1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <string> 45 #include <utility> 46 #include <vector> 47 48 using namespace llvm; 49 50 void llvm::DetatchDeadBlocks( 51 ArrayRef<BasicBlock *> BBs, 52 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 53 bool KeepOneInputPHIs) { 54 for (auto *BB : BBs) { 55 // Loop through all of our successors and make sure they know that one 56 // of their predecessors is going away. 57 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 58 for (BasicBlock *Succ : successors(BB)) { 59 Succ->removePredecessor(BB, KeepOneInputPHIs); 60 if (Updates && UniqueSuccessors.insert(Succ).second) 61 Updates->push_back({DominatorTree::Delete, BB, Succ}); 62 } 63 64 // Zap all the instructions in the block. 65 while (!BB->empty()) { 66 Instruction &I = BB->back(); 67 // If this instruction is used, replace uses with an arbitrary value. 68 // Because control flow can't get here, we don't care what we replace the 69 // value with. Note that since this block is unreachable, and all values 70 // contained within it must dominate their uses, that all uses will 71 // eventually be removed (they are themselves dead). 72 if (!I.use_empty()) 73 I.replaceAllUsesWith(UndefValue::get(I.getType())); 74 BB->getInstList().pop_back(); 75 } 76 new UnreachableInst(BB->getContext(), BB); 77 assert(BB->getInstList().size() == 1 && 78 isa<UnreachableInst>(BB->getTerminator()) && 79 "The successor list of BB isn't empty before " 80 "applying corresponding DTU updates."); 81 } 82 } 83 84 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 85 bool KeepOneInputPHIs) { 86 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 87 } 88 89 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 90 bool KeepOneInputPHIs) { 91 #ifndef NDEBUG 92 // Make sure that all predecessors of each dead block is also dead. 93 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 94 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 95 for (auto *BB : Dead) 96 for (BasicBlock *Pred : predecessors(BB)) 97 assert(Dead.count(Pred) && "All predecessors must be dead!"); 98 #endif 99 100 SmallVector<DominatorTree::UpdateType, 4> Updates; 101 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 102 103 if (DTU) 104 DTU->applyUpdatesPermissive(Updates); 105 106 for (BasicBlock *BB : BBs) 107 if (DTU) 108 DTU->deleteBB(BB); 109 else 110 BB->eraseFromParent(); 111 } 112 113 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 114 bool KeepOneInputPHIs) { 115 df_iterator_default_set<BasicBlock*> Reachable; 116 117 // Mark all reachable blocks. 118 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 119 (void)BB/* Mark all reachable blocks */; 120 121 // Collect all dead blocks. 122 std::vector<BasicBlock*> DeadBlocks; 123 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 124 if (!Reachable.count(&*I)) { 125 BasicBlock *BB = &*I; 126 DeadBlocks.push_back(BB); 127 } 128 129 // Delete the dead blocks. 130 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 131 132 return !DeadBlocks.empty(); 133 } 134 135 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 136 MemoryDependenceResults *MemDep) { 137 if (!isa<PHINode>(BB->begin())) return; 138 139 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 140 if (PN->getIncomingValue(0) != PN) 141 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 142 else 143 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 144 145 if (MemDep) 146 MemDep->removeInstruction(PN); // Memdep updates AA itself. 147 148 PN->eraseFromParent(); 149 } 150 } 151 152 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 153 // Recursively deleting a PHI may cause multiple PHIs to be deleted 154 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 155 SmallVector<WeakTrackingVH, 8> PHIs; 156 for (PHINode &PN : BB->phis()) 157 PHIs.push_back(&PN); 158 159 bool Changed = false; 160 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 161 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 162 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 163 164 return Changed; 165 } 166 167 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 168 LoopInfo *LI, MemorySSAUpdater *MSSAU, 169 MemoryDependenceResults *MemDep) { 170 if (BB->hasAddressTaken()) 171 return false; 172 173 // Can't merge if there are multiple predecessors, or no predecessors. 174 BasicBlock *PredBB = BB->getUniquePredecessor(); 175 if (!PredBB) return false; 176 177 // Don't break self-loops. 