1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <string>
45 #include <utility>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 void llvm::DetatchDeadBlocks(
51     ArrayRef<BasicBlock *> BBs,
52     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
53     bool KeepOneInputPHIs) {
54   for (auto *BB : BBs) {
55     // Loop through all of our successors and make sure they know that one
56     // of their predecessors is going away.
57     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
58     for (BasicBlock *Succ : successors(BB)) {
59       Succ->removePredecessor(BB, KeepOneInputPHIs);
60       if (Updates && UniqueSuccessors.insert(Succ).second)
61         Updates->push_back({DominatorTree::Delete, BB, Succ});
62     }
63 
64     // Zap all the instructions in the block.
65     while (!BB->empty()) {
66       Instruction &I = BB->back();
67       // If this instruction is used, replace uses with an arbitrary value.
68       // Because control flow can't get here, we don't care what we replace the
69       // value with.  Note that since this block is unreachable, and all values
70       // contained within it must dominate their uses, that all uses will
71       // eventually be removed (they are themselves dead).
72       if (!I.use_empty())
73         I.replaceAllUsesWith(UndefValue::get(I.getType()));
74       BB->getInstList().pop_back();
75     }
76     new UnreachableInst(BB->getContext(), BB);
77     assert(BB->getInstList().size() == 1 &&
78            isa<UnreachableInst>(BB->getTerminator()) &&
79            "The successor list of BB isn't empty before "
80            "applying corresponding DTU updates.");
81   }
82 }
83 
84 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
85                            bool KeepOneInputPHIs) {
86   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
87 }
88 
89 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
90                             bool KeepOneInputPHIs) {
91 #ifndef NDEBUG
92   // Make sure that all predecessors of each dead block is also dead.
93   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
94   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
95   for (auto *BB : Dead)
96     for (BasicBlock *Pred : predecessors(BB))
97       assert(Dead.count(Pred) && "All predecessors must be dead!");
98 #endif
99 
100   SmallVector<DominatorTree::UpdateType, 4> Updates;
101   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
102 
103   if (DTU)
104     DTU->applyUpdatesPermissive(Updates);
105 
106   for (BasicBlock *BB : BBs)
107     if (DTU)
108       DTU->deleteBB(BB);
109     else
110       BB->eraseFromParent();
111 }
112 
113 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
114                                       bool KeepOneInputPHIs) {
115   df_iterator_default_set<BasicBlock*> Reachable;
116 
117   // Mark all reachable blocks.
118   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
119     (void)BB/* Mark all reachable blocks */;
120 
121   // Collect all dead blocks.
122   std::vector<BasicBlock*> DeadBlocks;
123   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
124     if (!Reachable.count(&*I)) {
125       BasicBlock *BB = &*I;
126       DeadBlocks.push_back(BB);
127     }
128 
129   // Delete the dead blocks.
130   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
131 
132   return !DeadBlocks.empty();
133 }
134 
135 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
136                                    MemoryDependenceResults *MemDep) {
137   if (!isa<PHINode>(BB->begin())) return;
138 
139   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
140     if (PN->getIncomingValue(0) != PN)
141       PN->replaceAllUsesWith(PN->getIncomingValue(0));
142     else
143       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
144 
145     if (MemDep)
146       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
147 
148     PN->eraseFromParent();
149   }
150 }
151 
152 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
153   // Recursively deleting a PHI may cause multiple PHIs to be deleted
154   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
155   SmallVector<WeakTrackingVH, 8> PHIs;
156   for (PHINode &PN : BB->phis())
157     PHIs.push_back(&PN);
158 
159   bool Changed = false;
160   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
161     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
162       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
163 
164   return Changed;
165 }
166 
167 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
168                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
169                                      MemoryDependenceResults *MemDep) {
170   if (BB->hasAddressTaken())
171     return false;
172 
173   // Can't merge if there are multiple predecessors, or no predecessors.
174   BasicBlock *PredBB = BB->getUniquePredecessor();
175   if (!PredBB) return false;
176 
177   // Don't break self-loops.
