigned
767 llvm::SplitAllCriticalEdges(Function &F,
768                             const CriticalEdgeSplittingOptions &Options) {
769   unsigned NumBroken = 0;
770   for (BasicBlock &BB : F) {
771     Instruction *TI = BB.getTerminator();
772     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
773       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
774         if (SplitCriticalEdge(TI, i, Options))
775           ++NumBroken;
776   }
777   return NumBroken;
778 }
779 
780 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
781                                   DomTreeUpdater *DTU, DominatorTree *DT,
782                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
783                                   const Twine &BBName, bool Before) {
784   if (Before) {
785     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
786     return splitBlockBefore(Old, SplitPt,
787                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
788                             BBName);
789   }
790   BasicBlock::iterator SplitIt = SplitPt->getIterator();
791   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
792     ++SplitIt;
793     assert(SplitIt != SplitPt->getParent()->end());
794   }
795   std::string Name = BBName.str();
796   BasicBlock *New = Old->splitBasicBlock(
797       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
798 
799   // The new block lives in whichever loop the old one did. This preserves
800   // LCSSA as well, because we force the split point to be after any PHI nodes.
801   if (LI)
802     if (Loop *L = LI->getLoopFor(Old))
803       L->addBasicBlockToLoop(New, *LI);
804 
805   if (DTU) {
806     SmallVector<DominatorTree::UpdateType, 8> Updates;
807     // Old dominates New. New node dominates all other nodes dominated by Old.
808     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
809     Updates.push_back({DominatorTree::Insert, Old, New});
810     Updates.reserve(Updates.size() + 2 * succ_size(New));
811     for (BasicBlock *SuccessorOfOld : successors(New))
812       if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
813         Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
814         Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
815       }
816 
817     DTU->applyUpdates(Updates);
818   } else if (DT)
819     // Old dominates New. New node dominates all other nodes dominated by Old.
820     if (DomTreeNode *OldNode = DT->getNode(Old)) {
821       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
822 
823       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
824       for (DomTreeNode *I : Children)
825         DT->changeImmediateDominator(I, NewNode);
826     }
827 
828   // Move MemoryAccesses still tracked in Old, but part of New now.
829   // Update accesses in successor blocks accordingly.
830   if (MSSAU)
831     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
832 
833   return New;
834 }
835 
836 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
837                              DominatorTree *DT, LoopInfo *LI,
838                              MemorySSAUpdater *MSSAU, const Twine &BBName,
839                              bool Before) {
840   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
841                         Before);
842 }
843 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
844                              DomTreeUpdater *DTU, LoopInfo *LI,
845                              MemorySSAUpdater *MSSAU, const Twine &BBName,
846                              bool Before) {
847   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
848                         Before);
849 }
850 
851 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
852                                    DomTreeUpdater *DTU, LoopInfo *LI,
853                                    MemorySSAUpdater *MSSAU,
854                                    const Twine &BBName) {
855 
856   BasicBlock::iterator SplitIt = SplitPt->getIterator();
857   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
858     ++SplitIt;
859   std::string Name = BBName.str();
860   BasicBlock *New = Old->splitBasicBlock(
861       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
862       /* Before=*/true);
863 
864   // The new block lives in whichever loop the old one did. This preserves
865   // LCSSA as well, because we force the split point to be after any PHI nodes.
866   if (LI)
867     if (Loop *L = LI->getLoopFor(Old))
868       L->addBasicBlockToLoop(New, *LI);
869 
870   if (DTU) {
871     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
872     // New dominates Old. The predecessor nodes of the Old node dominate
873     // New node.
874     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
875     DTUpdates.push_back({DominatorTree::Insert, New, Old});
876     DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
877     for (BasicBlock *PredecessorOfOld : predecessors(New))
878       if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
879         DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
880         DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
881       }
882 
883     DTU->applyUpdates(DTUpdates);
884 
885     // Move MemoryAccesses still tracked in Old, but part of New now.
886     // Update accesses in successor blocks accordingly.
887     if (MSSAU) {
888       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
889       if (VerifyMemorySSA)
890         MSSAU->getMemorySSA()->verifyMemorySSA();
891     }
892   }
893   return New;
894 }
895 
896 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
897 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
898                                       ArrayRef<BasicBlock *> Preds,
899                                       DomTreeUpdater *DTU, DominatorTree *DT,
900                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
901                                       bool PreserveLCSSA, bool &HasLoopExit) {
902   // Update dominator tree if available.
903   if (DTU) {
904     // Recalculation of DomTree is needed when updating a forward DomTree and
905     // the Entry BB is replaced.