178 if (PredBB == BB) return false; 179 // Don't break unwinding instructions. 180 if (PredBB->getTerminator()->isExceptionalTerminator()) 181 return false; 182 183 // Can't merge if there are multiple distinct successors. 184 if (PredBB->getUniqueSuccessor() != BB) 185 return false; 186 187 // Can't merge if there is PHI loop. 188 for (PHINode &PN : BB->phis()) 189 for (Value *IncValue : PN.incoming_values()) 190 if (IncValue == &PN) 191 return false; 192 193 // Begin by getting rid of unneeded PHIs. 194 SmallVector<AssertingVH<Value>, 4> IncomingValues; 195 if (isa<PHINode>(BB->front())) { 196 for (PHINode &PN : BB->phis()) 197 if (!isa<PHINode>(PN.getIncomingValue(0)) || 198 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 199 IncomingValues.push_back(PN.getIncomingValue(0)); 200 FoldSingleEntryPHINodes(BB, MemDep); 201 } 202 203 // DTU update: Collect all the edges that exit BB. 204 // These dominator edges will be redirected from Pred. 205 std::vector<DominatorTree::UpdateType> Updates; 206 if (DTU) { 207 Updates.reserve(1 + (2 * succ_size(BB))); 208 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 209 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 210 Updates.push_back({DominatorTree::Delete, BB, *I}); 211 // This successor of BB may already have PredBB as a predecessor. 212 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 213 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 214 } 215 } 216 217 if (MSSAU) 218 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin())); 219 220 // Delete the unconditional branch from the predecessor... 221 PredBB->getInstList().pop_back(); 222 223 // Make all PHI nodes that referred to BB now refer to Pred as their 224 // source... 225 BB->replaceAllUsesWith(PredBB); 226 227 // Move all definitions in the successor to the predecessor... 228 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 229 new UnreachableInst(BB->getContext(), BB); 230 231 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 232 for (auto Incoming : IncomingValues) { 233 if (isa<Instruction>(*Incoming)) { 234 SmallVector<DbgValueInst *, 2> DbgValues; 235 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 236 DbgValueSet; 237 llvm::findDbgValues(DbgValues, Incoming); 238 for (auto &DVI : DbgValues) { 239 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 240 if (!R.second) 241 DVI->eraseFromParent(); 242 } 243 } 244 } 245 246 // Inherit predecessors name if it exists. 247 if (!PredBB->hasName()) 248 PredBB->takeName(BB); 249 250 if (LI) 251 LI->removeBlock(BB); 252 253 if (MemDep) 254 MemDep->invalidateCachedPredecessors(); 255 256 // Finally, erase the old block and update dominator info. 257 if (DTU) { 258 assert(BB->getInstList().size() == 1 && 259 isa<UnreachableInst>(BB->getTerminator()) && 260 "The successor list of BB isn't empty before " 261 "applying corresponding DTU updates."); 262 DTU->applyUpdatesPermissive(Updates); 263 DTU->deleteBB(BB); 264 } 265 266 else { 267 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 268 } 269 return true; 270 } 271 272 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 273 BasicBlock::iterator &BI, Value *V) { 274 Instruction &I = *BI; 275 // Replaces all of the uses of the instruction with uses of the value 276 I.replaceAllUsesWith(V); 277 278 // Make sure to propagate a name if there is one already. 279 if (I.hasName() && !V->hasName()) 280 V->takeName(&I); 281 282 // Delete the unnecessary instruction now... 283 BI = BIL.erase(BI); 284 } 285 286 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 287 BasicBlock::iterator &BI, Instruction *I) { 288 assert(I->getParent() == nullptr && 289 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 290 291 // Copy debug location to newly added instruction, if it wasn't already set 292 // by the caller. 293 if (!I->getDebugLoc()) 294 I->setDebugLoc(BI->getDebugLoc()); 295 296 // Insert the new instruction into the basic block... 