178   if (PredBB == BB) return false;
179   // Don't break unwinding instructions.
180   if (PredBB->getTerminator()->isExceptionalTerminator())
181     return false;
182 
183   // Can't merge if there are multiple distinct successors.
184   if (PredBB->getUniqueSuccessor() != BB)
185     return false;
186 
187   // Can't merge if there is PHI loop.
188   for (PHINode &PN : BB->phis())
189     for (Value *IncValue : PN.incoming_values())
190       if (IncValue == &PN)
191         return false;
192 
193   // Begin by getting rid of unneeded PHIs.
194   SmallVector<AssertingVH<Value>, 4> IncomingValues;
195   if (isa<PHINode>(BB->front())) {
196     for (PHINode &PN : BB->phis())
197       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
198           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
199         IncomingValues.push_back(PN.getIncomingValue(0));
200     FoldSingleEntryPHINodes(BB, MemDep);
201   }
202 
203   // DTU update: Collect all the edges that exit BB.
204   // These dominator edges will be redirected from Pred.
205   std::vector<DominatorTree::UpdateType> Updates;
206   if (DTU) {
207     Updates.reserve(1 + (2 * succ_size(BB)));
208     Updates.push_back({DominatorTree::Delete, PredBB, BB});
209     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
210       Updates.push_back({DominatorTree::Delete, BB, *I});
211       // This successor of BB may already have PredBB as a predecessor.
212       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
213         Updates.push_back({DominatorTree::Insert, PredBB, *I});
214     }
215   }
216 
217   if (MSSAU)
218     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
219 
220   // Delete the unconditional branch from the predecessor...
221   PredBB->getInstList().pop_back();
222 
223   // Make all PHI nodes that referred to BB now refer to Pred as their
224   // source...
225   BB->replaceAllUsesWith(PredBB);
226 
227   // Move all definitions in the successor to the predecessor...
228   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
229   new UnreachableInst(BB->getContext(), BB);
230 
231   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
232   for (auto Incoming : IncomingValues) {
233     if (isa<Instruction>(*Incoming)) {
234       SmallVector<DbgValueInst *, 2> DbgValues;
235       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
236           DbgValueSet;
237       llvm::findDbgValues(DbgValues, Incoming);
238       for (auto &DVI : DbgValues) {
239         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
240         if (!R.second)
241           DVI->eraseFromParent();
242       }
243     }
244   }
245 
246   // Inherit predecessors name if it exists.
247   if (!PredBB->hasName())
248     PredBB->takeName(BB);
249 
250   if (LI)
251     LI->removeBlock(BB);
252 
253   if (MemDep)
254     MemDep->invalidateCachedPredecessors();
255 
256   // Finally, erase the old block and update dominator info.
257   if (DTU) {
258     assert(BB->getInstList().size() == 1 &&
259            isa<UnreachableInst>(BB->getTerminator()) &&
260            "The successor list of BB isn't empty before "
261            "applying corresponding DTU updates.");
262     DTU->applyUpdatesPermissive(Updates);
263     DTU->deleteBB(BB);
264   }
265 
266   else {
267     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
268   }
269   return true;
270 }
271 
272 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
273                                 BasicBlock::iterator &BI, Value *V) {
274   Instruction &I = *BI;
275   // Replaces all of the uses of the instruction with uses of the value
276   I.replaceAllUsesWith(V);
277 
278   // Make sure to propagate a name if there is one already.
279   if (I.hasName() && !V->hasName())
280     V->takeName(&I);
281 
282   // Delete the unnecessary instruction now...
283   BI = BIL.erase(BI);
284 }
285 
286 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
287                                BasicBlock::iterator &BI, Instruction *I) {
288   assert(I->getParent() == nullptr &&
289          "ReplaceInstWithInst: Instruction already inserted into basic block!");
290 
291   // Copy debug location to newly added instruction, if it wasn't already set
292   // by the caller.
293   if (!I->getDebugLoc())
294     I->setDebugLoc(BI->getDebugLoc());
295 
296   // Insert the new instruction into the basic block...
