1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 /// DeleteDeadBlock - Delete the specified block, which must have no
35 /// predecessors.
36 void llvm::DeleteDeadBlock(BasicBlock *BB) {
37   assert((pred_begin(BB) == pred_end(BB) ||
38          // Can delete self loop.
39          BB->getSinglePredecessor() == BB) && "Block is not dead!");
40   TerminatorInst *BBTerm = BB->getTerminator();
41 
42   // Loop through all of our successors and make sure they know that one
43   // of their predecessors is going away.
44   for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
45     BBTerm->getSuccessor(i)->removePredecessor(BB);
46 
47   // Zap all the instructions in the block.
48   while (!BB->empty()) {
49     Instruction &I = BB->back();
50     // If this instruction is used, replace uses with an arbitrary value.
51     // Because control flow can't get here, we don't care what we replace the
52     // value with.  Note that since this block is unreachable, and all values
53     // contained within it must dominate their uses, that all uses will
54     // eventually be removed (they are themselves dead).
55     if (!I.use_empty())
56       I.replaceAllUsesWith(UndefValue::get(I.getType()));
57     BB->getInstList().pop_back();
58   }
59 
60   // Zap the block!
61   BB->eraseFromParent();
62 }
63 
64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
65 /// any single-entry PHI nodes in it, fold them away.  This handles the case
66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
67 /// when the block has exactly one predecessor.
68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
69                                    MemoryDependenceAnalysis *MemDep) {
70   if (!isa<PHINode>(BB->begin())) return;
71 
72   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
73     if (PN->getIncomingValue(0) != PN)
74       PN->replaceAllUsesWith(PN->getIncomingValue(0));
75     else
76       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
77 
78     if (MemDep)
79       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
80 
81     PN->eraseFromParent();
82   }
83 }
84 
85 
86 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
87 /// is dead. Also recursively delete any operands that become dead as
88 /// a result. This includes tracing the def-use list from the PHI to see if
89 /// it is ultimately unused or if it reaches an unused cycle.
90 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
91   // Recursively deleting a PHI may cause multiple PHIs to be deleted
92   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
93   SmallVector<WeakVH, 8> PHIs;
94   for (BasicBlock::iterator I = BB->begin();
95        PHINode *PN = dyn_cast<PHINode>(I); ++I)
96     PHIs.push_back(PN);
97 
98   bool Changed = false;
99   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
100     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
101       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
102 
103   return Changed;
104 }
105 
106 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
107 /// if possible.  The return value indicates success or failure.
108 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
109                                      LoopInfo *LI,
110                                      MemoryDependenceAnalysis *MemDep) {
111   // Don't merge away blocks who have their address taken.
112   if (BB->hasAddressTaken()) return false;
113 
114   // Can't merge if there are multiple predecessors, or no predecessors.
115   BasicBlock *PredBB = BB->getUniquePredecessor();
116   if (!PredBB) return false;
117 
118   // Don't break self-loops.
119   if (PredBB == BB) return false;
120   // Don't break invokes.
121   if (isa<InvokeInst>(PredBB->getTerminator())) return false;
122 
123   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
124   BasicBlock *OnlySucc = BB;
125   for (; SI != SE; ++SI)
126     if (*SI != OnlySucc) {
127       OnlySucc = nullptr;     // There are multiple distinct successors!
128       break;
129     }
130 
131   // Can't merge if there are multiple successors.
132   if (!OnlySucc) return false;
133 
134   // Can't merge if there is PHI loop.
135   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
136     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
137       for (Value *IncValue : PN->incoming_values())
138         if (IncValue == PN)
139           return false;
140     } else
141       break;
142   }
143 
144   // Begin by getting rid of unneeded PHIs.
145   if (isa<PHINode>(BB->front()))
146     FoldSingleEntryPHINodes(BB, MemDep);
147 
148   // Delete the unconditional branch from the predecessor...
149   PredBB->getInstList().pop_back();
150 
151   // Make all PHI nodes that referred to BB now refer to Pred as their
152   // source...