297 BasicBlock::iterator New = BIL.insert(BI, I); 298 299 // Replace all uses of the old instruction, and delete it. 300 ReplaceInstWithValue(BIL, BI, I); 301 302 // Move BI back to point to the newly inserted instruction 303 BI = New; 304 } 305 306 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 307 BasicBlock::iterator BI(From); 308 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 309 } 310 311 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 312 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 313 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 314 315 // If this is a critical edge, let SplitCriticalEdge do it. 316 Instruction *LatchTerm = BB->getTerminator(); 317 if (SplitCriticalEdge( 318 LatchTerm, SuccNum, 319 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 320 return LatchTerm->getSuccessor(SuccNum); 321 322 // If the edge isn't critical, then BB has a single successor or Succ has a 323 // single pred. Split the block. 324 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 325 // If the successor only has a single pred, split the top of the successor 326 // block. 327 assert(SP == BB && "CFG broken"); 328 SP = nullptr; 329 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 330 } 331 332 // Otherwise, if BB has a single successor, split it at the bottom of the 333 // block. 334 assert(BB->getTerminator()->getNumSuccessors() == 1 && 335 "Should have a single succ!"); 336 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 337 } 338 339 unsigned 340 llvm::SplitAllCriticalEdges(Function &F, 341 const CriticalEdgeSplittingOptions &Options) { 342 unsigned NumBroken = 0; 343 for (BasicBlock &BB : F) { 344 Instruction *TI = BB.getTerminator(); 345 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 346 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 347 if (SplitCriticalEdge(TI, i, Options)) 348 ++NumBroken; 349 } 350 return NumBroken; 351 } 352 353 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 354 DominatorTree *DT, LoopInfo *LI, 355 MemorySSAUpdater *MSSAU) { 356 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 357 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 358 ++SplitIt; 359 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 360 361 // The new block lives in whichever loop the old one did. This preserves 362 // LCSSA as well, because we force the split point to be after any PHI nodes. 363 if (LI) 364 if (Loop *L = LI->getLoopFor(Old)) 365 L->addBasicBlockToLoop(New, *LI); 366 367 if (DT) 368 // Old dominates New. New node dominates all other nodes dominated by Old. 369 if (DomTreeNode *OldNode = DT->getNode(Old)) { 370 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 371 372 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 373 for (DomTreeNode *I : Children) 374 DT->changeImmediateDominator(I, NewNode); 375 } 376 377 // Move MemoryAccesses still tracked in Old, but part of New now. 378 // Update accesses in successor blocks accordingly. 379 if (MSSAU) 380 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 381 382 return New; 383 } 384 385 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 386 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 387 ArrayRef<BasicBlock *> Preds, 388 DominatorTree *DT, LoopInfo *LI, 389 MemorySSAUpdater *MSSAU, 390 bool PreserveLCSSA, bool &HasLoopExit) { 391 // Update dominator tree if available. 392 if (DT) { 393 if (OldBB == DT->getRootNode()->getBlock()) { 394 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 395 DT->setNewRoot(NewBB); 396 } else { 397 // Split block expects NewBB to have a non-empty set of predecessors. 398 DT->splitBlock(NewBB); 399 } 400 } 401 402 // Update MemoryPhis after split if MemorySSA is available 403 if (MSSAU) 404 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 405 406 // The rest of the logic is only relevant for updating the loop structures. 407 if (!LI) 408 return; 409 410 assert(DT && "DT should be available to update LoopInfo!"); 411 Loop *L = LI->getLoopFor(OldBB); 412 413 // If we need to preserve loop analyses, collect some information about how 414 // this split will affect loops. 415 bool IsLoopEntry = !!L; 416 bool SplitMakesNewLoopHeader = false; 417 for (BasicBlock *Pred : Preds) { 418 // Preds that are not reachable from entry should not be used to identify if 419 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 420 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 421 // as true and make the NewBB the header of some loop. This breaks LI. 422 if (!DT->isReachableFromEntry(Pred)) 423 continue; 424 // If we need to preserve LCSSA, determine if any of the preds is a loop 425 // exit. 426 if (PreserveLCSSA) 427 if (Loop *PL = LI->getLoopFor(Pred)) 428 if (!PL->contains(OldBB)) 429 HasLoopExit = true; 430 431 // If we need to preserve LoopInfo, note whether any of the preds crosses 432 // an interesting loop boundary. 