1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin())) return;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157   // Recursively deleting a PHI may cause multiple PHIs to be deleted
158   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159   SmallVector<WeakTrackingVH, 8> PHIs;
160   for (PHINode &PN : BB->phis())
161     PHIs.push_back(&PN);
162 
163   bool Changed = false;
164   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167 
168   return Changed;
169 }
170 
171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
173                                      MemoryDependenceResults *MemDep) {
174   if (BB->hasAddressTaken())
175     return false;
176 
177   // Can't merge if there are multiple predecessors, or no predecessors.
178   BasicBlock *PredBB = BB->getUniquePredecessor();
179   if (!PredBB) return false;
180 
181   // Don't break self-loops.
182   if (PredBB == BB) return false;
183   // Don't break unwinding instructions.
184   if (PredBB->getTerminator()->isExceptionalTerminator())
185     return false;
186 
187   // Can't merge if there are multiple distinct successors.
188   if (PredBB->getUniqueSuccessor() != BB)
189     return false;
190 
191   // Can't merge if there is PHI loop.
192   for (PHINode &PN : BB->phis())
193     for (Value *IncValue : PN.incoming_values())
194       if (IncValue == &PN)
195         return false;
196 
197   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
198                     << PredBB->getName() << "\n");
199 
200   // Begin by getting rid of unneeded PHIs.
201   SmallVector<AssertingVH<Value>, 4> IncomingValues;
202   if (isa<PHINode>(BB->front())) {
203     for (PHINode &PN : BB->phis())
204       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
205           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
206         IncomingValues.push_back(PN.getIncomingValue(0));
207     FoldSingleEntryPHINodes(BB, MemDep);
208   }
209 
210   // DTU update: Collect all the edges that exit BB.
211   // These dominator edges will be redirected from Pred.
212   std::vector<DominatorTree::UpdateType> Updates;
213   if (DTU) {
214     Updates.reserve(1 + (2 * succ_size(BB)));
215     // Add insert edges first. Experimentally, for the particular case of two
216     // blocks that can be merged, with a single successor and single predecessor
217     // respectively, it is beneficial to have all insert updates first. Deleting
218     // edges first may lead to unreachable blocks, followed by inserting edges
219     // making the blocks reachable again. Such DT updates lead to high compile
220     // times. We add inserts before deletes here to reduce compile time.
221     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
222       // This successor of BB may already have PredBB as a predecessor.
223       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
224         Updates.push_back({DominatorTree::Insert, PredBB, *I});
225     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
226       Updates.push_back({DominatorTree::Delete, BB, *I});
227     Updates.push_back({DominatorTree::Delete, PredBB, BB});
228   }
229 
230   if (MSSAU)
231     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
232 
233   // Delete the unconditional branch from the predecessor...
234   PredBB->getInstList().pop_back();
235 
236   // Make all PHI nodes that referred to BB now refer to Pred as their
237   // source...
238   BB->replaceAllUsesWith(PredBB);
239 
240   // Move all definitions in the successor to the predecessor...
241   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
242   new UnreachableInst(BB->getContext(), BB);
243 
244   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
245   for (auto Incoming : IncomingValues) {
246     if (isa<Instruction>(*Incoming)) {
247       SmallVector<DbgValueInst *, 2> DbgValues;
248       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
249           DbgValueSet;
250       llvm::findDbgValues(DbgValues, Incoming);
251       for (auto &DVI : DbgValues) {
252         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
253         if (!R.second)
254           DVI->eraseFromParent();
255       }
256     }
257   }
258 
259   // Inherit predecessors name if it exists.
260   if (!PredBB->hasName())
261     PredBB->takeName(BB);
262 
263   if (LI)
264     LI->removeBlock(BB);
265 
266   if (MemDep)
267     MemDep->invalidateCachedPredecessors();
268 
269   // Finally, erase the old block and update dominator info.
270   if (DTU) {
271     assert(BB->getInstList().size() == 1 &&
272            isa<UnreachableInst>(BB->getTerminator()) &&
273            "The successor list of BB isn't empty before "
274            "applying corresponding DTU updates.");
275     DTU->applyUpdatesPermissive(Updates);
276     DTU->deleteBB(BB);
277   }
278 
279   else {
280     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
281   }
282   return true;
283 }
284 
285 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
286                                 BasicBlock::iterator &BI, Value *V) {
287   Instruction &I = *BI;
288   // Replaces all of the uses of the instruction with uses of the value
289   I.replaceAllUsesWith(V);
290 
291   // Make sure to propagate a name if there is one already.