297   BasicBlock::iterator New = BIL.insert(BI, I);
298 
299   // Replace all uses of the old instruction, and delete it.
300   ReplaceInstWithValue(BIL, BI, I);
301 
302   // Move BI back to point to the newly inserted instruction
303   BI = New;
304 }
305 
306 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
307   BasicBlock::iterator BI(From);
308   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
309 }
310 
311 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
312                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
313   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
314 
315   // If this is a critical edge, let SplitCriticalEdge do it.
316   Instruction *LatchTerm = BB->getTerminator();
317   if (SplitCriticalEdge(
318           LatchTerm, SuccNum,
319           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
320     return LatchTerm->getSuccessor(SuccNum);
321 
322   // If the edge isn't critical, then BB has a single successor or Succ has a
323   // single pred.  Split the block.
324   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
325     // If the successor only has a single pred, split the top of the successor
326     // block.
327     assert(SP == BB && "CFG broken");
328     SP = nullptr;
329     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
330   }
331 
332   // Otherwise, if BB has a single successor, split it at the bottom of the
333   // block.
334   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
335          "Should have a single succ!");
336   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
337 }
338 
339 unsigned
340 llvm::SplitAllCriticalEdges(Function &F,
341                             const CriticalEdgeSplittingOptions &Options) {
342   unsigned NumBroken = 0;
343   for (BasicBlock &BB : F) {
344     Instruction *TI = BB.getTerminator();
345     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
346       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
347         if (SplitCriticalEdge(TI, i, Options))
348           ++NumBroken;
349   }
350   return NumBroken;
351 }
352 
353 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
354                              DominatorTree *DT, LoopInfo *LI,
355                              MemorySSAUpdater *MSSAU) {
356   BasicBlock::iterator SplitIt = SplitPt->getIterator();
357   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
358     ++SplitIt;
359   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
360 
361   // The new block lives in whichever loop the old one did. This preserves
362   // LCSSA as well, because we force the split point to be after any PHI nodes.
363   if (LI)
364     if (Loop *L = LI->getLoopFor(Old))
365       L->addBasicBlockToLoop(New, *LI);
366 
367   if (DT)
368     // Old dominates New. New node dominates all other nodes dominated by Old.
369     if (DomTreeNode *OldNode = DT->getNode(Old)) {
370       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
371 
372       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
373       for (DomTreeNode *I : Children)
374         DT->changeImmediateDominator(I, NewNode);
375     }
376 
377   // Move MemoryAccesses still tracked in Old, but part of New now.
378   // Update accesses in successor blocks accordingly.
379   if (MSSAU)
380     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
381 
382   return New;
383 }
384 
385 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
386 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
387                                       ArrayRef<BasicBlock *> Preds,
388                                       DominatorTree *DT, LoopInfo *LI,
389                                       MemorySSAUpdater *MSSAU,
390                                       bool PreserveLCSSA, bool &HasLoopExit) {
391   // Update dominator tree if available.
392   if (DT) {
393     if (OldBB == DT->getRootNode()->getBlock()) {
394       assert(NewBB == &NewBB->getParent()->getEntryBlock());
395       DT->setNewRoot(NewBB);
396     } else {
397       // Split block expects NewBB to have a non-empty set of predecessors.
398       DT->splitBlock(NewBB);
399     }
400   }
401 
402   // Update MemoryPhis after split if MemorySSA is available
403   if (MSSAU)
404     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
405 
406   // The rest of the logic is only relevant for updating the loop structures.
407   if (!LI)
408     return;
409 
410   assert(DT && "DT should be available to update LoopInfo!");
411   Loop *L = LI->getLoopFor(OldBB);
412 
413   // If we need to preserve loop analyses, collect some information about how
414   // this split will affect loops.
415   bool IsLoopEntry = !!L;
416   bool SplitMakesNewLoopHeader = false;
417   for (BasicBlock *Pred : Preds) {
418     // Preds that are not reachable from entry should not be used to identify if
419     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
420     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
421     // as true and make the NewBB the header of some loop. This breaks LI.
