1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 void llvm::DetatchDeadBlocks( 55 ArrayRef<BasicBlock *> BBs, 56 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 57 bool KeepOneInputPHIs) { 58 for (auto *BB : BBs) { 59 // Loop through all of our successors and make sure they know that one 60 // of their predecessors is going away. 61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 62 for (BasicBlock *Succ : successors(BB)) { 63 Succ->removePredecessor(BB, KeepOneInputPHIs); 64 if (Updates && UniqueSuccessors.insert(Succ).second) 65 Updates->push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 } 86 } 87 88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 89 bool KeepOneInputPHIs) { 90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 91 } 92 93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 94 bool KeepOneInputPHIs) { 95 #ifndef NDEBUG 96 // Make sure that all predecessors of each dead block is also dead. 97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 98 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 99 for (auto *BB : Dead) 100 for (BasicBlock *Pred : predecessors(BB)) 101 assert(Dead.count(Pred) && "All predecessors must be dead!"); 102 #endif 103 104 SmallVector<DominatorTree::UpdateType, 4> Updates; 105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 106 107 if (DTU) 108 DTU->applyUpdatesPermissive(Updates); 109 110 for (BasicBlock *BB : BBs) 111 if (DTU) 112 DTU->deleteBB(BB); 113 else 114 BB->eraseFromParent(); 115 } 116 117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 118 bool KeepOneInputPHIs) { 119 df_iterator_default_set<BasicBlock*> Reachable; 120 121 // Mark all reachable blocks. 122 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 123 (void)BB/* Mark all reachable blocks */; 124 125 // Collect all dead blocks. 126 std::vector<BasicBlock*> DeadBlocks; 127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 128 if (!Reachable.count(&*I)) { 129 BasicBlock *BB = &*I; 130 DeadBlocks.push_back(BB); 131 } 132 133 // Delete the dead blocks. 134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 135 136 return !DeadBlocks.empty(); 137 } 138 139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 140 MemoryDependenceResults *MemDep) { 141 if (!isa<PHINode>(BB->begin())) return; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 } 155 156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 157 // Recursively deleting a PHI may cause multiple PHIs to be deleted 158 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 159 SmallVector<WeakTrackingVH, 8> PHIs; 160 for (PHINode &PN : BB->phis()) 161 PHIs.push_back(&PN); 162 163 bool Changed = false; 164 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 165 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 166 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 167 168 return Changed; 169 } 170 171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 172 LoopInfo *LI, MemorySSAUpdater *MSSAU, 173 MemoryDependenceResults *MemDep) { 174 if (BB->hasAddressTaken()) 175 return false; 176 177 // Can't merge if there are multiple predecessors, or no predecessors. 178 BasicBlock *PredBB = BB->getUniquePredecessor(); 179 if (!PredBB) return false; 180 181 // Don't break self-loops. 182 if (PredBB == BB) return false; 183 // Don't break unwinding instructions. 184 if (PredBB->getTerminator()->isExceptionalTerminator()) 185 return false; 186 187 // Can't merge if there are multiple distinct successors. 188 if (PredBB->getUniqueSuccessor() != BB) 189 return false; 190 191 // Can't merge if there is PHI loop. 192 for (PHINode &PN : BB->phis()) 193 for (Value *IncValue : PN.incoming_values()) 194 if (IncValue == &PN) 195 return false; 196 197 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 198 << PredBB->getName() << "\n"); 199 200 // Begin by getting rid of unneeded PHIs. 201 SmallVector<AssertingVH<Value>, 4> IncomingValues; 202 if (isa<PHINode>(BB->front())) { 203 for (PHINode &PN : BB->phis()) 204 if (!isa<PHINode>(PN.getIncomingValue(0)) || 205 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 206 IncomingValues.push_back(PN.getIncomingValue(0)); 207 FoldSingleEntryPHINodes(BB, MemDep); 208 } 209 210 // DTU update: Collect all the edges that exit BB. 211 // These dominator edges will be redirected from Pred. 212 std::vector<DominatorTree::UpdateType> Updates; 213 if (DTU) { 214 Updates.reserve(1 + (2 * succ_size(BB))); 215 // Add insert edges first. Experimentally, for the particular case of two 216 // blocks that can be merged, with a single successor and single predecessor 217 // respectively, it is beneficial to have all insert updates first. Deleting 218 // edges first may lead to unreachable blocks, followed by inserting edges 219 // making the blocks reachable again. Such DT updates lead to high compile 220 // times. We add inserts before deletes here to reduce compile time. 221 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 222 // This successor of BB may already have PredBB as a predecessor. 