433 if (!L) 434 continue; 435 if (L->contains(Pred)) 436 IsLoopEntry = false; 437 else 438 SplitMakesNewLoopHeader = true; 439 } 440 441 // Unless we have a loop for OldBB, nothing else to do here. 442 if (!L) 443 return; 444 445 if (IsLoopEntry) { 446 // Add the new block to the nearest enclosing loop (and not an adjacent 447 // loop). To find this, examine each of the predecessors and determine which 448 // loops enclose them, and select the most-nested loop which contains the 449 // loop containing the block being split. 450 Loop *InnermostPredLoop = nullptr; 451 for (BasicBlock *Pred : Preds) { 452 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 453 // Seek a loop which actually contains the block being split (to avoid 454 // adjacent loops). 455 while (PredLoop && !PredLoop->contains(OldBB)) 456 PredLoop = PredLoop->getParentLoop(); 457 458 // Select the most-nested of these loops which contains the block. 459 if (PredLoop && PredLoop->contains(OldBB) && 460 (!InnermostPredLoop || 461 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 462 InnermostPredLoop = PredLoop; 463 } 464 } 465 466 if (InnermostPredLoop) 467 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 468 } else { 469 L->addBasicBlockToLoop(NewBB, *LI); 470 if (SplitMakesNewLoopHeader) 471 L->moveToHeader(NewBB); 472 } 473 } 474 475 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 476 /// This also updates AliasAnalysis, if available. 477 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 478 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 479 bool HasLoopExit) { 480 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 481 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 482 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 483 PHINode *PN = cast<PHINode>(I++); 484 485 // Check to see if all of the values coming in are the same. If so, we 486 // don't need to create a new PHI node, unless it's needed for LCSSA. 487 Value *InVal = nullptr; 488 if (!HasLoopExit) { 489 InVal = PN->getIncomingValueForBlock(Preds[0]); 490 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 491 if (!PredSet.count(PN->getIncomingBlock(i))) 492 continue; 493 if (!InVal) 494 InVal = PN->getIncomingValue(i); 495 else if (InVal != PN->getIncomingValue(i)) { 496 InVal = nullptr; 497 break; 498 } 499 } 500 } 501 502 if (InVal) { 503 // If all incoming values for the new PHI would be the same, just don't 504 // make a new PHI. Instead, just remove the incoming values from the old 505 // PHI. 506 507 // NOTE! This loop walks backwards for a reason! First off, this minimizes 508 // the cost of removal if we end up removing a large number of values, and 509 // second off, this ensures that the indices for the incoming values 510 // aren't invalidated when we remove one. 511 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 512 if (PredSet.count(PN->getIncomingBlock(i))) 513 PN->removeIncomingValue(i, false); 514 515 // Add an incoming value to the PHI node in the loop for the preheader 516 // edge. 517 PN->addIncoming(InVal, NewBB); 518 continue; 519 } 520 521 // If the values coming into the block are not the same, we need a new 522 // PHI. 523 // Create the new PHI node, insert it into NewBB at the end of the block 524 PHINode *NewPHI = 525 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 526 527 // NOTE! This loop walks backwards for a reason! First off, this minimizes 528 // the cost of removal if we end up removing a large number of values, and 529 // second off, this ensures that the indices for the incoming values aren't 530 // invalidated when we remove one. 531 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 532 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 533 if (PredSet.count(IncomingBB)) { 534 Value *V = PN->removeIncomingValue(i, false); 535 NewPHI->addIncoming(V, IncomingBB); 536 } 537 } 538 539 PN->addIncoming(NewPHI, NewBB); 540 } 541 } 542 543 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 544 ArrayRef<BasicBlock *> Preds, 545 const char *Suffix, DominatorTree *DT, 546 LoopInfo *LI, MemorySSAUpdater *MSSAU, 547 bool PreserveLCSSA) { 548 // Do not attempt to split that which cannot be split. 549 if (!BB->canSplitPredecessors()) 550 return nullptr; 551 552 // For the landingpads we need to act a bit differently. 