153   BB->replaceAllUsesWith(PredBB);
154 
155   // Move all definitions in the successor to the predecessor...
156   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
157 
158   // Inherit predecessors name if it exists.
159   if (!PredBB->hasName())
160     PredBB->takeName(BB);
161 
162   // Finally, erase the old block and update dominator info.
163   if (DT)
164     if (DomTreeNode *DTN = DT->getNode(BB)) {
165       DomTreeNode *PredDTN = DT->getNode(PredBB);
166       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
167       for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
168                                                     DE = Children.end();
169            DI != DE; ++DI)
170         DT->changeImmediateDominator(*DI, PredDTN);
171 
172       DT->eraseNode(BB);
173     }
174 
175   if (LI)
176     LI->removeBlock(BB);
177 
178   if (MemDep)
179     MemDep->invalidateCachedPredecessors();
180 
181   BB->eraseFromParent();
182   return true;
183 }
184 
185 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
186 /// with a value, then remove and delete the original instruction.
187 ///
188 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
189                                 BasicBlock::iterator &BI, Value *V) {
190   Instruction &I = *BI;
191   // Replaces all of the uses of the instruction with uses of the value
192   I.replaceAllUsesWith(V);
193 
194   // Make sure to propagate a name if there is one already.
195   if (I.hasName() && !V->hasName())
196     V->takeName(&I);
197 
198   // Delete the unnecessary instruction now...
199   BI = BIL.erase(BI);
200 }
201 
202 
203 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
204 /// instruction specified by I.  The original instruction is deleted and BI is
205 /// updated to point to the new instruction.
206 ///
207 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
208                                BasicBlock::iterator &BI, Instruction *I) {
209   assert(I->getParent() == nullptr &&
210          "ReplaceInstWithInst: Instruction already inserted into basic block!");
211 
212   // Copy debug location to newly added instruction, if it wasn't already set
213   // by the caller.
214   if (!I->getDebugLoc())
215     I->setDebugLoc(BI->getDebugLoc());
216 
217   // Insert the new instruction into the basic block...
218   BasicBlock::iterator New = BIL.insert(BI, I);
219 
220   // Replace all uses of the old instruction, and delete it.
221   ReplaceInstWithValue(BIL, BI, I);
222 
223   // Move BI back to point to the newly inserted instruction
224   BI = New;
225 }
226 
227 /// ReplaceInstWithInst - Replace the instruction specified by From with the
228 /// instruction specified by To.
229 ///
230 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
231   BasicBlock::iterator BI(From);
232   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
233 }
234 
235 /// SplitEdge -  Split the edge connecting specified block. Pass P must
236 /// not be NULL.
237 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
238                             LoopInfo *LI) {
239   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
240 
241   // If this is a critical edge, let SplitCriticalEdge do it.
242   TerminatorInst *LatchTerm = BB->getTerminator();
243   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
244                                                 .setPreserveLCSSA()))
245     return LatchTerm->getSuccessor(SuccNum);
246 
247   // If the edge isn't critical, then BB has a single successor or Succ has a
248   // single pred.  Split the block.
249   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
250     // If the successor only has a single pred, split the top of the successor
251     // block.
252     assert(SP == BB && "CFG broken");
253     SP = nullptr;
254     return SplitBlock(Succ, Succ->begin(), DT, LI);
255   }
256 
257   // Otherwise, if BB has a single successor, split it at the bottom of the
258   // block.
259   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
260          "Should have a single succ!");
261   return SplitBlock(BB, BB->getTerminator(), DT, LI);
262 }
263 
264 unsigned
265 llvm::SplitAllCriticalEdges(Function &F,
266                             const CriticalEdgeSplittingOptions &Options) {
267   unsigned NumBroken = 0;
268   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
269     TerminatorInst *TI = I->getTerminator();
270     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
271       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
272         if (SplitCriticalEdge(TI, i, Options))
273           ++NumBroken;
274   }
275   return NumBroken;
276 }
277 
278 /// SplitBlock - Split the specified block at the specified instruction - every
279 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
280 /// to a new block.  The two blocks are joined by an unconditional branch and
281 /// the loop info is updated.