223 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 224 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 225 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 226 Updates.push_back({DominatorTree::Delete, BB, *I}); 227 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 228 } 229 230 if (MSSAU) 231 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin())); 232 233 // Delete the unconditional branch from the predecessor... 234 PredBB->getInstList().pop_back(); 235 236 // Make all PHI nodes that referred to BB now refer to Pred as their 237 // source... 238 BB->replaceAllUsesWith(PredBB); 239 240 // Move all definitions in the successor to the predecessor... 241 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 242 new UnreachableInst(BB->getContext(), BB); 243 244 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 245 for (auto Incoming : IncomingValues) { 246 if (isa<Instruction>(*Incoming)) { 247 SmallVector<DbgValueInst *, 2> DbgValues; 248 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 249 DbgValueSet; 250 llvm::findDbgValues(DbgValues, Incoming); 251 for (auto &DVI : DbgValues) { 252 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 253 if (!R.second) 254 DVI->eraseFromParent(); 255 } 256 } 257 } 258 259 // Inherit predecessors name if it exists. 260 if (!PredBB->hasName()) 261 PredBB->takeName(BB); 262 263 if (LI) 264 LI->removeBlock(BB); 265 266 if (MemDep) 267 MemDep->invalidateCachedPredecessors(); 268 269 // Finally, erase the old block and update dominator info. 270 if (DTU) { 271 assert(BB->getInstList().size() == 1 && 272 isa<UnreachableInst>(BB->getTerminator()) && 273 "The successor list of BB isn't empty before " 274 "applying corresponding DTU updates."); 275 DTU->applyUpdatesPermissive(Updates); 276 DTU->deleteBB(BB); 277 } 278 279 else { 280 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 281 } 282 return true; 283 } 284 285 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 286 BasicBlock::iterator &BI, Value *V) { 287 Instruction &I = *BI; 288 // Replaces all of the uses of the instruction with uses of the value 289 I.replaceAllUsesWith(V); 290 291 // Make sure to propagate a name if there is one already. 292 if (I.hasName() && !V->hasName()) 293 V->takeName(&I); 294 295 // Delete the unnecessary instruction now... 296 BI = BIL.erase(BI); 297 } 298 299 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 300 BasicBlock::iterator &BI, Instruction *I) { 301 assert(I->getParent() == nullptr && 302 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 303 304 // Copy debug location to newly added instruction, if it wasn't already set 305 // by the caller. 306 if (!I->getDebugLoc()) 307 I->setDebugLoc(BI->getDebugLoc()); 308 309 // Insert the new instruction into the basic block... 310 BasicBlock::iterator New = BIL.insert(BI, I); 311 312 // Replace all uses of the old instruction, and delete it. 313 ReplaceInstWithValue(BIL, BI, I); 314 315 // Move BI back to point to the newly inserted instruction 316 BI = New; 317 } 318 319 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 320 BasicBlock::iterator BI(From); 321 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 322 } 323 324 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 325 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 326 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 327 328 // If this is a critical edge, let SplitCriticalEdge do it. 329 Instruction *LatchTerm = BB->getTerminator(); 330 if (SplitCriticalEdge( 331 LatchTerm, SuccNum, 332 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 333 return LatchTerm->getSuccessor(SuccNum); 334 335 // If the edge isn't critical, then BB has a single successor or Succ has a 336 // single pred. Split the block. 