553 // Delegate this work to the SplitLandingPadPredecessors. 554 if (BB->isLandingPad()) { 555 SmallVector<BasicBlock*, 2> NewBBs; 556 std::string NewName = std::string(Suffix) + ".split-lp"; 557 558 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 559 LI, MSSAU, PreserveLCSSA); 560 return NewBBs[0]; 561 } 562 563 // Create new basic block, insert right before the original block. 564 BasicBlock *NewBB = BasicBlock::Create( 565 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 566 567 // The new block unconditionally branches to the old block. 568 BranchInst *BI = BranchInst::Create(BB, NewBB); 569 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 570 571 // Move the edges from Preds to point to NewBB instead of BB. 572 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 573 // This is slightly more strict than necessary; the minimum requirement 574 // is that there be no more than one indirectbr branching to BB. And 575 // all BlockAddress uses would need to be updated. 576 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 577 "Cannot split an edge from an IndirectBrInst"); 578 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 579 "Cannot split an edge from a CallBrInst"); 580 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 581 } 582 583 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 584 // node becomes an incoming value for BB's phi node. However, if the Preds 585 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 586 // account for the newly created predecessor. 587 if (Preds.empty()) { 588 // Insert dummy values as the incoming value. 589 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 590 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 591 } 592 593 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 594 bool HasLoopExit = false; 595 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 596 HasLoopExit); 597 598 if (!Preds.empty()) { 599 // Update the PHI nodes in BB with the values coming from NewBB. 600 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 601 } 602 603 return NewBB; 604 } 605 606 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 607 ArrayRef<BasicBlock *> Preds, 608 const char *Suffix1, const char *Suffix2, 609 SmallVectorImpl<BasicBlock *> &NewBBs, 610 DominatorTree *DT, LoopInfo *LI, 611 MemorySSAUpdater *MSSAU, 612 bool PreserveLCSSA) { 613 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 614 615 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 616 // it right before the original block. 617 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 618 OrigBB->getName() + Suffix1, 619 OrigBB->getParent(), OrigBB); 620 NewBBs.push_back(NewBB1); 621 622 // The new block unconditionally branches to the old block. 623 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 624 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 625 626 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 627 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 628 // This is slightly more strict than necessary; the minimum requirement 629 // is that there be no more than one indirectbr branching to BB. And 630 // all BlockAddress uses would need to be updated. 631 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 632 "Cannot split an edge from an IndirectBrInst"); 633 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 634 } 635 636 bool HasLoopExit = false; 637 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 638 HasLoopExit); 639 640 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 641 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 642 643 // Move the remaining edges from OrigBB to point to NewBB2. 644 SmallVector<BasicBlock*, 8> NewBB2Preds; 645 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 646 i != e; ) { 647 BasicBlock *Pred = *i++; 648 if (Pred == NewBB1) continue; 649 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 650 "Cannot split an edge from an IndirectBrInst"); 651 NewBB2Preds.push_back(Pred); 652 e = pred_end(OrigBB); 653 } 654 655 BasicBlock *NewBB2 = nullptr; 656 if (!NewBB2Preds.empty()) { 657 // Create another basic block for the rest of OrigBB's predecessors. 658 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 659 OrigBB->getName() + Suffix2, 660 OrigBB->getParent(), OrigBB); 661 NewBBs.push_back(NewBB2); 662 663 // The new block unconditionally branches to the old block. 