282 ///
283 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
284                              DominatorTree *DT, LoopInfo *LI) {
285   BasicBlock::iterator SplitIt = SplitPt;
286   while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
287     ++SplitIt;
288   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
289 
290   // The new block lives in whichever loop the old one did. This preserves
291   // LCSSA as well, because we force the split point to be after any PHI nodes.
292   if (LI)
293     if (Loop *L = LI->getLoopFor(Old))
294       L->addBasicBlockToLoop(New, *LI);
295 
296   if (DT)
297     // Old dominates New. New node dominates all other nodes dominated by Old.
298     if (DomTreeNode *OldNode = DT->getNode(Old)) {
299       std::vector<DomTreeNode *> Children;
300       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
301            I != E; ++I)
302         Children.push_back(*I);
303 
304       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
305       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
306              E = Children.end(); I != E; ++I)
307         DT->changeImmediateDominator(*I, NewNode);
308     }
309 
310   return New;
311 }
312 
313 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
314 /// analysis information.
315 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
316                                       ArrayRef<BasicBlock *> Preds,
317                                       DominatorTree *DT, LoopInfo *LI,
318                                       bool PreserveLCSSA, bool &HasLoopExit) {
319   // Update dominator tree if available.
320   if (DT)
321     DT->splitBlock(NewBB);
322 
323   // The rest of the logic is only relevant for updating the loop structures.
324   if (!LI)
325     return;
326 
327   Loop *L = LI->getLoopFor(OldBB);
328 
329   // If we need to preserve loop analyses, collect some information about how
330   // this split will affect loops.
331   bool IsLoopEntry = !!L;
332   bool SplitMakesNewLoopHeader = false;
333   for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
334        i != e; ++i) {
335     BasicBlock *Pred = *i;
336 
337     // If we need to preserve LCSSA, determine if any of the preds is a loop
338     // exit.
339     if (PreserveLCSSA)
340       if (Loop *PL = LI->getLoopFor(Pred))
341         if (!PL->contains(OldBB))
342           HasLoopExit = true;
343 
344     // If we need to preserve LoopInfo, note whether any of the preds crosses
345     // an interesting loop boundary.
346     if (!L)
347       continue;
348     if (L->contains(Pred))
349       IsLoopEntry = false;
350     else
351       SplitMakesNewLoopHeader = true;
352   }
353 
354   // Unless we have a loop for OldBB, nothing else to do here.
355   if (!L)
356     return;
357 
358   if (IsLoopEntry) {
359     // Add the new block to the nearest enclosing loop (and not an adjacent
360     // loop). To find this, examine each of the predecessors and determine which
361     // loops enclose them, and select the most-nested loop which contains the
362     // loop containing the block being split.
363     Loop *InnermostPredLoop = nullptr;
364     for (ArrayRef<BasicBlock*>::iterator
365            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
366       BasicBlock *Pred = *i;
367       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
368         // Seek a loop which actually contains the block being split (to avoid
369         // adjacent loops).
370         while (PredLoop && !PredLoop->contains(OldBB))
371           PredLoop = PredLoop->getParentLoop();
372 
373         // Select the most-nested of these loops which contains the block.
374         if (PredLoop && PredLoop->contains(OldBB) &&
375             (!InnermostPredLoop ||
376              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
377           InnermostPredLoop = PredLoop;
378       }
379     }
380 
381     if (InnermostPredLoop)
382       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
383   } else {
384     L->addBasicBlockToLoop(NewBB, *LI);
385     if (SplitMakesNewLoopHeader)
386       L->moveToHeader(NewBB);
387   }
388 }
389 
390 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
391 /// from NewBB. This also updates AliasAnalysis, if available.