422     if (!DT->isReachableFromEntry(Pred))
423       continue;
424     // If we need to preserve LCSSA, determine if any of the preds is a loop
425     // exit.
426     if (PreserveLCSSA)
427       if (Loop *PL = LI->getLoopFor(Pred))
428         if (!PL->contains(OldBB))
429           HasLoopExit = true;
430 
431     // If we need to preserve LoopInfo, note whether any of the preds crosses
432     // an interesting loop boundary.
433     if (!L)
434       continue;
435     if (L->contains(Pred))
436       IsLoopEntry = false;
437     else
438       SplitMakesNewLoopHeader = true;
439   }
440 
441   // Unless we have a loop for OldBB, nothing else to do here.
442   if (!L)
443     return;
444 
445   if (IsLoopEntry) {
446     // Add the new block to the nearest enclosing loop (and not an adjacent
447     // loop). To find this, examine each of the predecessors and determine which
448     // loops enclose them, and select the most-nested loop which contains the
449     // loop containing the block being split.
450     Loop *InnermostPredLoop = nullptr;
451     for (BasicBlock *Pred : Preds) {
452       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
453         // Seek a loop which actually contains the block being split (to avoid
454         // adjacent loops).
455         while (PredLoop && !PredLoop->contains(OldBB))
456           PredLoop = PredLoop->getParentLoop();
457 
458         // Select the most-nested of these loops which contains the block.
459         if (PredLoop && PredLoop->contains(OldBB) &&
460             (!InnermostPredLoop ||
461              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
462           InnermostPredLoop = PredLoop;
463       }
464     }
465 
466     if (InnermostPredLoop)
467       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
468   } else {
469     L->addBasicBlockToLoop(NewBB, *LI);
470     if (SplitMakesNewLoopHeader)
471       L->moveToHeader(NewBB);
472   }
473 }
474 
475 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
476 /// This also updates AliasAnalysis, if available.
477 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
478                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
479                            bool HasLoopExit) {
480   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
481   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
482   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
483     PHINode *PN = cast<PHINode>(I++);
484 
485     // Check to see if all of the values coming in are the same.  If so, we
486     // don't need to create a new PHI node, unless it's needed for LCSSA.
487     Value *InVal = nullptr;
488     if (!HasLoopExit) {
489       InVal = PN->getIncomingValueForBlock(Preds[0]);
490       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
491         if (!PredSet.count(PN->getIncomingBlock(i)))
492           continue;
493         if (!InVal)
494           InVal = PN->getIncomingValue(i);
495         else if (InVal != PN->getIncomingValue(i)) {
496           InVal = nullptr;
497           break;
498         }
499       }
500     }
501 
502     if (InVal) {
503       // If all incoming values for the new PHI would be the same, just don't
504       // make a new PHI.  Instead, just remove the incoming values from the old
505       // PHI.
506 
507       // NOTE! This loop walks backwards for a reason! First off, this minimizes
508       // the cost of removal if we end up removing a large number of values, and
509       // second off, this ensures that the indices for the incoming values
510       // aren't invalidated when we remove one.
511       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
512         if (PredSet.count(PN->getIncomingBlock(i)))
513           PN->removeIncomingValue(i, false);
514 
515       // Add an incoming value to the PHI node in the loop for the preheader
516       // edge.
517       PN->addIncoming(InVal, NewBB);
518       continue;
519     }
520 
521     // If the values coming into the block are not the same, we need a new
522     // PHI.
523     // Create the new PHI node, insert it into NewBB at the end of the block
524     PHINode *NewPHI =
525         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
526 
527     // NOTE! This loop walks backwards for a reason! First off, this minimizes
528     // the cost of removal if we end up removing a large number of values, and
529     // second off, this ensures that the indices for the incoming values aren't
530     // invalidated when we remove one.