337 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 338 // If the successor only has a single pred, split the top of the successor 339 // block. 340 assert(SP == BB && "CFG broken"); 341 SP = nullptr; 342 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 343 } 344 345 // Otherwise, if BB has a single successor, split it at the bottom of the 346 // block. 347 assert(BB->getTerminator()->getNumSuccessors() == 1 && 348 "Should have a single succ!"); 349 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 350 } 351 352 unsigned 353 llvm::SplitAllCriticalEdges(Function &F, 354 const CriticalEdgeSplittingOptions &Options) { 355 unsigned NumBroken = 0; 356 for (BasicBlock &BB : F) { 357 Instruction *TI = BB.getTerminator(); 358 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 359 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 360 if (SplitCriticalEdge(TI, i, Options)) 361 ++NumBroken; 362 } 363 return NumBroken; 364 } 365 366 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 367 DominatorTree *DT, LoopInfo *LI, 368 MemorySSAUpdater *MSSAU, const Twine &BBName) { 369 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 370 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 371 ++SplitIt; 372 std::string Name = BBName.str(); 373 BasicBlock *New = Old->splitBasicBlock( 374 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 375 376 // The new block lives in whichever loop the old one did. This preserves 377 // LCSSA as well, because we force the split point to be after any PHI nodes. 378 if (LI) 379 if (Loop *L = LI->getLoopFor(Old)) 380 L->addBasicBlockToLoop(New, *LI); 381 382 if (DT) 383 // Old dominates New. New node dominates all other nodes dominated by Old. 384 if (DomTreeNode *OldNode = DT->getNode(Old)) { 385 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 386 387 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 388 for (DomTreeNode *I : Children) 389 DT->changeImmediateDominator(I, NewNode); 390 } 391 392 // Move MemoryAccesses still tracked in Old, but part of New now. 393 // Update accesses in successor blocks accordingly. 394 if (MSSAU) 395 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 396 397 return New; 398 } 399 400 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 401 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 402 ArrayRef<BasicBlock *> Preds, 403 DominatorTree *DT, LoopInfo *LI, 404 MemorySSAUpdater *MSSAU, 405 bool PreserveLCSSA, bool &HasLoopExit) { 406 // Update dominator tree if available. 407 if (DT) { 408 if (OldBB == DT->getRootNode()->getBlock()) { 409 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 410 DT->setNewRoot(NewBB); 411 } else { 412 // Split block expects NewBB to have a non-empty set of predecessors. 413 DT->splitBlock(NewBB); 414 } 415 } 416 417 // Update MemoryPhis after split if MemorySSA is available 418 if (MSSAU) 419 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 420 421 // The rest of the logic is only relevant for updating the loop structures. 422 if (!LI) 423 return; 424 425 assert(DT && "DT should be available to update LoopInfo!"); 426 Loop *L = LI->getLoopFor(OldBB); 427 428 // If we need to preserve loop analyses, collect some information about how 429 // this split will affect loops. 430 bool IsLoopEntry = !!L; 431 bool SplitMakesNewLoopHeader = false; 432 for (BasicBlock *Pred : Preds) { 433 // Preds that are not reachable from entry should not be used to identify if 434 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 435 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 436 // as true and make the NewBB the header of some loop. This breaks LI. 437 if (!DT->isReachableFromEntry(Pred)) 438 continue; 439 // If we need to preserve LCSSA, determine if any of the preds is a loop 440 // exit. 441 if (PreserveLCSSA) 442 if (Loop *PL = LI->getLoopFor(Pred)) 443 if (!PL->contains(OldBB)) 444 HasLoopExit = true; 445 446 // If we need to preserve LoopInfo, note whether any of the preds crosses 447 // an interesting loop boundary. 448 if (!L) 449 continue; 450 if (L->contains(Pred)) 451 IsLoopEntry = false; 452 else 453 SplitMakesNewLoopHeader = true; 454 } 455 456 // Unless we have a loop for OldBB, nothing else to do here. 457 if (!L) 458 return; 459 460 if (IsLoopEntry) { 461 // Add the new block to the nearest enclosing loop (and not an adjacent 462 // loop). To find this, examine each of the predecessors and determine which 463 // loops enclose them, and select the most-nested loop which contains the 464 // loop containing the block being split. 