392 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
393                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
394                            bool HasLoopExit) {
395   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
396   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
397   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
398     PHINode *PN = cast<PHINode>(I++);
399 
400     // Check to see if all of the values coming in are the same.  If so, we
401     // don't need to create a new PHI node, unless it's needed for LCSSA.
402     Value *InVal = nullptr;
403     if (!HasLoopExit) {
404       InVal = PN->getIncomingValueForBlock(Preds[0]);
405       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
406         if (!PredSet.count(PN->getIncomingBlock(i)))
407           continue;
408         if (!InVal)
409           InVal = PN->getIncomingValue(i);
410         else if (InVal != PN->getIncomingValue(i)) {
411           InVal = nullptr;
412           break;
413         }
414       }
415     }
416 
417     if (InVal) {
418       // If all incoming values for the new PHI would be the same, just don't
419       // make a new PHI.  Instead, just remove the incoming values from the old
420       // PHI.
421 
422       // NOTE! This loop walks backwards for a reason! First off, this minimizes
423       // the cost of removal if we end up removing a large number of values, and
424       // second off, this ensures that the indices for the incoming values
425       // aren't invalidated when we remove one.
426       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
427         if (PredSet.count(PN->getIncomingBlock(i)))
428           PN->removeIncomingValue(i, false);
429 
430       // Add an incoming value to the PHI node in the loop for the preheader
431       // edge.
432       PN->addIncoming(InVal, NewBB);
433       continue;
434     }
435 
436     // If the values coming into the block are not the same, we need a new
437     // PHI.
438     // Create the new PHI node, insert it into NewBB at the end of the block
439     PHINode *NewPHI =
440         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
441 
442     // NOTE! This loop walks backwards for a reason! First off, this minimizes
443     // the cost of removal if we end up removing a large number of values, and
444     // second off, this ensures that the indices for the incoming values aren't
445     // invalidated when we remove one.
446     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
447       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
448       if (PredSet.count(IncomingBB)) {
449         Value *V = PN->removeIncomingValue(i, false);
450         NewPHI->addIncoming(V, IncomingBB);
451       }
452     }
453 
454     PN->addIncoming(NewPHI, NewBB);
455   }
456 }
457 
458 /// SplitBlockPredecessors - This method introduces at least one new basic block
459 /// into the function and moves some of the predecessors of BB to be
460 /// predecessors of the new block. The new predecessors are indicated by the
461 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
462 /// block to which predecessors from Preds are now pointing.
463 ///
464 /// If BB is a landingpad block then additional basicblock might be introduced.
465 /// It will have suffix of 'Suffix'+".split_lp".
466 /// See SplitLandingPadPredecessors for more details on this case.
467 ///
468 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
469 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
470 /// preserve LoopSimplify (because it's complicated to handle the case where one
471 /// of the edges being split is an exit of a loop with other exits).
472 ///
473 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
474                                          ArrayRef<BasicBlock *> Preds,
475                                          const char *Suffix, DominatorTree *DT,
476                                          LoopInfo *LI, bool PreserveLCSSA) {
477   // For the landingpads we need to act a bit differently.
478   // Delegate this work to the SplitLandingPadPredecessors.
479   if (BB->isLandingPad()) {
480     SmallVector<BasicBlock*, 2> NewBBs;
481     std::string NewName = std::string(Suffix) + ".split-lp";
482 
483     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
484                                 LI, PreserveLCSSA);
485     return NewBBs[0];
486   }
487 
488   // Create new basic block, insert right before the original block.
489   BasicBlock *NewBB = BasicBlock::Create(
490       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
491 
492   // The new block unconditionally branches to the old block.
493   BranchInst *BI = BranchInst::Create(BB, NewBB);
494   BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
495 
496   // Move the edges from Preds to point to NewBB instead of BB.
497   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
498     // This is slightly more strict than necessary; the minimum requirement
499     // is that there be no more than one indirectbr branching to BB. And
500     // all BlockAddress uses would need to be updated.