906     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
907       // The entry block was removed and there is no external interface for
908       // the dominator tree to be notified of this change. In this corner-case
909       // we recalculate the entire tree.
910       DTU->recalculate(*NewBB->getParent());
911     } else {
912       // Split block expects NewBB to have a non-empty set of predecessors.
913       SmallVector<DominatorTree::UpdateType, 8> Updates;
914       SmallPtrSet<BasicBlock *, 8> UniquePreds;
915       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
916       Updates.reserve(Updates.size() + 2 * Preds.size());
917       for (auto *Pred : Preds)
918         if (UniquePreds.insert(Pred).second) {
919           Updates.push_back({DominatorTree::Insert, Pred, NewBB});
920           Updates.push_back({DominatorTree::Delete, Pred, OldBB});
921         }
922       DTU->applyUpdates(Updates);
923     }
924   } else if (DT) {
925     if (OldBB == DT->getRootNode()->getBlock()) {
926       assert(NewBB->isEntryBlock());
927       DT->setNewRoot(NewBB);
928     } else {
929       // Split block expects NewBB to have a non-empty set of predecessors.
930       DT->splitBlock(NewBB);
931     }
932   }
933 
934   // Update MemoryPhis after split if MemorySSA is available
935   if (MSSAU)
936     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
937 
938   // The rest of the logic is only relevant for updating the loop structures.
939   if (!LI)
940     return;
941 
942   if (DTU && DTU->hasDomTree())
943     DT = &DTU->getDomTree();
944   assert(DT && "DT should be available to update LoopInfo!");
945   Loop *L = LI->getLoopFor(OldBB);
946 
947   // If we need to preserve loop analyses, collect some information about how
948   // this split will affect loops.
949   bool IsLoopEntry = !!L;
950   bool SplitMakesNewLoopHeader = false;
951   for (BasicBlock *Pred : Preds) {
952     // Preds that are not reachable from entry should not be used to identify if
953     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
954     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
955     // as true and make the NewBB the header of some loop. This breaks LI.
956     if (!DT->isReachableFromEntry(Pred))
957       continue;
958     // If we need to preserve LCSSA, determine if any of the preds is a loop
959     // exit.
960     if (PreserveLCSSA)
961       if (Loop *PL = LI->getLoopFor(Pred))
962         if (!PL->contains(OldBB))
963           HasLoopExit = true;
964 
965     // If we need to preserve LoopInfo, note whether any of the preds crosses
966     // an interesting loop boundary.
967     if (!L)
968       continue;
969     if (L->contains(Pred))
970       IsLoopEntry = false;
971     else
972       SplitMakesNewLoopHeader = true;
973   }
974 
975   // Unless we have a loop for OldBB, nothing else to do here.
976   if (!L)
977     return;
978 
979   if (IsLoopEntry) {
980     // Add the new block to the nearest enclosing loop (and not an adjacent
981     // loop). To find this, examine each of the predecessors and determine which
982     // loops enclose them, and select the most-nested loop which contains the
983     // loop containing the block being split.
984     Loop *InnermostPredLoop = nullptr;
985     for (BasicBlock *Pred : Preds) {
986       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
987         // Seek a loop which actually contains the block being split (to avoid
988         // adjacent loops).
989         while (PredLoop && !PredLoop->contains(OldBB))
990           PredLoop = PredLoop->getParentLoop();
991 
992         // Select the most-nested of these loops which contains the block.
993         if (PredLoop && PredLoop->contains(OldBB) &&
994             (!InnermostPredLoop ||
995              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
996           InnermostPredLoop = PredLoop;
997       }
998     }
999 
1000     if (InnermostPredLoop)
1001       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1002   } else {
1003     L->addBasicBlockToLoop(NewBB, *LI);
1004     if (SplitMakesNewLoopHeader)
1005       L->moveToHeader(NewBB);
1006   }
1007 }
1008 
1009 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1010 /// This also updates AliasAnalysis, if available.
1011 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1012                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1013                            bool HasLoopExit) {
1014   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1015   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1016   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1017     PHINode *PN = cast<PHINode>(I++);
1018 
1019     // Check to see if all of the values coming in are the same.  If so, we
1020     // don't need to create a new PHI node, unless it's needed for LCSSA.