465 Loop *InnermostPredLoop = nullptr; 466 for (BasicBlock *Pred : Preds) { 467 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 468 // Seek a loop which actually contains the block being split (to avoid 469 // adjacent loops). 470 while (PredLoop && !PredLoop->contains(OldBB)) 471 PredLoop = PredLoop->getParentLoop(); 472 473 // Select the most-nested of these loops which contains the block. 474 if (PredLoop && PredLoop->contains(OldBB) && 475 (!InnermostPredLoop || 476 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 477 InnermostPredLoop = PredLoop; 478 } 479 } 480 481 if (InnermostPredLoop) 482 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 483 } else { 484 L->addBasicBlockToLoop(NewBB, *LI); 485 if (SplitMakesNewLoopHeader) 486 L->moveToHeader(NewBB); 487 } 488 } 489 490 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 491 /// This also updates AliasAnalysis, if available. 492 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 493 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 494 bool HasLoopExit) { 495 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 496 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 497 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 498 PHINode *PN = cast<PHINode>(I++); 499 500 // Check to see if all of the values coming in are the same. If so, we 501 // don't need to create a new PHI node, unless it's needed for LCSSA. 502 Value *InVal = nullptr; 503 if (!HasLoopExit) { 504 InVal = PN->getIncomingValueForBlock(Preds[0]); 505 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 506 if (!PredSet.count(PN->getIncomingBlock(i))) 507 continue; 508 if (!InVal) 509 InVal = PN->getIncomingValue(i); 510 else if (InVal != PN->getIncomingValue(i)) { 511 InVal = nullptr; 512 break; 513 } 514 } 515 } 516 517 if (InVal) { 518 // If all incoming values for the new PHI would be the same, just don't 519 // make a new PHI. Instead, just remove the incoming values from the old 520 // PHI. 521 522 // NOTE! This loop walks backwards for a reason! First off, this minimizes 523 // the cost of removal if we end up removing a large number of values, and 524 // second off, this ensures that the indices for the incoming values 525 // aren't invalidated when we remove one. 526 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 527 if (PredSet.count(PN->getIncomingBlock(i))) 528 PN->removeIncomingValue(i, false); 529 530 // Add an incoming value to the PHI node in the loop for the preheader 531 // edge. 532 PN->addIncoming(InVal, NewBB); 533 continue; 534 } 535 536 // If the values coming into the block are not the same, we need a new 537 // PHI. 538 // Create the new PHI node, insert it into NewBB at the end of the block 539 PHINode *NewPHI = 540 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 541 542 // NOTE! This loop walks backwards for a reason! First off, this minimizes 543 // the cost of removal if we end up removing a large number of values, and 544 // second off, this ensures that the indices for the incoming values aren't 545 // invalidated when we remove one. 546 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 547 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 548 if (PredSet.count(IncomingBB)) { 549 Value *V = PN->removeIncomingValue(i, false); 550 NewPHI->addIncoming(V, IncomingBB); 551 } 552 } 553 554 PN->addIncoming(NewPHI, NewBB); 555 } 556 } 557 558 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 559 ArrayRef<BasicBlock *> Preds, 560 const char *Suffix, DominatorTree *DT, 561 LoopInfo *LI, MemorySSAUpdater *MSSAU, 562 bool PreserveLCSSA) { 563 // Do not attempt to split that which cannot be split. 564 if (!BB->canSplitPredecessors()) 565 return nullptr; 566 567 // For the landingpads we need to act a bit differently. 568 // Delegate this work to the SplitLandingPadPredecessors. 569 if (BB->isLandingPad()) { 570 SmallVector<BasicBlock*, 2> NewBBs; 571 std::string NewName = std::string(Suffix) + ".split-lp"; 572 573 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 574 LI, MSSAU, PreserveLCSSA); 575 return NewBBs[0]; 576 } 577 578 // Create new basic block, insert right before the original block. 