531     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
532       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
533       if (PredSet.count(IncomingBB)) {
534         Value *V = PN->removeIncomingValue(i, false);
535         NewPHI->addIncoming(V, IncomingBB);
536       }
537     }
538 
539     PN->addIncoming(NewPHI, NewBB);
540   }
541 }
542 
543 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
544                                          ArrayRef<BasicBlock *> Preds,
545                                          const char *Suffix, DominatorTree *DT,
546                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
547                                          bool PreserveLCSSA) {
548   // Do not attempt to split that which cannot be split.
549   if (!BB->canSplitPredecessors())
550     return nullptr;
551 
552   // For the landingpads we need to act a bit differently.
553   // Delegate this work to the SplitLandingPadPredecessors.
554   if (BB->isLandingPad()) {
555     SmallVector<BasicBlock*, 2> NewBBs;
556     std::string NewName = std::string(Suffix) + ".split-lp";
557 
558     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
559                                 LI, MSSAU, PreserveLCSSA);
560     return NewBBs[0];
561   }
562 
563   // Create new basic block, insert right before the original block.
564   BasicBlock *NewBB = BasicBlock::Create(
565       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
566 
567   // The new block unconditionally branches to the old block.
568   BranchInst *BI = BranchInst::Create(BB, NewBB);
569   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
570 
571   // Move the edges from Preds to point to NewBB instead of BB.
572   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
573     // This is slightly more strict than necessary; the minimum requirement
574     // is that there be no more than one indirectbr branching to BB. And
575     // all BlockAddress uses would need to be updated.
576     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
577            "Cannot split an edge from an IndirectBrInst");
578     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
579            "Cannot split an edge from a CallBrInst");
580     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
581   }
582 
583   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
584   // node becomes an incoming value for BB's phi node.  However, if the Preds
585   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
586   // account for the newly created predecessor.
587   if (Preds.empty()) {
588     // Insert dummy values as the incoming value.
589     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
590       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
591   }
592 
593   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
594   bool HasLoopExit = false;
595   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
596                             HasLoopExit);
597 
598   if (!Preds.empty()) {
599     // Update the PHI nodes in BB with the values coming from NewBB.
600     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
601   }
602 
603   return NewBB;
604 }
605 
606 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
607                                        ArrayRef<BasicBlock *> Preds,
608                                        const char *Suffix1, const char *Suffix2,
609                                        SmallVectorImpl<BasicBlock *> &NewBBs,
610                                        DominatorTree *DT, LoopInfo *LI,
611                                        MemorySSAUpdater *MSSAU,
612                                        bool PreserveLCSSA) {
613   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
614 
615   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
616   // it right before the original block.
617   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
618                                           OrigBB->getName() + Suffix1,
619                                           OrigBB->getParent(), OrigBB);
620   NewBBs.push_back(NewBB1);
621 
622   // The new block unconditionally branches to the old block.
623   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
624   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
625 
626   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
627   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
628     // This is slightly more strict than necessary; the minimum requirement
629     // is that there be no more than one indirectbr branching to BB. And
630     // all BlockAddress uses would need to be updated.
631     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
632            "Cannot split an edge from an IndirectBrInst");
633     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
634   }
635 
636   bool HasLoopExit = false;
637   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
638                             HasLoopExit);
639 
640   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
641   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
642 
643   // Move the remaining edges from OrigBB to point to NewBB2.
644   SmallVector<BasicBlock*, 8> NewBB2Preds;
645   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
646        i != e; ) {
647     BasicBlock *Pred = *i++;
648     if (Pred == NewBB1) continue;
649     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
650            "Cannot split an edge from an IndirectBrInst");
651     NewBB2Preds.push_back(Pred);
652     e = pred_end(OrigBB);
653   }
654 
655   BasicBlock *NewBB2 = nullptr;
656   if (!NewBB2Preds.empty()) {
657     // Create another basic block for the rest of OrigBB's predecessors.
658     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
659                                 OrigBB->getName() + Suffix2,
660                                 OrigBB->getParent(), OrigBB);
661     NewBBs.push_back(NewBB2);
662 
663     // The new block unconditionally branches to the old block.
664     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
665     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
666 
667     // Move the remaining edges from OrigBB to point to NewBB2.