501     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
502            "Cannot split an edge from an IndirectBrInst");
503     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
504   }
505 
506   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
507   // node becomes an incoming value for BB's phi node.  However, if the Preds
508   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
509   // account for the newly created predecessor.
510   if (Preds.size() == 0) {
511     // Insert dummy values as the incoming value.
512     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
513       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
514     return NewBB;
515   }
516 
517   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
518   bool HasLoopExit = false;
519   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
520                             HasLoopExit);
521 
522   // Update the PHI nodes in BB with the values coming from NewBB.
523   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
524   return NewBB;
525 }
526 
527 /// SplitLandingPadPredecessors - This method transforms the landing pad,
528 /// OrigBB, by introducing two new basic blocks into the function. One of those
529 /// new basic blocks gets the predecessors listed in Preds. The other basic
530 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
531 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
532 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
533 ///
534 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
535 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
536 /// it does not preserve LoopSimplify (because it's complicated to handle the
537 /// case where one of the edges being split is an exit of a loop with other
538 /// exits).
539 ///
540 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
541                                        ArrayRef<BasicBlock *> Preds,
542                                        const char *Suffix1, const char *Suffix2,
543                                        SmallVectorImpl<BasicBlock *> &NewBBs,
544                                        DominatorTree *DT, LoopInfo *LI,
545                                        bool PreserveLCSSA) {
546   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
547 
548   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
549   // it right before the original block.
550   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
551                                           OrigBB->getName() + Suffix1,
552                                           OrigBB->getParent(), OrigBB);
553   NewBBs.push_back(NewBB1);
554 
555   // The new block unconditionally branches to the old block.
556   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
557   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
558 
559   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
560   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
561     // This is slightly more strict than necessary; the minimum requirement
562     // is that there be no more than one indirectbr branching to BB. And
563     // all BlockAddress uses would need to be updated.
564     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
565            "Cannot split an edge from an IndirectBrInst");
566     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
567   }
568 
569   bool HasLoopExit = false;
570   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
571                             HasLoopExit);
572 
573   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
574   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
575 
576   // Move the remaining edges from OrigBB to point to NewBB2.
577   SmallVector<BasicBlock*, 8> NewBB2Preds;
578   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
579        i != e; ) {
580     BasicBlock *Pred = *i++;
581     if (Pred == NewBB1) continue;
582     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
583            "Cannot split an edge from an IndirectBrInst");
584     NewBB2Preds.push_back(Pred);
585     e = pred_end(OrigBB);
586   }
587 
588   BasicBlock *NewBB2 = nullptr;
589   if (!NewBB2Preds.empty()) {
590     // Create another basic block for the rest of OrigBB's predecessors.
591     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
592                                 OrigBB->getName() + Suffix2,
593                                 OrigBB->getParent(), OrigBB);
594     NewBBs.push_back(NewBB2);
595 
596     // The new block unconditionally branches to the old block.
597     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
598     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
599 
600     // Move the remaining edges from OrigBB to point to NewBB2.
601     for (SmallVectorImpl<BasicBlock*>::iterator
602            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
603       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
604 
605     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
606     HasLoopExit = false;
607     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
608                               PreserveLCSSA, HasLoopExit);
609 
610     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
611     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
612   }
613 
614   LandingPadInst *LPad = OrigBB->getLandingPadInst();
615   Instruction *Clone1 = LPad->clone();
616   Clone1->setName(Twine("lpad") + Suffix1);
617   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
618 
619   if (NewBB2) {
620     Instruction *Clone2 = LPad->clone();
621     Clone2->setName(Twine("lpad") + Suffix2);
622     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
623 
624     // Create a PHI node for the two cloned landingpad instructions.
625     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
626     PN->addIncoming(Clone1, NewBB1);
627     PN->addIncoming(Clone2, NewBB2);
628     LPad->replaceAllUsesWith(PN);
629     LPad->eraseFromParent();
630   } else {
631     // There is no second clone. Just replace the landing pad with the first
632     // clone.