579 BasicBlock *NewBB = BasicBlock::Create( 580 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 581 582 // The new block unconditionally branches to the old block. 583 BranchInst *BI = BranchInst::Create(BB, NewBB); 584 // Splitting the predecessors of a loop header creates a preheader block. 585 if (LI && LI->isLoopHeader(BB)) 586 // Using the loop start line number prevents debuggers stepping into the 587 // loop body for this instruction. 588 BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc()); 589 else 590 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 591 592 // Move the edges from Preds to point to NewBB instead of BB. 593 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 594 // This is slightly more strict than necessary; the minimum requirement 595 // is that there be no more than one indirectbr branching to BB. And 596 // all BlockAddress uses would need to be updated. 597 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 598 "Cannot split an edge from an IndirectBrInst"); 599 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 600 "Cannot split an edge from a CallBrInst"); 601 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 602 } 603 604 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 605 // node becomes an incoming value for BB's phi node. However, if the Preds 606 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 607 // account for the newly created predecessor. 608 if (Preds.empty()) { 609 // Insert dummy values as the incoming value. 610 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 611 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 612 } 613 614 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 615 bool HasLoopExit = false; 616 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 617 HasLoopExit); 618 619 if (!Preds.empty()) { 620 // Update the PHI nodes in BB with the values coming from NewBB. 621 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 622 } 623 624 return NewBB; 625 } 626 627 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 628 ArrayRef<BasicBlock *> Preds, 629 const char *Suffix1, const char *Suffix2, 630 SmallVectorImpl<BasicBlock *> &NewBBs, 631 DominatorTree *DT, LoopInfo *LI, 632 MemorySSAUpdater *MSSAU, 633 bool PreserveLCSSA) { 634 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 635 636 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 637 // it right before the original block. 638 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 639 OrigBB->getName() + Suffix1, 640 OrigBB->getParent(), OrigBB); 641 NewBBs.push_back(NewBB1); 642 643 // The new block unconditionally branches to the old block. 644 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 645 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 646 647 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 648 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 649 // This is slightly more strict than necessary; the minimum requirement 650 // is that there be no more than one indirectbr branching to BB. And 651 // all BlockAddress uses would need to be updated. 652 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 653 "Cannot split an edge from an IndirectBrInst"); 654 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 655 } 656 657 bool HasLoopExit = false; 658 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 659 HasLoopExit); 660 661 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 662 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 663 664 // Move the remaining edges from OrigBB to point to NewBB2. 665 SmallVector<BasicBlock*, 8> NewBB2Preds; 666 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 667 i != e; ) { 668 BasicBlock *Pred = *i++; 669 if (Pred == NewBB1) continue; 670 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 671 "Cannot split an edge from an IndirectBrInst"); 672 NewBB2Preds.push_back(Pred); 673 e = pred_end(OrigBB); 674 } 675 676 BasicBlock *NewBB2 = nullptr; 677 if (!NewBB2Preds.empty()) { 678 // Create another basic block for the rest of OrigBB's predecessors. 679 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 680 OrigBB->getName() + Suffix2, 681 OrigBB->getParent(), OrigBB); 682 NewBBs.push_back(NewBB2); 683 684 // The new block unconditionally branches to the old block. 