1021     Value *InVal = nullptr;
1022     if (!HasLoopExit) {
1023       InVal = PN->getIncomingValueForBlock(Preds[0]);
1024       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1025         if (!PredSet.count(PN->getIncomingBlock(i)))
1026           continue;
1027         if (!InVal)
1028           InVal = PN->getIncomingValue(i);
1029         else if (InVal != PN->getIncomingValue(i)) {
1030           InVal = nullptr;
1031           break;
1032         }
1033       }
1034     }
1035 
1036     if (InVal) {
1037       // If all incoming values for the new PHI would be the same, just don't
1038       // make a new PHI.  Instead, just remove the incoming values from the old
1039       // PHI.
1040 
1041       // NOTE! This loop walks backwards for a reason! First off, this minimizes
1042       // the cost of removal if we end up removing a large number of values, and
1043       // second off, this ensures that the indices for the incoming values
1044       // aren't invalidated when we remove one.
1045       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1046         if (PredSet.count(PN->getIncomingBlock(i)))
1047           PN->removeIncomingValue(i, false);
1048 
1049       // Add an incoming value to the PHI node in the loop for the preheader
1050       // edge.
1051       PN->addIncoming(InVal, NewBB);
1052       continue;
1053     }
1054 
1055     // If the values coming into the block are not the same, we need a new
1056     // PHI.
1057     // Create the new PHI node, insert it into NewBB at the end of the block
1058     PHINode *NewPHI =
1059         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1060 
1061     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1062     // the cost of removal if we end up removing a large number of values, and
1063     // second off, this ensures that the indices for the incoming values aren't
1064     // invalidated when we remove one.
1065     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1066       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1067       if (PredSet.count(IncomingBB)) {
1068         Value *V = PN->removeIncomingValue(i, false);
1069         NewPHI->addIncoming(V, IncomingBB);
1070       }
1071     }
1072 
1073     PN->addIncoming(NewPHI, NewBB);
1074   }
1075 }
1076 
1077 static void SplitLandingPadPredecessorsImpl(
1078     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1079     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1080     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1081     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1082 
1083 static BasicBlock *
1084 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1085                            const char *Suffix, DomTreeUpdater *DTU,
1086                            DominatorTree *DT, LoopInfo *LI,
1087                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1088   // Do not attempt to split that which cannot be split.
1089   if (!BB->canSplitPredecessors())
1090     return nullptr;
1091 
1092   // For the landingpads we need to act a bit differently.
1093   // Delegate this work to the SplitLandingPadPredecessors.
1094   if (BB->isLandingPad()) {
1095     SmallVector<BasicBlock*, 2> NewBBs;
1096     std::string NewName = std::string(Suffix) + ".split-lp";
1097 
1098     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1099                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1100     return NewBBs[0];
1101   }
1102 
1103   // Create new basic block, insert right before the original block.
1104   BasicBlock *NewBB = BasicBlock::Create(
1105       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1106 
1107   // The new block unconditionally branches to the old block.
1108   BranchInst *BI = BranchInst::Create(BB, NewBB);
1109 
1110   Loop *L = nullptr;
1111   BasicBlock *OldLatch = nullptr;
1112   // Splitting the predecessors of a loop header creates a preheader block.
1113   if (LI && LI->isLoopHeader(BB)) {
1114     L = LI->getLoopFor(BB);
1115     // Using the loop start line number prevents debuggers stepping into the
1116     // loop body for this instruction.
1117     BI->setDebugLoc(L->getStartLoc());
1118 
1119     // If BB is the header of the Loop, it is possible that the loop is
1120     // modified, such that the current latch does not remain the latch of the
1121     // loop. If that is the case, the loop metadata from the current latch needs
1122     // to be applied to the new latch.
1123     OldLatch = L->getLoopLatch();
1124   } else
1125     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1126 
1127   // Move the edges from Preds to point to NewBB instead of BB.
1128   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1129     // This is slightly more strict than necessary; the minimum requirement
1130     // is that there be no more than one indirectbr branching to BB. And
1131     // all BlockAddress uses would need to be updated.
1132     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1133            "Cannot split an edge from an IndirectBrInst");
1134     Preds[i]->getTerminator()->replaceSuccessorWith(BB, NewBB);
1135   }
1136 
1137   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1138   // node becomes an incoming value for BB's phi node.  However, if the Preds
1139   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1140   // account for the newly created predecessor.
1141   if (Preds.empty()) {
1142     // Insert dummy values as the incoming value.
1143     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1144       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
1145   }
1146 
1147   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1148   bool HasLoopExit = false;
1149   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1150                             HasLoopExit);
1151 
1152   if (!Preds.empty()) {
1153     // Update the PHI nodes in BB with the values coming from NewBB.