664 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 665 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 666 667 // Move the remaining edges from OrigBB to point to NewBB2. 668 for (BasicBlock *NewBB2Pred : NewBB2Preds) 669 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 670 671 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 672 HasLoopExit = false; 673 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 674 PreserveLCSSA, HasLoopExit); 675 676 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 677 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 678 } 679 680 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 681 Instruction *Clone1 = LPad->clone(); 682 Clone1->setName(Twine("lpad") + Suffix1); 683 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 684 685 if (NewBB2) { 686 Instruction *Clone2 = LPad->clone(); 687 Clone2->setName(Twine("lpad") + Suffix2); 688 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 689 690 // Create a PHI node for the two cloned landingpad instructions only 691 // if the original landingpad instruction has some uses. 692 if (!LPad->use_empty()) { 693 assert(!LPad->getType()->isTokenTy() && 694 "Split cannot be applied if LPad is token type. Otherwise an " 695 "invalid PHINode of token type would be created."); 696 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 697 PN->addIncoming(Clone1, NewBB1); 698 PN->addIncoming(Clone2, NewBB2); 699 LPad->replaceAllUsesWith(PN); 700 } 701 LPad->eraseFromParent(); 702 } else { 703 // There is no second clone. Just replace the landing pad with the first 704 // clone. 705 LPad->replaceAllUsesWith(Clone1); 706 LPad->eraseFromParent(); 707 } 708 } 709 710 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 711 BasicBlock *Pred, 712 DomTreeUpdater *DTU) { 713 Instruction *UncondBranch = Pred->getTerminator(); 714 // Clone the return and add it to the end of the predecessor. 715 Instruction *NewRet = RI->clone(); 716 Pred->getInstList().push_back(NewRet); 717 718 // If the return instruction returns a value, and if the value was a 719 // PHI node in "BB", propagate the right value into the return. 720 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 721 i != e; ++i) { 722 Value *V = *i; 723 Instruction *NewBC = nullptr; 724 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 725 // Return value might be bitcasted. Clone and insert it before the 726 // return instruction. 727 V = BCI->getOperand(0); 728 NewBC = BCI->clone(); 729 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 730 *i = NewBC; 731 } 732 if (PHINode *PN = dyn_cast<PHINode>(V)) { 733 if (PN->getParent() == BB) { 734 if (NewBC) 735 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 736 else 737 *i = PN->getIncomingValueForBlock(Pred); 738 } 739 } 740 } 741 742 // Update any PHI nodes in the returning block to realize that we no 743 // longer branch to them. 744 BB->removePredecessor(Pred); 745 UncondBranch->eraseFromParent(); 746 747 if (DTU) 748 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 749 750 return cast<ReturnInst>(NewRet); 751 } 752 753 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 754 Instruction *SplitBefore, 755 bool Unreachable, 756 MDNode *BranchWeights, 757 DominatorTree *DT, LoopInfo *LI, 758 BasicBlock *ThenBlock) { 759 BasicBlock *Head = SplitBefore->getParent(); 760 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 761 Instruction *HeadOldTerm = Head->getTerminator(); 762 LLVMContext &C = Head->getContext(); 763 Instruction *CheckTerm; 764 bool CreateThenBlock = (ThenBlock == nullptr); 765 if (CreateThenBlock) { 766 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 767 if (Unreachable) 768 CheckTerm = new UnreachableInst(C, ThenBlock); 769 else 770 CheckTerm = BranchInst::Create(Tail, ThenBlock); 771 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 772 } else 773 CheckTerm = ThenBlock->getTerminator(); 774 BranchInst *HeadNewTerm = 775 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 776 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 777 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 778 779 if (DT) { 780 if (DomTreeNode *OldNode = DT->getNode(Head)) { 781 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 782 783 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 784 for (DomTreeNode *Child : Children) 785 DT->changeImmediateDominator(Child, NewNode); 786 787 // Head dominates ThenBlock. 