685 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 686 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 687 688 // Move the remaining edges from OrigBB to point to NewBB2. 689 for (BasicBlock *NewBB2Pred : NewBB2Preds) 690 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 691 692 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 693 HasLoopExit = false; 694 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 695 PreserveLCSSA, HasLoopExit); 696 697 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 698 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 699 } 700 701 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 702 Instruction *Clone1 = LPad->clone(); 703 Clone1->setName(Twine("lpad") + Suffix1); 704 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 705 706 if (NewBB2) { 707 Instruction *Clone2 = LPad->clone(); 708 Clone2->setName(Twine("lpad") + Suffix2); 709 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 710 711 // Create a PHI node for the two cloned landingpad instructions only 712 // if the original landingpad instruction has some uses. 713 if (!LPad->use_empty()) { 714 assert(!LPad->getType()->isTokenTy() && 715 "Split cannot be applied if LPad is token type. Otherwise an " 716 "invalid PHINode of token type would be created."); 717 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 718 PN->addIncoming(Clone1, NewBB1); 719 PN->addIncoming(Clone2, NewBB2); 720 LPad->replaceAllUsesWith(PN); 721 } 722 LPad->eraseFromParent(); 723 } else { 724 // There is no second clone. Just replace the landing pad with the first 725 // clone. 726 LPad->replaceAllUsesWith(Clone1); 727 LPad->eraseFromParent(); 728 } 729 } 730 731 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 732 BasicBlock *Pred, 733 DomTreeUpdater *DTU) { 734 Instruction *UncondBranch = Pred->getTerminator(); 735 // Clone the return and add it to the end of the predecessor. 736 Instruction *NewRet = RI->clone(); 737 Pred->getInstList().push_back(NewRet); 738 739 // If the return instruction returns a value, and if the value was a 740 // PHI node in "BB", propagate the right value into the return. 741 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 742 i != e; ++i) { 743 Value *V = *i; 744 Instruction *NewBC = nullptr; 745 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 746 // Return value might be bitcasted. Clone and insert it before the 747 // return instruction. 748 V = BCI->getOperand(0); 749 NewBC = BCI->clone(); 750 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 751 *i = NewBC; 752 } 753 if (PHINode *PN = dyn_cast<PHINode>(V)) { 754 if (PN->getParent() == BB) { 755 if (NewBC) 756 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 757 else 758 *i = PN->getIncomingValueForBlock(Pred); 759 } 760 } 761 } 762 763 // Update any PHI nodes in the returning block to realize that we no 764 // longer branch to them. 765 BB->removePredecessor(Pred); 766 UncondBranch->eraseFromParent(); 767 768 if (DTU) 769 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 770 771 return cast<ReturnInst>(NewRet); 772 } 773 774 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 775 Instruction *SplitBefore, 776 bool Unreachable, 777 MDNode *BranchWeights, 778 DominatorTree *DT, LoopInfo *LI, 779 BasicBlock *ThenBlock) { 780 BasicBlock *Head = SplitBefore->getParent(); 781 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 782 Instruction *HeadOldTerm = Head->getTerminator(); 783 LLVMContext &C = Head->getContext(); 784 Instruction *CheckTerm; 785 bool CreateThenBlock = (ThenBlock == nullptr); 786 if (CreateThenBlock) { 787 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 788 if (Unreachable) 789 CheckTerm = new UnreachableInst(C, ThenBlock); 790 else 791 CheckTerm = BranchInst::Create(Tail, ThenBlock); 792 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 793 } else 794 CheckTerm = ThenBlock->getTerminator(); 795 BranchInst *HeadNewTerm = 796 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 797 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 798 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 799 800 if (DT) { 801 if (DomTreeNode *OldNode = DT->getNode(Head)) { 802 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 803 804 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 805 for (DomTreeNode *Child : Children) 806 DT->changeImmediateDominator(Child, NewNode); 807 808 // Head dominates ThenBlock. 