668     for (BasicBlock *NewBB2Pred : NewBB2Preds)
669       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
670 
671     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
672     HasLoopExit = false;
673     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
674                               PreserveLCSSA, HasLoopExit);
675 
676     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
677     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
678   }
679 
680   LandingPadInst *LPad = OrigBB->getLandingPadInst();
681   Instruction *Clone1 = LPad->clone();
682   Clone1->setName(Twine("lpad") + Suffix1);
683   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
684 
685   if (NewBB2) {
686     Instruction *Clone2 = LPad->clone();
687     Clone2->setName(Twine("lpad") + Suffix2);
688     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
689 
690     // Create a PHI node for the two cloned landingpad instructions only
691     // if the original landingpad instruction has some uses.
692     if (!LPad->use_empty()) {
693       assert(!LPad->getType()->isTokenTy() &&
694              "Split cannot be applied if LPad is token type. Otherwise an "
695              "invalid PHINode of token type would be created.");
696       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
697       PN->addIncoming(Clone1, NewBB1);
698       PN->addIncoming(Clone2, NewBB2);
699       LPad->replaceAllUsesWith(PN);
700     }
701     LPad->eraseFromParent();
702   } else {
703     // There is no second clone. Just replace the landing pad with the first
704     // clone.
705     LPad->replaceAllUsesWith(Clone1);
706     LPad->eraseFromParent();
707   }
708 }
709 
710 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
711                                              BasicBlock *Pred,
712                                              DomTreeUpdater *DTU) {
713   Instruction *UncondBranch = Pred->getTerminator();
714   // Clone the return and add it to the end of the predecessor.
715   Instruction *NewRet = RI->clone();
716   Pred->getInstList().push_back(NewRet);
717 
718   // If the return instruction returns a value, and if the value was a
719   // PHI node in "BB", propagate the right value into the return.
720   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
721        i != e; ++i) {
722     Value *V = *i;
723     Instruction *NewBC = nullptr;
724     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
725       // Return value might be bitcasted. Clone and insert it before the
726       // return instruction.
727       V = BCI->getOperand(0);
728       NewBC = BCI->clone();
729       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
730       *i = NewBC;
731     }
732     if (PHINode *PN = dyn_cast<PHINode>(V)) {
733       if (PN->getParent() == BB) {
734         if (NewBC)
735           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
736         else
737           *i = PN->getIncomingValueForBlock(Pred);
738       }
739     }
740   }
741 
742   // Update any PHI nodes in the returning block to realize that we no
743   // longer branch to them.
744   BB->removePredecessor(Pred);
745   UncondBranch->eraseFromParent();
746 
747   if (DTU)
748     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
749 
750   return cast<ReturnInst>(NewRet);
751 }
752 
753 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
754                                              Instruction *SplitBefore,
755                                              bool Unreachable,
756                                              MDNode *BranchWeights,
757                                              DominatorTree *DT, LoopInfo *LI,
758                                              BasicBlock *ThenBlock) {
759   BasicBlock *Head = SplitBefore->getParent();
760   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
761   Instruction *HeadOldTerm = Head->getTerminator();
762   LLVMContext &C = Head->getContext();
763   Instruction *CheckTerm;
764   bool CreateThenBlock = (ThenBlock == nullptr);
765   if (CreateThenBlock) {
766     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
767     if (Unreachable)
768       CheckTerm = new UnreachableInst(C, ThenBlock);
769     else
770       CheckTerm = BranchInst::Create(Tail, ThenBlock);
771     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
772   } else
773     CheckTerm = ThenBlock->getTerminator();
774   BranchInst *HeadNewTerm =
775     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
776   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
777   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
778 
779   if (DT) {
780     if (DomTreeNode *OldNode = DT->getNode(Head)) {
781       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
782 
783       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
784       for (DomTreeNode *Child : Children)
785         DT->changeImmediateDominator(Child, NewNode);
786 
787       // Head dominates ThenBlock.
