1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/CFG.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/ValueHandle.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Transforms/Scalar.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 /// DeleteDeadBlock - Delete the specified block, which must have no 35 /// predecessors. 36 void llvm::DeleteDeadBlock(BasicBlock *BB) { 37 assert((pred_begin(BB) == pred_end(BB) || 38 // Can delete self loop. 39 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 40 TerminatorInst *BBTerm = BB->getTerminator(); 41 42 // Loop through all of our successors and make sure they know that one 43 // of their predecessors is going away. 44 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) 45 BBTerm->getSuccessor(i)->removePredecessor(BB); 46 47 // Zap all the instructions in the block. 48 while (!BB->empty()) { 49 Instruction &I = BB->back(); 50 // If this instruction is used, replace uses with an arbitrary value. 51 // Because control flow can't get here, we don't care what we replace the 52 // value with. Note that since this block is unreachable, and all values 53 // contained within it must dominate their uses, that all uses will 54 // eventually be removed (they are themselves dead). 55 if (!I.use_empty()) 56 I.replaceAllUsesWith(UndefValue::get(I.getType())); 57 BB->getInstList().pop_back(); 58 } 59 60 // Zap the block! 61 BB->eraseFromParent(); 62 } 63 64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are 65 /// any single-entry PHI nodes in it, fold them away. This handles the case 66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as 67 /// when the block has exactly one predecessor. 68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 69 MemoryDependenceAnalysis *MemDep) { 70 if (!isa<PHINode>(BB->begin())) return; 71 72 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 73 if (PN->getIncomingValue(0) != PN) 74 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 75 else 76 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 77 78 if (MemDep) 79 MemDep->removeInstruction(PN); // Memdep updates AA itself. 80 81 PN->eraseFromParent(); 82 } 83 } 84 85 86 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it 87 /// is dead. Also recursively delete any operands that become dead as 88 /// a result. This includes tracing the def-use list from the PHI to see if 89 /// it is ultimately unused or if it reaches an unused cycle. 90 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 91 // Recursively deleting a PHI may cause multiple PHIs to be deleted 92 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. 93 SmallVector<WeakVH, 8> PHIs; 94 for (BasicBlock::iterator I = BB->begin(); 95 PHINode *PN = dyn_cast<PHINode>(I); ++I) 96 PHIs.push_back(PN); 97 98 bool Changed = false; 99 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 100 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 101 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 102 103 return Changed; 104 } 105 106 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, 107 /// if possible. The return value indicates success or failure. 108 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT, 109 LoopInfo *LI, 110 MemoryDependenceAnalysis *MemDep) { 111 // Don't merge away blocks who have their address taken. 112 if (BB->hasAddressTaken()) return false; 113 114 // Can't merge if there are multiple predecessors, or no predecessors. 115 BasicBlock *PredBB = BB->getUniquePredecessor(); 116 if (!PredBB) return false; 117 118 // Don't break self-loops. 119 if (PredBB == BB) return false; 120 // Don't break invokes. 121 if (isa<InvokeInst>(PredBB->getTerminator())) return false; 122 123 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 124 BasicBlock *OnlySucc = BB; 125 for (; SI != SE; ++SI) 126 if (*SI != OnlySucc) { 127 OnlySucc = nullptr; // There are multiple distinct successors! 128 break; 129 } 130 131 // Can't merge if there are multiple successors. 132 if (!OnlySucc) return false; 133 134 // Can't merge if there is PHI loop. 135 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 136 if (PHINode *PN = dyn_cast<PHINode>(BI)) { 137 for (Value *IncValue : PN->incoming_values()) 138 if (IncValue == PN) 139 return false; 140 } else 141 break; 142 } 143 144 // Begin by getting rid of unneeded PHIs. 145 if (isa<PHINode>(BB->front())) 146 FoldSingleEntryPHINodes(BB, MemDep); 147 148 // Delete the unconditional branch from the predecessor... 