809 if (CreateThenBlock) 810 DT->addNewBlock(ThenBlock, Head); 811 else 812 DT->changeImmediateDominator(ThenBlock, Head); 813 } 814 } 815 816 if (LI) { 817 if (Loop *L = LI->getLoopFor(Head)) { 818 L->addBasicBlockToLoop(ThenBlock, *LI); 819 L->addBasicBlockToLoop(Tail, *LI); 820 } 821 } 822 823 return CheckTerm; 824 } 825 826 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 827 Instruction **ThenTerm, 828 Instruction **ElseTerm, 829 MDNode *BranchWeights) { 830 BasicBlock *Head = SplitBefore->getParent(); 831 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 832 Instruction *HeadOldTerm = Head->getTerminator(); 833 LLVMContext &C = Head->getContext(); 834 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 835 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 836 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 837 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 838 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 839 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 840 BranchInst *HeadNewTerm = 841 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 842 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 843 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 844 } 845 846 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 847 BasicBlock *&IfFalse) { 848 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 849 BasicBlock *Pred1 = nullptr; 850 BasicBlock *Pred2 = nullptr; 851 852 if (SomePHI) { 853 if (SomePHI->getNumIncomingValues() != 2) 854 return nullptr; 855 Pred1 = SomePHI->getIncomingBlock(0); 856 Pred2 = SomePHI->getIncomingBlock(1); 857 } else { 858 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 859 if (PI == PE) // No predecessor 860 return nullptr; 861 Pred1 = *PI++; 862 if (PI == PE) // Only one predecessor 863 return nullptr; 864 Pred2 = *PI++; 865 if (PI != PE) // More than two predecessors 866 return nullptr; 867 } 868 869 // We can only handle branches. Other control flow will be lowered to 870 // branches if possible anyway. 871 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 872 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 873 if (!Pred1Br || !Pred2Br) 874 return nullptr; 875 876 // Eliminate code duplication by ensuring that Pred1Br is conditional if 877 // either are. 878 if (Pred2Br->isConditional()) { 879 // If both branches are conditional, we don't have an "if statement". In 880 // reality, we could transform this case, but since the condition will be 881 // required anyway, we stand no chance of eliminating it, so the xform is 882 // probably not profitable. 883 if (Pred1Br->isConditional()) 884 return nullptr; 885 886 std::swap(Pred1, Pred2); 887 std::swap(Pred1Br, Pred2Br); 888 } 889 890 if (Pred1Br->isConditional()) { 891 // The only thing we have to watch out for here is to make sure that Pred2 892 // doesn't have incoming edges from other blocks. If it does, the condition 893 // doesn't dominate BB. 894 if (!Pred2->getSinglePredecessor()) 895 return nullptr; 896 897 // If we found a conditional branch predecessor, make sure that it branches 898 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 899 if (Pred1Br->getSuccessor(0) == BB && 900 Pred1Br->getSuccessor(1) == Pred2) { 901 IfTrue = Pred1; 902 IfFalse = Pred2; 903 } else if (Pred1Br->getSuccessor(0) == Pred2 && 904 Pred1Br->getSuccessor(1) == BB) { 905 IfTrue = Pred2; 906 IfFalse = Pred1; 907 } else { 908 // We know that one arm of the conditional goes to BB, so the other must 909 // go somewhere unrelated, and this must not be an "if statement". 910 return nullptr; 911 } 912 913 return Pred1Br->getCondition(); 914 } 915 916 // Ok, if we got here, both predecessors end with an unconditional branch to 917 // BB. Don't panic! If both blocks only have a single (identical) 918 // predecessor, and THAT is a conditional branch, then we're all ok! 919 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 920 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 921 return nullptr; 922 923 // Otherwise, if this is a conditional branch, then we can use it! 924 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 925 if (!BI) return nullptr; 926 927 assert(BI->isConditional() && "Two successors but not conditional?"); 928 if (BI->getSuccessor(0) == Pred1) { 929 IfTrue = Pred1; 930 IfFalse = Pred2; 931 } else { 932 IfTrue = Pred2; 933 IfFalse = Pred1; 934 } 935 return BI->getCondition(); 936 } 937