633     LPad->replaceAllUsesWith(Clone1);
634     LPad->eraseFromParent();
635   }
636 }
637 
638 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
639 /// instruction into a predecessor which ends in an unconditional branch. If
640 /// the return instruction returns a value defined by a PHI, propagate the
641 /// right value into the return. It returns the new return instruction in the
642 /// predecessor.
643 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
644                                              BasicBlock *Pred) {
645   Instruction *UncondBranch = Pred->getTerminator();
646   // Clone the return and add it to the end of the predecessor.
647   Instruction *NewRet = RI->clone();
648   Pred->getInstList().push_back(NewRet);
649 
650   // If the return instruction returns a value, and if the value was a
651   // PHI node in "BB", propagate the right value into the return.
652   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
653        i != e; ++i) {
654     Value *V = *i;
655     Instruction *NewBC = nullptr;
656     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
657       // Return value might be bitcasted. Clone and insert it before the
658       // return instruction.
659       V = BCI->getOperand(0);
660       NewBC = BCI->clone();
661       Pred->getInstList().insert(NewRet, NewBC);
662       *i = NewBC;
663     }
664     if (PHINode *PN = dyn_cast<PHINode>(V)) {
665       if (PN->getParent() == BB) {
666         if (NewBC)
667           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
668         else
669           *i = PN->getIncomingValueForBlock(Pred);
670       }
671     }
672   }
673 
674   // Update any PHI nodes in the returning block to realize that we no
675   // longer branch to them.
676   BB->removePredecessor(Pred);
677   UncondBranch->eraseFromParent();
678   return cast<ReturnInst>(NewRet);
679 }
680 
681 /// SplitBlockAndInsertIfThen - Split the containing block at the
682 /// specified instruction - everything before and including SplitBefore stays
683 /// in the old basic block, and everything after SplitBefore is moved to a
684 /// new block. The two blocks are connected by a conditional branch
685 /// (with value of Cmp being the condition).
686 /// Before:
687 ///   Head
688 ///   SplitBefore
689 ///   Tail
690 /// After:
691 ///   Head
692 ///   if (Cond)
693 ///     ThenBlock
694 ///   SplitBefore
695 ///   Tail
696 ///
697 /// If Unreachable is true, then ThenBlock ends with
698 /// UnreachableInst, otherwise it branches to Tail.
699 /// Returns the NewBasicBlock's terminator.
700 
701 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
702                                                 Instruction *SplitBefore,
703                                                 bool Unreachable,
704                                                 MDNode *BranchWeights,
705                                                 DominatorTree *DT) {
706   BasicBlock *Head = SplitBefore->getParent();
707   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
708   TerminatorInst *HeadOldTerm = Head->getTerminator();
709   LLVMContext &C = Head->getContext();
710   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
711   TerminatorInst *CheckTerm;
712   if (Unreachable)
713     CheckTerm = new UnreachableInst(C, ThenBlock);
714   else
715     CheckTerm = BranchInst::Create(Tail, ThenBlock);
716   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
717   BranchInst *HeadNewTerm =
718     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
719   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
720   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
721 
722   if (DT) {
723     if (DomTreeNode *OldNode = DT->getNode(Head)) {
724       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
725 
726       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
727       for (auto Child : Children)
728         DT->changeImmediateDominator(Child, NewNode);
729 
730       // Head dominates ThenBlock.
731       DT->addNewBlock(ThenBlock, Head);
732     }
733   }
734 
735   return CheckTerm;
736 }
737 
738 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
739 /// but also creates the ElseBlock.