788 if (CreateThenBlock) 789 DT->addNewBlock(ThenBlock, Head); 790 else 791 DT->changeImmediateDominator(ThenBlock, Head); 792 } 793 } 794 795 if (LI) { 796 if (Loop *L = LI->getLoopFor(Head)) { 797 L->addBasicBlockToLoop(ThenBlock, *LI); 798 L->addBasicBlockToLoop(Tail, *LI); 799 } 800 } 801 802 return CheckTerm; 803 } 804 805 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 806 Instruction **ThenTerm, 807 Instruction **ElseTerm, 808 MDNode *BranchWeights) { 809 BasicBlock *Head = SplitBefore->getParent(); 810 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 811 Instruction *HeadOldTerm = Head->getTerminator(); 812 LLVMContext &C = Head->getContext(); 813 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 814 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 815 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 816 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 817 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 818 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 819 BranchInst *HeadNewTerm = 820 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 821 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 822 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 823 } 824 825 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 826 BasicBlock *&IfFalse) { 827 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 828 BasicBlock *Pred1 = nullptr; 829 BasicBlock *Pred2 = nullptr; 830 831 if (SomePHI) { 832 if (SomePHI->getNumIncomingValues() != 2) 833 return nullptr; 834 Pred1 = SomePHI->getIncomingBlock(0); 835 Pred2 = SomePHI->getIncomingBlock(1); 836 } else { 837 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 838 if (PI == PE) // No predecessor 839 return nullptr; 840 Pred1 = *PI++; 841 if (PI == PE) // Only one predecessor 842 return nullptr; 843 Pred2 = *PI++; 844 if (PI != PE) // More than two predecessors 845 return nullptr; 846 } 847 848 // We can only handle branches. Other control flow will be lowered to 849 // branches if possible anyway. 850 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 851 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 852 if (!Pred1Br || !Pred2Br) 853 return nullptr; 854 855 // Eliminate code duplication by ensuring that Pred1Br is conditional if 856 // either are. 857 if (Pred2Br->isConditional()) { 858 // If both branches are conditional, we don't have an "if statement". In 859 // reality, we could transform this case, but since the condition will be 860 // required anyway, we stand no chance of eliminating it, so the xform is 861 // probably not profitable. 862 if (Pred1Br->isConditional()) 863 return nullptr; 864 865 std::swap(Pred1, Pred2); 866 std::swap(Pred1Br, Pred2Br); 867 } 868 869 if (Pred1Br->isConditional()) { 870 // The only thing we have to watch out for here is to make sure that Pred2 871 // doesn't have incoming edges from other blocks. If it does, the condition 872 // doesn't dominate BB. 873 if (!Pred2->getSinglePredecessor()) 874 return nullptr; 875 876 // If we found a conditional branch predecessor, make sure that it branches 877 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 878 if (Pred1Br->getSuccessor(0) == BB && 879 Pred1Br->getSuccessor(1) == Pred2) { 880 IfTrue = Pred1; 881 IfFalse = Pred2; 882 } else if (Pred1Br->getSuccessor(0) == Pred2 && 883 Pred1Br->getSuccessor(1) == BB) { 884 IfTrue = Pred2; 885 IfFalse = Pred1; 886 } else { 887 // We know that one arm of the conditional goes to BB, so the other must 888 // go somewhere unrelated, and this must not be an "if statement". 889 return nullptr; 890 } 891 892 return Pred1Br->getCondition(); 893 } 894 895 // Ok, if we got here, both predecessors end with an unconditional branch to 896 // BB. Don't panic! If both blocks only have a single (identical) 897 // predecessor, and THAT is a conditional branch, then we're all ok! 898 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 899 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 900 return nullptr; 901 902 // Otherwise, if this is a conditional branch, then we can use it! 903 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 904 if (!BI) return nullptr; 905 906 assert(BI->isConditional() && "Two successors but not conditional?"); 907 if (BI->getSuccessor(0) == Pred1) { 908 IfTrue = Pred1; 909 IfFalse = Pred2; 910 } else { 911 IfTrue = Pred2; 912 IfFalse = Pred1; 913 } 914 return BI->getCondition(); 915 } 916