788       if (CreateThenBlock)
789         DT->addNewBlock(ThenBlock, Head);
790       else
791         DT->changeImmediateDominator(ThenBlock, Head);
792     }
793   }
794 
795   if (LI) {
796     if (Loop *L = LI->getLoopFor(Head)) {
797       L->addBasicBlockToLoop(ThenBlock, *LI);
798       L->addBasicBlockToLoop(Tail, *LI);
799     }
800   }
801 
802   return CheckTerm;
803 }
804 
805 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
806                                          Instruction **ThenTerm,
807                                          Instruction **ElseTerm,
808                                          MDNode *BranchWeights) {
809   BasicBlock *Head = SplitBefore->getParent();
810   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
811   Instruction *HeadOldTerm = Head->getTerminator();
812   LLVMContext &C = Head->getContext();
813   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
814   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
815   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
816   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
817   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
818   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
819   BranchInst *HeadNewTerm =
820     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
821   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
822   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
823 }
824 
825 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
826                              BasicBlock *&IfFalse) {
827   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
828   BasicBlock *Pred1 = nullptr;
829   BasicBlock *Pred2 = nullptr;
830 
831   if (SomePHI) {
832     if (SomePHI->getNumIncomingValues() != 2)
833       return nullptr;
834     Pred1 = SomePHI->getIncomingBlock(0);
835     Pred2 = SomePHI->getIncomingBlock(1);
836   } else {
837     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
838     if (PI == PE) // No predecessor
839       return nullptr;
840     Pred1 = *PI++;
841     if (PI == PE) // Only one predecessor
842       return nullptr;
843     Pred2 = *PI++;
844     if (PI != PE) // More than two predecessors
845       return nullptr;
846   }
847 
848   // We can only handle branches.  Other control flow will be lowered to
849   // branches if possible anyway.
850   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
851   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
852   if (!Pred1Br || !Pred2Br)
853     return nullptr;
854 
855   // Eliminate code duplication by ensuring that Pred1Br is conditional if
856   // either are.
857   if (Pred2Br->isConditional()) {
858     // If both branches are conditional, we don't have an "if statement".  In
859     // reality, we could transform this case, but since the condition will be
860     // required anyway, we stand no chance of eliminating it, so the xform is
861     // probably not profitable.
862     if (Pred1Br->isConditional())
863       return nullptr;
864 
865     std::swap(Pred1, Pred2);
866     std::swap(Pred1Br, Pred2Br);
867   }
868 
869   if (Pred1Br->isConditional()) {
870     // The only thing we have to watch out for here is to make sure that Pred2
871     // doesn't have incoming edges from other blocks.  If it does, the condition
872     // doesn't dominate BB.
873     if (!Pred2->getSinglePredecessor())
874       return nullptr;
875 
876     // If we found a conditional branch predecessor, make sure that it branches
877     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
878     if (Pred1Br->getSuccessor(0) == BB &&
879         Pred1Br->getSuccessor(1) == Pred2) {
880       IfTrue = Pred1;
881       IfFalse = Pred2;
882     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
883                Pred1Br->getSuccessor(1) == BB) {
884       IfTrue = Pred2;
885       IfFalse = Pred1;
886     } else {
887       // We know that one arm of the conditional goes to BB, so the other must
888       // go somewhere unrelated, and this must not be an "if statement".
889       return nullptr;
890     }
891 
892     return Pred1Br->getCondition();
893   }
894 
895   // Ok, if we got here, both predecessors end with an unconditional branch to
896   // BB.  Don't panic!  If both blocks only have a single (identical)
897   // predecessor, and THAT is a conditional branch, then we're all ok!
898   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
899   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
900     return nullptr;
901 
902   // Otherwise, if this is a conditional branch, then we can use it!
903   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
904   if (!BI) return nullptr;
905 
906   assert(BI->isConditional() && "Two successors but not conditional?");
907   if (BI->getSuccessor(0) == Pred1) {
908     IfTrue = Pred1;
909     IfFalse = Pred2;
910   } else {
911     IfTrue = Pred2;
912     IfFalse = Pred1;
913   }
914   return BI->getCondition();
915 }
916