149 PredBB->getInstList().pop_back(); 150 151 // Make all PHI nodes that referred to BB now refer to Pred as their 152 // source... 153 BB->replaceAllUsesWith(PredBB); 154 155 // Move all definitions in the successor to the predecessor... 156 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 157 158 // Inherit predecessors name if it exists. 159 if (!PredBB->hasName()) 160 PredBB->takeName(BB); 161 162 // Finally, erase the old block and update dominator info. 163 if (DT) 164 if (DomTreeNode *DTN = DT->getNode(BB)) { 165 DomTreeNode *PredDTN = DT->getNode(PredBB); 166 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 167 for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(), 168 DE = Children.end(); 169 DI != DE; ++DI) 170 DT->changeImmediateDominator(*DI, PredDTN); 171 172 DT->eraseNode(BB); 173 } 174 175 if (LI) 176 LI->removeBlock(BB); 177 178 if (MemDep) 179 MemDep->invalidateCachedPredecessors(); 180 181 BB->eraseFromParent(); 182 return true; 183 } 184 185 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) 186 /// with a value, then remove and delete the original instruction. 187 /// 188 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 189 BasicBlock::iterator &BI, Value *V) { 190 Instruction &I = *BI; 191 // Replaces all of the uses of the instruction with uses of the value 192 I.replaceAllUsesWith(V); 193 194 // Make sure to propagate a name if there is one already. 195 if (I.hasName() && !V->hasName()) 196 V->takeName(&I); 197 198 // Delete the unnecessary instruction now... 199 BI = BIL.erase(BI); 200 } 201 202 203 /// ReplaceInstWithInst - Replace the instruction specified by BI with the 204 /// instruction specified by I. The original instruction is deleted and BI is 205 /// updated to point to the new instruction. 206 /// 207 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 208 BasicBlock::iterator &BI, Instruction *I) { 209 assert(I->getParent() == nullptr && 210 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 211 212 // Copy debug location to newly added instruction, if it wasn't already set 213 // by the caller. 214 if (!I->getDebugLoc()) 215 I->setDebugLoc(BI->getDebugLoc()); 216 217 // Insert the new instruction into the basic block... 218 BasicBlock::iterator New = BIL.insert(BI, I); 219 220 // Replace all uses of the old instruction, and delete it. 221 ReplaceInstWithValue(BIL, BI, I); 222 223 // Move BI back to point to the newly inserted instruction 224 BI = New; 225 } 226 227 /// ReplaceInstWithInst - Replace the instruction specified by From with the 228 /// instruction specified by To. 229 /// 230 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 231 BasicBlock::iterator BI(From); 232 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 233 } 234 235 /// SplitEdge - Split the edge connecting specified block. Pass P must 236 /// not be NULL. 237 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 238 LoopInfo *LI) { 239 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 240 241 // If this is a critical edge, let SplitCriticalEdge do it. 242 TerminatorInst *LatchTerm = BB->getTerminator(); 243 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI) 244 .setPreserveLCSSA())) 245 return LatchTerm->getSuccessor(SuccNum); 246 247 // If the edge isn't critical, then BB has a single successor or Succ has a 248 // single pred. Split the block. 249 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 250 // If the successor only has a single pred, split the top of the successor 251 // block. 252 assert(SP == BB && "CFG broken"); 253 SP = nullptr; 254 return SplitBlock(Succ, Succ->begin(), DT, LI); 255 } 256 257 // Otherwise, if BB has a single successor, split it at the bottom of the 258 // block. 