1154     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1155   }
1156 
1157   if (OldLatch) {
1158     BasicBlock *NewLatch = L->getLoopLatch();
1159     if (NewLatch != OldLatch) {
1160       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1161       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1162       // It's still possible that OldLatch is the latch of another inner loop,
1163       // in which case we do not remove the metadata.
1164       Loop *IL = LI->getLoopFor(OldLatch);
1165       if (IL && IL->getLoopLatch() != OldLatch)
1166         OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1167     }
1168   }
1169 
1170   return NewBB;
1171 }
1172 
1173 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1174                                          ArrayRef<BasicBlock *> Preds,
1175                                          const char *Suffix, DominatorTree *DT,
1176                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1177                                          bool PreserveLCSSA) {
1178   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1179                                     MSSAU, PreserveLCSSA);
1180 }
1181 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1182                                          ArrayRef<BasicBlock *> Preds,
1183                                          const char *Suffix,
1184                                          DomTreeUpdater *DTU, LoopInfo *LI,
1185                                          MemorySSAUpdater *MSSAU,
1186                                          bool PreserveLCSSA) {
1187   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1188                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1189 }
1190 
1191 static void SplitLandingPadPredecessorsImpl(
1192     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1193     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1194     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1195     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1196   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1197 
1198   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1199   // it right before the original block.
1200   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1201                                           OrigBB->getName() + Suffix1,
1202                                           OrigBB->getParent(), OrigBB);
1203   NewBBs.push_back(NewBB1);
1204 
1205   // The new block unconditionally branches to the old block.
1206   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1207   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1208 
1209   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1210   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1211     // This is slightly more strict than necessary; the minimum requirement
1212     // is that there be no more than one indirectbr branching to BB. And
1213     // all BlockAddress uses would need to be updated.
1214     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1215            "Cannot split an edge from an IndirectBrInst");
1216     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1217   }
1218 
1219   bool HasLoopExit = false;
1220   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1221                             PreserveLCSSA, HasLoopExit);
1222 
1223   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1224   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1225 
1226   // Move the remaining edges from OrigBB to point to NewBB2.
1227   SmallVector<BasicBlock*, 8> NewBB2Preds;
1228   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1229        i != e; ) {
1230     BasicBlock *Pred = *i++;
1231     if (Pred == NewBB1) continue;
1232     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1233            "Cannot split an edge from an IndirectBrInst");
1234     NewBB2Preds.push_back(Pred);
1235     e = pred_end(OrigBB);
1236   }
1237 
1238   BasicBlock *NewBB2 = nullptr;
1239   if (!NewBB2Preds.empty()) {
1240     // Create another basic block for the rest of OrigBB's predecessors.
1241     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1242                                 OrigBB->getName() + Suffix2,
1243                                 OrigBB->getParent(), OrigBB);
1244     NewBBs.push_back(NewBB2);
1245 
1246     // The new block unconditionally branches to the old block.
1247     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1248     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1249 
1250     // Move the remaining edges from OrigBB to point to NewBB2.
1251     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1252       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1253 
1254     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1255     HasLoopExit = false;
1256     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1257                               PreserveLCSSA, HasLoopExit);
1258 
1259     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1260     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1261   }
1262 
1263   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1264   Instruction *Clone1 = LPad->clone();
1265   Clone1->setName(Twine("lpad") + Suffix1);
1266   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1267 
1268   if (NewBB2) {
1269     Instruction *Clone2 = LPad->clone();
1270     Clone2->setName(Twine("lpad") + Suffix2);
1271     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1272 
1273     // Create a PHI node for the two cloned landingpad instructions only
1274     // if the original landingpad instruction has some uses.
1275     if (!LPad->use_empty()) {
1276       assert(!LPad->getType()->isTokenTy() &&
1277              "Split cannot be applied if LPad is token type. Otherwise an "
1278              "invalid PHINode of token type would be created.");
1279       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1280       PN->addIncoming(Clone1, NewBB1);
1281       PN->addIncoming(Clone2, NewBB2);
1282       LPad->replaceAllUsesWith(PN);
1283     }
1284     LPad->eraseFromParent();
1285   } else {
1286     // There is no second clone. Just replace the landing pad with the first
1287     // clone.