292   if (I.hasName() && !V->hasName())
293     V->takeName(&I);
294 
295   // Delete the unnecessary instruction now...
296   BI = BIL.erase(BI);
297 }
298 
299 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
300                                BasicBlock::iterator &BI, Instruction *I) {
301   assert(I->getParent() == nullptr &&
302          "ReplaceInstWithInst: Instruction already inserted into basic block!");
303 
304   // Copy debug location to newly added instruction, if it wasn't already set
305   // by the caller.
306   if (!I->getDebugLoc())
307     I->setDebugLoc(BI->getDebugLoc());
308 
309   // Insert the new instruction into the basic block...
310   BasicBlock::iterator New = BIL.insert(BI, I);
311 
312   // Replace all uses of the old instruction, and delete it.
313   ReplaceInstWithValue(BIL, BI, I);
314 
315   // Move BI back to point to the newly inserted instruction
316   BI = New;
317 }
318 
319 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
320   BasicBlock::iterator BI(From);
321   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
322 }
323 
324 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
325                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
326   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
327 
328   // If this is a critical edge, let SplitCriticalEdge do it.
329   Instruction *LatchTerm = BB->getTerminator();
330   if (SplitCriticalEdge(
331           LatchTerm, SuccNum,
332           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
333     return LatchTerm->getSuccessor(SuccNum);
334 
335   // If the edge isn't critical, then BB has a single successor or Succ has a
336   // single pred.  Split the block.
337   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
338     // If the successor only has a single pred, split the top of the successor
339     // block.
340     assert(SP == BB && "CFG broken");
341     SP = nullptr;
342     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
343   }
344 
345   // Otherwise, if BB has a single successor, split it at the bottom of the
346   // block.
347   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
348          "Should have a single succ!");
349   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
350 }
351 
352 unsigned
353 llvm::SplitAllCriticalEdges(Function &F,
354                             const CriticalEdgeSplittingOptions &Options) {
355   unsigned NumBroken = 0;
356   for (BasicBlock &BB : F) {
357     Instruction *TI = BB.getTerminator();
358     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
359       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
360         if (SplitCriticalEdge(TI, i, Options))
361           ++NumBroken;
362   }
363   return NumBroken;
364 }
365 
366 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
367                              DominatorTree *DT, LoopInfo *LI,
368                              MemorySSAUpdater *MSSAU, const Twine &BBName) {
369   BasicBlock::iterator SplitIt = SplitPt->getIterator();
370   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
371     ++SplitIt;
372   std::string Name = BBName.str();
373   BasicBlock *New = Old->splitBasicBlock(
374       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
375 
376   // The new block lives in whichever loop the old one did. This preserves
377   // LCSSA as well, because we force the split point to be after any PHI nodes.
378   if (LI)
379     if (Loop *L = LI->getLoopFor(Old))
380       L->addBasicBlockToLoop(New, *LI);
381 
382   if (DT)
383     // Old dominates New. New node dominates all other nodes dominated by Old.
384     if (DomTreeNode *OldNode = DT->getNode(Old)) {
385       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
386 
387       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
388       for (DomTreeNode *I : Children)
389         DT->changeImmediateDominator(I, NewNode);
390     }
391 
392   // Move MemoryAccesses still tracked in Old, but part of New now.
393   // Update accesses in successor blocks accordingly.
394   if (MSSAU)
395     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
396 
397   return New;
398 }
399 
400 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
401 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
402                                       ArrayRef<BasicBlock *> Preds,
403                                       DominatorTree *DT, LoopInfo *LI,
404                                       MemorySSAUpdater *MSSAU,
405                                       bool PreserveLCSSA, bool &HasLoopExit) {
406   // Update dominator tree if available.
407   if (DT) {
408     if (OldBB == DT->getRootNode()->getBlock()) {
409       assert(NewBB == &NewBB->getParent()->getEntryBlock());
410       DT->setNewRoot(NewBB);
411     } else {
412       // Split block expects NewBB to have a non-empty set of predecessors.