259 assert(BB->getTerminator()->getNumSuccessors() == 1 && 260 "Should have a single succ!"); 261 return SplitBlock(BB, BB->getTerminator(), DT, LI); 262 } 263 264 unsigned 265 llvm::SplitAllCriticalEdges(Function &F, 266 const CriticalEdgeSplittingOptions &Options) { 267 unsigned NumBroken = 0; 268 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 269 TerminatorInst *TI = I->getTerminator(); 270 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 271 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 272 if (SplitCriticalEdge(TI, i, Options)) 273 ++NumBroken; 274 } 275 return NumBroken; 276 } 277 278 /// SplitBlock - Split the specified block at the specified instruction - every 279 /// thing before SplitPt stays in Old and everything starting with SplitPt moves 280 /// to a new block. The two blocks are joined by an unconditional branch and 281 /// the loop info is updated. 282 /// 283 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 284 DominatorTree *DT, LoopInfo *LI) { 285 BasicBlock::iterator SplitIt = SplitPt; 286 while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt)) 287 ++SplitIt; 288 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 289 290 // The new block lives in whichever loop the old one did. This preserves 291 // LCSSA as well, because we force the split point to be after any PHI nodes. 292 if (LI) 293 if (Loop *L = LI->getLoopFor(Old)) 294 L->addBasicBlockToLoop(New, *LI); 295 296 if (DT) 297 // Old dominates New. New node dominates all other nodes dominated by Old. 298 if (DomTreeNode *OldNode = DT->getNode(Old)) { 299 std::vector<DomTreeNode *> Children; 300 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); 301 I != E; ++I) 302 Children.push_back(*I); 303 304 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 305 for (std::vector<DomTreeNode *>::iterator I = Children.begin(), 306 E = Children.end(); I != E; ++I) 307 DT->changeImmediateDominator(*I, NewNode); 308 } 309 310 return New; 311 } 312 313 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA 314 /// analysis information. 315 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 316 ArrayRef<BasicBlock *> Preds, 317 DominatorTree *DT, LoopInfo *LI, 318 bool PreserveLCSSA, bool &HasLoopExit) { 319 // Update dominator tree if available. 320 if (DT) 321 DT->splitBlock(NewBB); 322 323 // The rest of the logic is only relevant for updating the loop structures. 324 if (!LI) 325 return; 326 327 Loop *L = LI->getLoopFor(OldBB); 328 329 // If we need to preserve loop analyses, collect some information about how 330 // this split will affect loops. 331 bool IsLoopEntry = !!L; 332 bool SplitMakesNewLoopHeader = false; 333 for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end(); 334 i != e; ++i) { 335 BasicBlock *Pred = *i; 336 337 // If we need to preserve LCSSA, determine if any of the preds is a loop 338 // exit. 339 if (PreserveLCSSA) 340 if (Loop *PL = LI->getLoopFor(Pred)) 341 if (!PL->contains(OldBB)) 342 HasLoopExit = true; 343 344 // If we need to preserve LoopInfo, note whether any of the preds crosses 345 // an interesting loop boundary. 346 if (!L) 347 continue; 348 if (L->contains(Pred)) 349 IsLoopEntry = false; 350 else 351 SplitMakesNewLoopHeader = true; 352 } 353 354 // Unless we have a loop for OldBB, nothing else to do here. 355 if (!L) 356 return; 357 358 if (IsLoopEntry) { 359 // Add the new block to the nearest enclosing loop (and not an adjacent 360 // loop). To find this, examine each of the predecessors and determine which 361 // loops enclose them, and select the most-nested loop which contains the 362 // loop containing the block being split. 363 Loop *InnermostPredLoop = nullptr; 364 for (ArrayRef<BasicBlock*>::iterator 365 i = Preds.begin(), e = Preds.end(); i != e; ++i) { 366 BasicBlock *Pred = *i; 367 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 368 // Seek a loop which actually contains the block being split (to avoid 369 // adjacent loops). 370 while (PredLoop && !PredLoop->contains(OldBB)) 371 PredLoop = PredLoop->getParentLoop(); 372 373 // Select the most-nested of these loops which contains the block. 374 if (PredLoop && PredLoop->contains(OldBB) && 375 (!InnermostPredLoop || 376 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 377 InnermostPredLoop = PredLoop; 378 } 379 } 380 381 if (InnermostPredLoop) 382 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 383 } else { 384 L->addBasicBlockToLoop(NewBB, *LI); 385 if (SplitMakesNewLoopHeader) 386 L->moveToHeader(NewBB); 387 } 388 } 389 390 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming 391 /// from NewBB. This also updates AliasAnalysis, if available. 