1288     LPad->replaceAllUsesWith(Clone1);
1289     LPad->eraseFromParent();
1290   }
1291 }
1292 
1293 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1294                                        ArrayRef<BasicBlock *> Preds,
1295                                        const char *Suffix1, const char *Suffix2,
1296                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1297                                        DominatorTree *DT, LoopInfo *LI,
1298                                        MemorySSAUpdater *MSSAU,
1299                                        bool PreserveLCSSA) {
1300   return SplitLandingPadPredecessorsImpl(
1301       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1302       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1303 }
1304 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1305                                        ArrayRef<BasicBlock *> Preds,
1306                                        const char *Suffix1, const char *Suffix2,
1307                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1308                                        DomTreeUpdater *DTU, LoopInfo *LI,
1309                                        MemorySSAUpdater *MSSAU,
1310                                        bool PreserveLCSSA) {
1311   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1312                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1313                                          PreserveLCSSA);
1314 }
1315 
1316 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1317                                              BasicBlock *Pred,
1318                                              DomTreeUpdater *DTU) {
1319   Instruction *UncondBranch = Pred->getTerminator();
1320   // Clone the return and add it to the end of the predecessor.
1321   Instruction *NewRet = RI->clone();
1322   Pred->getInstList().push_back(NewRet);
1323 
1324   // If the return instruction returns a value, and if the value was a
1325   // PHI node in "BB", propagate the right value into the return.
1326   for (Use &Op : NewRet->operands()) {
1327     Value *V = Op;
1328     Instruction *NewBC = nullptr;
1329     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1330       // Return value might be bitcasted. Clone and insert it before the
1331       // return instruction.
1332       V = BCI->getOperand(0);
1333       NewBC = BCI->clone();
1334       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1335       Op = NewBC;
1336     }
1337 
1338     Instruction *NewEV = nullptr;
1339     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1340       V = EVI->getOperand(0);
1341       NewEV = EVI->clone();
1342       if (NewBC) {
1343         NewBC->setOperand(0, NewEV);
1344         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1345       } else {
1346         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1347         Op = NewEV;
1348       }
1349     }
1350 
1351     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1352       if (PN->getParent() == BB) {
1353         if (NewEV) {
1354           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1355         } else if (NewBC)
1356           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1357         else
1358           Op = PN->getIncomingValueForBlock(Pred);
1359       }
1360     }
1361   }
1362 
1363   // Update any PHI nodes in the returning block to realize that we no
1364   // longer branch to them.
1365   BB->removePredecessor(Pred);
1366   UncondBranch->eraseFromParent();
1367 
1368   if (DTU)
1369     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1370 
1371   return cast<ReturnInst>(NewRet);
1372 }
1373 
1374 static Instruction *
1375 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1376                               bool Unreachable, MDNode *BranchWeights,
1377                               DomTreeUpdater *DTU, DominatorTree *DT,
1378                               LoopInfo *LI, BasicBlock *ThenBlock) {
1379   SmallVector<DominatorTree::UpdateType, 8> Updates;
1380   BasicBlock *Head = SplitBefore->getParent();
1381   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1382   if (DTU) {
1383     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead;
1384     Updates.push_back({DominatorTree::Insert, Head, Tail});
1385     Updates.reserve(Updates.size() + 2 * succ_size(Tail));
1386     for (BasicBlock *SuccessorOfHead : successors(Tail))
1387       if (UniqueSuccessorsOfHead.insert(SuccessorOfHead).second) {
1388         Updates.push_back({DominatorTree::Insert, Tail, SuccessorOfHead});
1389         Updates.push_back({DominatorTree::Delete, Head, SuccessorOfHead});
1390       }
1391   }
1392   Instruction *HeadOldTerm = Head->getTerminator();
1393   LLVMContext &C = Head->getContext();
1394   Instruction *CheckTerm;
1395   bool CreateThenBlock = (ThenBlock == nullptr);
1396   if (CreateThenBlock) {
1397     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1398     if (Unreachable)
1399       CheckTerm = new UnreachableInst(C, ThenBlock);
1400     else {
1401       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1402       if (DTU)
1403         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1404     }
1405     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1406   } else
1407     CheckTerm = ThenBlock->getTerminator();
1408   BranchInst *HeadNewTerm =
1409       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1410   if (DTU)
1411     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1412   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1413   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1414 
1415   if (DTU)
1416     DTU->applyUpdates(Updates);
1417   else if (DT) {
1418     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1419       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1420 
1421       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1422       for (DomTreeNode *Child : Children)
1423         DT->changeImmediateDominator(Child, NewNode);
1424 
1425       // Head dominates ThenBlock.