413       DT->splitBlock(NewBB);
414     }
415   }
416 
417   // Update MemoryPhis after split if MemorySSA is available
418   if (MSSAU)
419     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
420 
421   // The rest of the logic is only relevant for updating the loop structures.
422   if (!LI)
423     return;
424 
425   assert(DT && "DT should be available to update LoopInfo!");
426   Loop *L = LI->getLoopFor(OldBB);
427 
428   // If we need to preserve loop analyses, collect some information about how
429   // this split will affect loops.
430   bool IsLoopEntry = !!L;
431   bool SplitMakesNewLoopHeader = false;
432   for (BasicBlock *Pred : Preds) {
433     // Preds that are not reachable from entry should not be used to identify if
434     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
435     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
436     // as true and make the NewBB the header of some loop. This breaks LI.
437     if (!DT->isReachableFromEntry(Pred))
438       continue;
439     // If we need to preserve LCSSA, determine if any of the preds is a loop
440     // exit.
441     if (PreserveLCSSA)
442       if (Loop *PL = LI->getLoopFor(Pred))
443         if (!PL->contains(OldBB))
444           HasLoopExit = true;
445 
446     // If we need to preserve LoopInfo, note whether any of the preds crosses
447     // an interesting loop boundary.
448     if (!L)
449       continue;
450     if (L->contains(Pred))
451       IsLoopEntry = false;
452     else
453       SplitMakesNewLoopHeader = true;
454   }
455 
456   // Unless we have a loop for OldBB, nothing else to do here.
457   if (!L)
458     return;
459 
460   if (IsLoopEntry) {
461     // Add the new block to the nearest enclosing loop (and not an adjacent
462     // loop). To find this, examine each of the predecessors and determine which
463     // loops enclose them, and select the most-nested loop which contains the
464     // loop containing the block being split.
465     Loop *InnermostPredLoop = nullptr;
466     for (BasicBlock *Pred : Preds) {
467       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
468         // Seek a loop which actually contains the block being split (to avoid
469         // adjacent loops).
470         while (PredLoop && !PredLoop->contains(OldBB))
471           PredLoop = PredLoop->getParentLoop();
472 
473         // Select the most-nested of these loops which contains the block.
474         if (PredLoop && PredLoop->contains(OldBB) &&
475             (!InnermostPredLoop ||
476              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
477           InnermostPredLoop = PredLoop;
478       }
479     }
480 
481     if (InnermostPredLoop)
482       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
483   } else {
484     L->addBasicBlockToLoop(NewBB, *LI);
485     if (SplitMakesNewLoopHeader)
486       L->moveToHeader(NewBB);
487   }
488 }
489 
490 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
491 /// This also updates AliasAnalysis, if available.
492 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
493                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
494                            bool HasLoopExit) {
495   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
496   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
497   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
498     PHINode *PN = cast<PHINode>(I++);
499 
500     // Check to see if all of the values coming in are the same.  If so, we
501     // don't need to create a new PHI node, unless it's needed for LCSSA.
502     Value *InVal = nullptr;
503     if (!HasLoopExit) {
504       InVal = PN->getIncomingValueForBlock(Preds[0]);
505       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
506         if (!PredSet.count(PN->getIncomingBlock(i)))
507           continue;
508         if (!InVal)
509           InVal = PN->getIncomingValue(i);
510         else if (InVal != PN->getIncomingValue(i)) {
511           InVal = nullptr;
512           break;
513         }
514       }
515     }
516 
517     if (InVal) {
518       // If all incoming values for the new PHI would be the same, just don't
519       // make a new PHI.  Instead, just remove the incoming values from the old
520       // PHI.
521 
522       // NOTE! This loop walks backwards for a reason! First off, this minimizes
523       // the cost of removal if we end up removing a large number of values, and
524       // second off, this ensures that the indices for the incoming values
525       // aren't invalidated when we remove one.
526       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
527         if (PredSet.count(PN->getIncomingBlock(i)))
528           PN->removeIncomingValue(i, false);
529 
530       // Add an incoming value to the PHI node in the loop for the preheader
531       // edge.
532       PN->addIncoming(InVal, NewBB);
533       continue;
534     }
535 
536     // If the values coming into the block are not the same, we need a new
537     // PHI.