740 /// Before:
741 ///   Head
742 ///   SplitBefore
743 ///   Tail
744 /// After:
745 ///   Head
746 ///   if (Cond)
747 ///     ThenBlock
748 ///   else
749 ///     ElseBlock
750 ///   SplitBefore
751 ///   Tail
752 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
753                                          TerminatorInst **ThenTerm,
754                                          TerminatorInst **ElseTerm,
755                                          MDNode *BranchWeights) {
756   BasicBlock *Head = SplitBefore->getParent();
757   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
758   TerminatorInst *HeadOldTerm = Head->getTerminator();
759   LLVMContext &C = Head->getContext();
760   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
761   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
762   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
763   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
764   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
765   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
766   BranchInst *HeadNewTerm =
767     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
768   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
769   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
770 }
771 
772 
773 /// GetIfCondition - Given a basic block (BB) with two predecessors,
774 /// check to see if the merge at this block is due
775 /// to an "if condition".  If so, return the boolean condition that determines
776 /// which entry into BB will be taken.  Also, return by references the block
777 /// that will be entered from if the condition is true, and the block that will
778 /// be entered if the condition is false.
779 ///
780 /// This does no checking to see if the true/false blocks have large or unsavory
781 /// instructions in them.
782 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
783                              BasicBlock *&IfFalse) {
784   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
785   BasicBlock *Pred1 = nullptr;
786   BasicBlock *Pred2 = nullptr;
787 
788   if (SomePHI) {
789     if (SomePHI->getNumIncomingValues() != 2)
790       return nullptr;
791     Pred1 = SomePHI->getIncomingBlock(0);
792     Pred2 = SomePHI->getIncomingBlock(1);
793   } else {
794     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
795     if (PI == PE) // No predecessor
796       return nullptr;
797     Pred1 = *PI++;
798     if (PI == PE) // Only one predecessor
799       return nullptr;
800     Pred2 = *PI++;
801     if (PI != PE) // More than two predecessors
802       return nullptr;
803   }
804 
805   // We can only handle branches.  Other control flow will be lowered to
806   // branches if possible anyway.
807   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
808   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
809   if (!Pred1Br || !Pred2Br)
810     return nullptr;
811 
812   // Eliminate code duplication by ensuring that Pred1Br is conditional if
813   // either are.
814   if (Pred2Br->isConditional()) {
815     // If both branches are conditional, we don't have an "if statement".  In
816     // reality, we could transform this case, but since the condition will be
817     // required anyway, we stand no chance of eliminating it, so the xform is
818     // probably not profitable.
819     if (Pred1Br->isConditional())
820       return nullptr;
821 
822     std::swap(Pred1, Pred2);
823     std::swap(Pred1Br, Pred2Br);
824   }
825 
826   if (Pred1Br->isConditional()) {
827     // The only thing we have to watch out for here is to make sure that Pred2
828     // doesn't have incoming edges from other blocks.  If it does, the condition
829     // doesn't dominate BB.
830     if (!Pred2->getSinglePredecessor())
831       return nullptr;
832 
833     // If we found a conditional branch predecessor, make sure that it branches
834     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
835     if (Pred1Br->getSuccessor(0) == BB &&
836         Pred1Br->getSuccessor(1) == Pred2) {
837       IfTrue = Pred1;
838       IfFalse = Pred2;
839     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
840                Pred1Br->getSuccessor(1) == BB) {
841       IfTrue = Pred2;
842       IfFalse = Pred1;
843     } else {
844       // We know that one arm of the conditional goes to BB, so the other must
845       // go somewhere unrelated, and this must not be an "if statement".
846       return nullptr;
847     }
848 
849     return Pred1Br->getCondition();
850   }
851 
852   // Ok, if we got here, both predecessors end with an unconditional branch to
853   // BB.  Don't panic!  If both blocks only have a single (identical)
854   // predecessor, and THAT is a conditional branch, then we're all ok!
855   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
856   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
857     return nullptr;
858 
859   // Otherwise, if this is a conditional branch, then we can use it!
860   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
861   if (!BI) return nullptr;
862 
863   assert(BI->isConditional() && "Two successors but not conditional?");
864   if (BI->getSuccessor(0) == Pred1) {
865     IfTrue = Pred1;
866     IfFalse = Pred2;
867   } else {
868     IfTrue = Pred2;
869     IfFalse = Pred1;
870   }
871   return BI->getCondition();
872 }
873