1426       if (CreateThenBlock)
1427         DT->addNewBlock(ThenBlock, Head);
1428       else
1429         DT->changeImmediateDominator(ThenBlock, Head);
1430     }
1431   }
1432 
1433   if (LI) {
1434     if (Loop *L = LI->getLoopFor(Head)) {
1435       L->addBasicBlockToLoop(ThenBlock, *LI);
1436       L->addBasicBlockToLoop(Tail, *LI);
1437     }
1438   }
1439 
1440   return CheckTerm;
1441 }
1442 
1443 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1444                                              Instruction *SplitBefore,
1445                                              bool Unreachable,
1446                                              MDNode *BranchWeights,
1447                                              DominatorTree *DT, LoopInfo *LI,
1448                                              BasicBlock *ThenBlock) {
1449   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1450                                        BranchWeights,
1451                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1452 }
1453 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1454                                              Instruction *SplitBefore,
1455                                              bool Unreachable,
1456                                              MDNode *BranchWeights,
1457                                              DomTreeUpdater *DTU, LoopInfo *LI,
1458                                              BasicBlock *ThenBlock) {
1459   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1460                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1461                                        ThenBlock);
1462 }
1463 
1464 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1465                                          Instruction **ThenTerm,
1466                                          Instruction **ElseTerm,
1467                                          MDNode *BranchWeights) {
1468   BasicBlock *Head = SplitBefore->getParent();
1469   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1470   Instruction *HeadOldTerm = Head->getTerminator();
1471   LLVMContext &C = Head->getContext();
1472   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1473   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1474   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1475   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1476   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1477   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1478   BranchInst *HeadNewTerm =
1479     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1480   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1481   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1482 }
1483 
1484 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1485                                  BasicBlock *&IfFalse) {
1486   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1487   BasicBlock *Pred1 = nullptr;
1488   BasicBlock *Pred2 = nullptr;
1489 
1490   if (SomePHI) {
1491     if (SomePHI->getNumIncomingValues() != 2)
1492       return nullptr;
1493     Pred1 = SomePHI->getIncomingBlock(0);
1494     Pred2 = SomePHI->getIncomingBlock(1);
1495   } else {
1496     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1497     if (PI == PE) // No predecessor
1498       return nullptr;
1499     Pred1 = *PI++;
1500     if (PI == PE) // Only one predecessor
1501       return nullptr;
1502     Pred2 = *PI++;
1503     if (PI != PE) // More than two predecessors
1504       return nullptr;
1505   }
1506 
1507   // We can only handle branches.  Other control flow will be lowered to
1508   // branches if possible anyway.
1509   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1510   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1511   if (!Pred1Br || !Pred2Br)
1512     return nullptr;
1513 
1514   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1515   // either are.
1516   if (Pred2Br->isConditional()) {
1517     // If both branches are conditional, we don't have an "if statement".  In
1518     // reality, we could transform this case, but since the condition will be
1519     // required anyway, we stand no chance of eliminating it, so the xform is
1520     // probably not profitable.
1521     if (Pred1Br->isConditional())
1522       return nullptr;
1523 
1524     std::swap(Pred1, Pred2);
1525     std::swap(Pred1Br, Pred2Br);
1526   }
1527 
1528   if (Pred1Br->isConditional()) {
1529     // The only thing we have to watch out for here is to make sure that Pred2
1530     // doesn't have incoming edges from other blocks.  If it does, the condition
1531     // doesn't dominate BB.
1532     if (!Pred2->getSinglePredecessor())
1533       return nullptr;
1534 
1535     // If we found a conditional branch predecessor, make sure that it branches
1536     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1537     if (Pred1Br->getSuccessor(0) == BB &&
1538         Pred1Br->getSuccessor(1) == Pred2) {
1539       IfTrue = Pred1;
1540       IfFalse = Pred2;
1541     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1542                Pred1Br->getSuccessor(1) == BB) {
1543       IfTrue = Pred2;
1544       IfFalse = Pred1;
1545     } else {
1546       // We know that one arm of the conditional goes to BB, so the other must
1547       // go somewhere unrelated, and this must not be an "if statement".
1548       return nullptr;
1549     }
1550 
1551     return Pred1Br;
1552   }
1553 
1554   // Ok, if we got here, both predecessors end with an unconditional branch to
1555   // BB.  Don't panic!  If both blocks only have a single (identical)
1556   // predecessor, and THAT is a conditional branch, then we're all ok!
1557   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1558   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1559     return nullptr;
1560 
1561   // Otherwise, if this is a conditional branch, then we can use it!