538     // Create the new PHI node, insert it into NewBB at the end of the block
539     PHINode *NewPHI =
540         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
541 
542     // NOTE! This loop walks backwards for a reason! First off, this minimizes
543     // the cost of removal if we end up removing a large number of values, and
544     // second off, this ensures that the indices for the incoming values aren't
545     // invalidated when we remove one.
546     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
547       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
548       if (PredSet.count(IncomingBB)) {
549         Value *V = PN->removeIncomingValue(i, false);
550         NewPHI->addIncoming(V, IncomingBB);
551       }
552     }
553 
554     PN->addIncoming(NewPHI, NewBB);
555   }
556 }
557 
558 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
559                                          ArrayRef<BasicBlock *> Preds,
560                                          const char *Suffix, DominatorTree *DT,
561                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
562                                          bool PreserveLCSSA) {
563   // Do not attempt to split that which cannot be split.
564   if (!BB->canSplitPredecessors())
565     return nullptr;
566 
567   // For the landingpads we need to act a bit differently.
568   // Delegate this work to the SplitLandingPadPredecessors.
569   if (BB->isLandingPad()) {
570     SmallVector<BasicBlock*, 2> NewBBs;
571     std::string NewName = std::string(Suffix) + ".split-lp";
572 
573     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
574                                 LI, MSSAU, PreserveLCSSA);
575     return NewBBs[0];
576   }
577 
578   // Create new basic block, insert right before the original block.
579   BasicBlock *NewBB = BasicBlock::Create(
580       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
581 
582   // The new block unconditionally branches to the old block.
583   BranchInst *BI = BranchInst::Create(BB, NewBB);
584   // Splitting the predecessors of a loop header creates a preheader block.
585   if (LI && LI->isLoopHeader(BB))
586     // Using the loop start line number prevents debuggers stepping into the
587     // loop body for this instruction.
588     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
589   else
590     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
591 
592   // Move the edges from Preds to point to NewBB instead of BB.
593   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
594     // This is slightly more strict than necessary; the minimum requirement
595     // is that there be no more than one indirectbr branching to BB. And
596     // all BlockAddress uses would need to be updated.
597     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
598            "Cannot split an edge from an IndirectBrInst");
599     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
600            "Cannot split an edge from a CallBrInst");
601     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
602   }
603 
604   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
605   // node becomes an incoming value for BB's phi node.  However, if the Preds
606   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
607   // account for the newly created predecessor.
608   if (Preds.empty()) {
609     // Insert dummy values as the incoming value.
610     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
611       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
612   }
613 
614   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
615   bool HasLoopExit = false;
616   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
617                             HasLoopExit);
618 
619   if (!Preds.empty()) {
620     // Update the PHI nodes in BB with the values coming from NewBB.
621     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
622   }
623 
624   return NewBB;
625 }
626 
627 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
628                                        ArrayRef<BasicBlock *> Preds,
629                                        const char *Suffix1, const char *Suffix2,
630                                        SmallVectorImpl<BasicBlock *> &NewBBs,
631                                        DominatorTree *DT, LoopInfo *LI,
632                                        MemorySSAUpdater *MSSAU,
633                                        bool PreserveLCSSA) {
634   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
635 
636   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
637   // it right before the original block.
638   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
639                                           OrigBB->getName() + Suffix1,
640                                           OrigBB->getParent(), OrigBB);
641   NewBBs.push_back(NewBB1);
642 
643   // The new block unconditionally branches to the old block.
644   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
645   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
646 
647   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
648   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
649     // This is slightly more strict than necessary; the minimum requirement
650     // is that there be no more than one indirectbr branching to BB. And
651     // all BlockAddress uses would need to be updated.
652     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
653            "Cannot split an edge from an IndirectBrInst");
654     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
655   }
656 
657   bool HasLoopExit = false;
658   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
659                             HasLoopExit);
660 
661   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
662   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
663 
664   // Move the remaining edges from OrigBB to point to NewBB2.
665   SmallVector<BasicBlock*, 8> NewBB2Preds;
666   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
667        i != e; ) {
668     BasicBlock *Pred = *i++;
669     if (Pred == NewBB1) continue;
670     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
671            "Cannot split an edge from an IndirectBrInst");
672     NewBB2Preds.push_back(Pred);
673     e = pred_end(OrigBB);
674   }
675 
676   BasicBlock *NewBB2 = nullptr;
677   if (!NewBB2Preds.empty()) {
678     // Create another basic block for the rest of OrigBB's predecessors.