1562   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1563   if (!BI) return nullptr;
1564 
1565   assert(BI->isConditional() && "Two successors but not conditional?");
1566   if (BI->getSuccessor(0) == Pred1) {
1567     IfTrue = Pred1;
1568     IfFalse = Pred2;
1569   } else {
1570     IfTrue = Pred2;
1571     IfFalse = Pred1;
1572   }
1573   return BI;
1574 }
1575 
1576 // After creating a control flow hub, the operands of PHINodes in an outgoing
1577 // block Out no longer match the predecessors of that block. Predecessors of Out
1578 // that are incoming blocks to the hub are now replaced by just one edge from
1579 // the hub. To match this new control flow, the corresponding values from each
1580 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1581 //
1582 // This operation cannot be performed with SSAUpdater, because it involves one
1583 // new use: If the block Out is in the list of Incoming blocks, then the newly
1584 // created PHI in the Hub will use itself along that edge from Out to Hub.
1585 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1586                           const SetVector<BasicBlock *> &Incoming,
1587                           BasicBlock *FirstGuardBlock) {
1588   auto I = Out->begin();
1589   while (I != Out->end() && isa<PHINode>(I)) {
1590     auto Phi = cast<PHINode>(I);
1591     auto NewPhi =
1592         PHINode::Create(Phi->getType(), Incoming.size(),
1593                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1594     for (auto In : Incoming) {
1595       Value *V = UndefValue::get(Phi->getType());
1596       if (In == Out) {
1597         V = NewPhi;
1598       } else if (Phi->getBasicBlockIndex(In) != -1) {
1599         V = Phi->removeIncomingValue(In, false);
1600       }
1601       NewPhi->addIncoming(V, In);
1602     }
1603     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1604     if (Phi->getNumOperands() == 0) {
1605       Phi->replaceAllUsesWith(NewPhi);
1606       I = Phi->eraseFromParent();
1607       continue;
1608     }
1609     Phi->addIncoming(NewPhi, GuardBlock);
1610     ++I;
1611   }
1612 }
1613 
1614 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1615 using BBSetVector = SetVector<BasicBlock *>;
1616 
1617 // Redirects the terminator of the incoming block to the first guard
1618 // block in the hub. The condition of the original terminator (if it
1619 // was conditional) and its original successors are returned as a
1620 // tuple <condition, succ0, succ1>. The function additionally filters
1621 // out successors that are not in the set of outgoing blocks.
1622 //
1623 // - condition is non-null iff the branch is conditional.
1624 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1625 // - Succ2 is non-null iff condition is non-null and the fallthrough
1626 //         target is an outgoing block.
1627 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1628 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1629               const BBSetVector &Outgoing) {
1630   auto Branch = cast<BranchInst>(BB->getTerminator());
1631   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1632 
1633   BasicBlock *Succ0 = Branch->getSuccessor(0);
1634   BasicBlock *Succ1 = nullptr;
1635   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1636 
1637   if (Branch->isUnconditional()) {
1638     Branch->setSuccessor(0, FirstGuardBlock);
1639     assert(Succ0);
1640   } else {
1641     Succ1 = Branch->getSuccessor(1);
1642     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1643     assert(Succ0 || Succ1);
1644     if (Succ0 && !Succ1) {
1645       Branch->setSuccessor(0, FirstGuardBlock);
1646     } else if (Succ1 && !Succ0) {
1647       Branch->setSuccessor(1, FirstGuardBlock);
1648     } else {
1649       Branch->eraseFromParent();
1650       BranchInst::Create(FirstGuardBlock, BB);
1651     }
1652   }
1653 
1654   assert(Succ0 || Succ1);
1655   return std::make_tuple(Condition, Succ0, Succ1);
1656 }
1657 
1658 // Capture the existing control flow as guard predicates, and redirect
1659 // control flow from every incoming block to the first guard block in
1660 // the hub.
1661 //
1662 // There is one guard predicate for each outgoing block OutBB. The
1663 // predicate is a PHINode with one input for each InBB which
1664 // represents whether the hub should transfer control flow to OutBB if
1665 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1666 // evaluates them in the same order as the Outgoing set-vector, and
1667 // control branches to the first outgoing block whose predicate
1668 // evaluates to true.
1669 static void convertToGuardPredicates(
1670     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1671     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1672     const BBSetVector &Outgoing) {
1673   auto &Context = Incoming.front()->getContext();
1674   auto BoolTrue = ConstantInt::getTrue(Context);
1675   auto BoolFalse = ConstantInt::getFalse(Context);
1676 
1677   // The predicate for the last outgoing is trivially true, and so we
1678   // process only the first N-1 successors.
1679   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1680     auto Out = Outgoing[i];
1681     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1682     auto Phi =
1683         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1684                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1685     GuardPredicates[Out] = Phi;
1686   }
1687 
1688   for (auto In : Incoming) {
1689     Value *Condition;
1690     BasicBlock *Succ0;
1691     BasicBlock *Succ1;
1692     std::tie(Condition, Succ0, Succ1) =
1693         redirectToHub(In, FirstGuardBlock, Outgoing);
1694 
1695     // Optimization: Consider an incoming block A with both successors
1696     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1697     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1698     // first in the loop below, control will branch to Succ0 using the
1699     // corresponding predicate. But if that branch is not taken, then
1700     // control must reach Succ1, which means that the predicate for
1701     // Succ1 is always true.
1702     bool OneSuccessorDone = false;
1703     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1704       auto Out = Outgoing[i];
1705       auto Phi = GuardPredicates[Out];
1706       if (Out != Succ0 && Out != Succ1) {
1707         Phi->addIncoming(BoolFalse, In);
1708         continue;
1709       }
1710       // Optimization: When only one successor is an outgoing block,
1711       // the predicate is always true.
1712       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1713         Phi->addIncoming(BoolTrue, In);
1714         continue;
1715       }
1716       assert(Succ0 && Succ1);
1717       OneSuccessorDone = true;
1718       if (Out == Succ0) {
1719         Phi->addIncoming(Condition, In);
1720         continue;
1721       }
1722       auto Inverted = invertCondition(Condition);
1723       DeletionCandidates.push_back(Condition);
1724       Phi->addIncoming(Inverted, In);
1725     }
1726   }
1727 }
1728 
1729 // For each outgoing block OutBB, create a guard block in the Hub. The
1730 // first guard block was already created outside, and available as the
1731 // first element in the vector of guard blocks.
1732 //
1733 // Each guard block terminates in a conditional branch that transfers
1734 // control to the corresponding outgoing block or the next guard
1735 // block. The last guard block has two outgoing blocks as successors
1736 // since the condition for the final outgoing block is trivially
1737 // true. So we create one less block (including the first guard block)
1738 // than the number of outgoing blocks.
1739 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1740                               Function *F, const BBSetVector &Outgoing,
1741                               BBPredicates &GuardPredicates, StringRef Prefix) {
1742   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1743     GuardBlocks.push_back(
1744         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1745   }
1746   assert(GuardBlocks.size() == GuardPredicates.size());
1747 
1748   // To help keep the loop simple, temporarily append the last
1749   // outgoing block to the list of guard blocks.
1750   GuardBlocks.push_back(Outgoing.back());
1751 
1752   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1753     auto Out = Outgoing[i];
1754     assert(GuardPredicates.count(Out));
1755     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1756                        GuardBlocks[i]);
1757   }
1758 
1759   // Remove the last block from the guard list.
1760   GuardBlocks.pop_back();
1761 }
1762 
1763 BasicBlock *llvm::CreateControlFlowHub(
1764     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1765     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1766     const StringRef Prefix) {
1767   auto F = Incoming.front()->getParent();
1768   auto FirstGuardBlock =
1769       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1770 
1771   SmallVector<DominatorTree::UpdateType, 16> Updates;
1772   if (DTU) {
1773     for (auto In : Incoming) {
1774       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1775       for (auto Succ : successors(In)) {
1776         if (Outgoing.count(Succ))
1777           Updates.push_back({DominatorTree::Delete, In, Succ});
1778       }
1779     }
1780   }
1781 
1782   BBPredicates GuardPredicates;
1783   SmallVector<WeakVH, 8> DeletionCandidates;
1784   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1785                            Incoming, Outgoing);
1786 
1787   GuardBlocks.push_back(FirstGuardBlock);
1788   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1789 
1790   // Update the PHINodes in each outgoing block to match the new control flow.
1791   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1792     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1793   }
1794   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1795 
1796   if (DTU) {
1797     int NumGuards = GuardBlocks.size();
1798     assert((int)Outgoing.size() == NumGuards + 1);
1799     for (int i = 0; i != NumGuards - 1; ++i) {
1800       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1801       Updates.push_back(
1802           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1803     }
1804     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1805                        Outgoing[NumGuards - 1]});
1806     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1807                        Outgoing[NumGuards]});
1808     DTU->applyUpdates(Updates);
1809   }
1810 
1811   for (auto I : DeletionCandidates) {
1812     if (I->use_empty())
1813       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1814         Inst->eraseFromParent();
1815   }
1816 
1817   return FirstGuardBlock;
1818 }
1819