679     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
680                                 OrigBB->getName() + Suffix2,
681                                 OrigBB->getParent(), OrigBB);
682     NewBBs.push_back(NewBB2);
683 
684     // The new block unconditionally branches to the old block.
685     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
686     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
687 
688     // Move the remaining edges from OrigBB to point to NewBB2.
689     for (BasicBlock *NewBB2Pred : NewBB2Preds)
690       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
691 
692     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
693     HasLoopExit = false;
694     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
695                               PreserveLCSSA, HasLoopExit);
696 
697     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
698     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
699   }
700 
701   LandingPadInst *LPad = OrigBB->getLandingPadInst();
702   Instruction *Clone1 = LPad->clone();
703   Clone1->setName(Twine("lpad") + Suffix1);
704   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
705 
706   if (NewBB2) {
707     Instruction *Clone2 = LPad->clone();
708     Clone2->setName(Twine("lpad") + Suffix2);
709     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
710 
711     // Create a PHI node for the two cloned landingpad instructions only
712     // if the original landingpad instruction has some uses.
713     if (!LPad->use_empty()) {
714       assert(!LPad->getType()->isTokenTy() &&
715              "Split cannot be applied if LPad is token type. Otherwise an "
716              "invalid PHINode of token type would be created.");
717       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
718       PN->addIncoming(Clone1, NewBB1);
719       PN->addIncoming(Clone2, NewBB2);
720       LPad->replaceAllUsesWith(PN);
721     }
722     LPad->eraseFromParent();
723   } else {
724     // There is no second clone. Just replace the landing pad with the first
725     // clone.
726     LPad->replaceAllUsesWith(Clone1);
727     LPad->eraseFromParent();
728   }
729 }
730 
731 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
732                                              BasicBlock *Pred,
733                                              DomTreeUpdater *DTU) {
734   Instruction *UncondBranch = Pred->getTerminator();
735   // Clone the return and add it to the end of the predecessor.
736   Instruction *NewRet = RI->clone();
737   Pred->getInstList().push_back(NewRet);
738 
739   // If the return instruction returns a value, and if the value was a
740   // PHI node in "BB", propagate the right value into the return.
741   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
742        i != e; ++i) {
743     Value *V = *i;
744     Instruction *NewBC = nullptr;
745     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
746       // Return value might be bitcasted. Clone and insert it before the
747       // return instruction.
748       V = BCI->getOperand(0);
749       NewBC = BCI->clone();
750       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
751       *i = NewBC;
752     }
753     if (PHINode *PN = dyn_cast<PHINode>(V)) {
754       if (PN->getParent() == BB) {
755         if (NewBC)
756           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
757         else
758           *i = PN->getIncomingValueForBlock(Pred);
759       }
760     }
761   }
762 
763   // Update any PHI nodes in the returning block to realize that we no
764   // longer branch to them.
765   BB->removePredecessor(Pred);
766   UncondBranch->eraseFromParent();
767 
768   if (DTU)
769     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
770 
771   return cast<ReturnInst>(NewRet);
772 }
773 
774 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
775                                              Instruction *SplitBefore,
776                                              bool Unreachable,
777                                              MDNode *BranchWeights,
778                                              DominatorTree *DT, LoopInfo *LI,
779                                              BasicBlock *ThenBlock) {
780   BasicBlock *Head = SplitBefore->getParent();
781   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
782   Instruction *HeadOldTerm = Head->getTerminator();
783   LLVMContext &C = Head->getContext();
784   Instruction *CheckTerm;
785   bool CreateThenBlock = (ThenBlock == nullptr);
786   if (CreateThenBlock) {
787     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
788     if (Unreachable)
789       CheckTerm = new UnreachableInst(C, ThenBlock);
790     else
791       CheckTerm = BranchInst::Create(Tail, ThenBlock);
792     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
793   } else
794     CheckTerm = ThenBlock->getTerminator();
795   BranchInst *HeadNewTerm =
796     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
797   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
798   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
799 
800   if (DT) {
801     if (DomTreeNode *OldNode = DT->getNode(Head)) {
802       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
803 
804       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
805       for (DomTreeNode *Child : Children)
806         DT->changeImmediateDominator(Child, NewNode);
807 
808       // Head dominates ThenBlock.
809       if (CreateThenBlock)
810         DT->addNewBlock(ThenBlock, Head);
811       else
812         DT->changeImmediateDominator(ThenBlock, Head);
813     }
814   }
815 
816   if (LI) {
817     if (Loop *L = LI->getLoopFor(Head)) {
818       L->addBasicBlockToLoop(ThenBlock, *LI);
819       L->addBasicBlockToLoop(Tail, *LI);
820     }
821   }
822 
823   return CheckTerm;
824 }
825 
826 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
827                                          Instruction **ThenTerm,
828                                          Instruction **ElseTerm,
829                                          MDNode *BranchWeights) {
830   BasicBlock *Head = SplitBefore->getParent();
831   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
832   Instruction *HeadOldTerm = Head->getTerminator();
833   LLVMContext &C = Head->getContext();
834   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
835   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
836   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
837   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
838   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
839   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
840   BranchInst *HeadNewTerm =
841     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
842   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
843   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
844 }
845 
846 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
847                              BasicBlock *&IfFalse) {
848   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
849   BasicBlock *Pred1 = nullptr;
850   BasicBlock *Pred2 = nullptr;
851 
852   if (SomePHI) {
853     if (SomePHI->getNumIncomingValues() != 2)
854       return nullptr;
855     Pred1 = SomePHI->getIncomingBlock(0);
856     Pred2 = SomePHI->getIncomingBlock(1);
857   } else {
858     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
859     if (PI == PE) // No predecessor
860       return nullptr;
861     Pred1 = *PI++;
862     if (PI == PE) // Only one predecessor
863       return nullptr;
864     Pred2 = *PI++;
865     if (PI != PE) // More than two predecessors
866       return nullptr;
867   }
868 
869   // We can only handle branches.  Other control flow will be lowered to
870   // branches if possible anyway.
871   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
872   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
873   if (!Pred1Br || !Pred2Br)
874     return nullptr;
875 
876   // Eliminate code duplication by ensuring that Pred1Br is conditional if
877   // either are.
878   if (Pred2Br->isConditional()) {
879     // If both branches are conditional, we don't have an "if statement".  In
880     // reality, we could transform this case, but since the condition will be
881     // required anyway, we stand no chance of eliminating it, so the xform is
882     // probably not profitable.
883     if (Pred1Br->isConditional())
884       return nullptr;
885 
886     std::swap(Pred1, Pred2);
887     std::swap(Pred1Br, Pred2Br);
888   }
889 
890   if (Pred1Br->isConditional()) {
891     // The only thing we have to watch out for here is to make sure that Pred2
892     // doesn't have incoming edges from other blocks.  If it does, the condition
893     // doesn't dominate BB.
894     if (!Pred2->getSinglePredecessor())
895       return nullptr;
896 
897     // If we found a conditional branch predecessor, make sure that it branches
898     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
899     if (Pred1Br->getSuccessor(0) == BB &&
900         Pred1Br->getSuccessor(1) == Pred2) {
901       IfTrue = Pred1;
902       IfFalse = Pred2;
903     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
904                Pred1Br->getSuccessor(1) == BB) {
905       IfTrue = Pred2;
906       IfFalse = Pred1;
907     } else {
908       // We know that one arm of the conditional goes to BB, so the other must
909       // go somewhere unrelated, and this must not be an "if statement".
910       return nullptr;
911     }
912 
913     return Pred1Br->getCondition();
914   }
915 
916   // Ok, if we got here, both predecessors end with an unconditional branch to
917   // BB.  Don't panic!  If both blocks only have a single (identical)
918   // predecessor, and THAT is a conditional branch, then we're all ok!
919   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
920   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
921     return nullptr;
922 
923   // Otherwise, if this is a conditional branch, then we can use it!
924   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
925   if (!BI) return nullptr;
926 
927   assert(BI->isConditional() && "Two successors but not conditional?");
928   if (BI->getSuccessor(0) == Pred1) {
929     IfTrue = Pred1;
930     IfFalse = Pred2;
931   } else {
932     IfTrue = Pred2;
933     IfFalse = Pred1;
934   }
935   return BI->getCondition();
936 }
937