392 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 393 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 394 bool HasLoopExit) { 395 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 396 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 397 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 398 PHINode *PN = cast<PHINode>(I++); 399 400 // Check to see if all of the values coming in are the same. If so, we 401 // don't need to create a new PHI node, unless it's needed for LCSSA. 402 Value *InVal = nullptr; 403 if (!HasLoopExit) { 404 InVal = PN->getIncomingValueForBlock(Preds[0]); 405 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 406 if (!PredSet.count(PN->getIncomingBlock(i))) 407 continue; 408 if (!InVal) 409 InVal = PN->getIncomingValue(i); 410 else if (InVal != PN->getIncomingValue(i)) { 411 InVal = nullptr; 412 break; 413 } 414 } 415 } 416 417 if (InVal) { 418 // If all incoming values for the new PHI would be the same, just don't 419 // make a new PHI. Instead, just remove the incoming values from the old 420 // PHI. 421 422 // NOTE! This loop walks backwards for a reason! First off, this minimizes 423 // the cost of removal if we end up removing a large number of values, and 424 // second off, this ensures that the indices for the incoming values 425 // aren't invalidated when we remove one. 426 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 427 if (PredSet.count(PN->getIncomingBlock(i))) 428 PN->removeIncomingValue(i, false); 429 430 // Add an incoming value to the PHI node in the loop for the preheader 431 // edge. 432 PN->addIncoming(InVal, NewBB); 433 continue; 434 } 435 436 // If the values coming into the block are not the same, we need a new 437 // PHI. 438 // Create the new PHI node, insert it into NewBB at the end of the block 439 PHINode *NewPHI = 440 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 441 442 // NOTE! This loop walks backwards for a reason! First off, this minimizes 443 // the cost of removal if we end up removing a large number of values, and 444 // second off, this ensures that the indices for the incoming values aren't 445 // invalidated when we remove one. 446 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 447 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 448 if (PredSet.count(IncomingBB)) { 449 Value *V = PN->removeIncomingValue(i, false); 450 NewPHI->addIncoming(V, IncomingBB); 451 } 452 } 453 454 PN->addIncoming(NewPHI, NewBB); 455 } 456 } 457 458 /// SplitBlockPredecessors - This method introduces at least one new basic block 459 /// into the function and moves some of the predecessors of BB to be 460 /// predecessors of the new block. The new predecessors are indicated by the 461 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic 462 /// block to which predecessors from Preds are now pointing. 463 /// 464 /// If BB is a landingpad block then additional basicblock might be introduced. 465 /// It will have suffix of 'Suffix'+".split_lp". 466 /// See SplitLandingPadPredecessors for more details on this case. 467 /// 468 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 469 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not 470 /// preserve LoopSimplify (because it's complicated to handle the case where one 471 /// of the edges being split is an exit of a loop with other exits). 472 /// 473 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 474 ArrayRef<BasicBlock *> Preds, 475 const char *Suffix, DominatorTree *DT, 476 LoopInfo *LI, bool PreserveLCSSA) { 477 // For the landingpads we need to act a bit differently. 478 // Delegate this work to the SplitLandingPadPredecessors. 479 if (BB->isLandingPad()) { 480 SmallVector<BasicBlock*, 2> NewBBs; 481 std::string NewName = std::string(Suffix) + ".split-lp"; 482 483 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 484 LI, PreserveLCSSA); 485 return NewBBs[0]; 486 } 487 488 // Create new basic block, insert right before the original block. 489 BasicBlock *NewBB = BasicBlock::Create( 490 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 491 492 // The new block unconditionally branches to the old block. 493 BranchInst *BI = BranchInst::Create(BB, NewBB); 494 BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc()); 495 496 // Move the edges from Preds to point to NewBB instead of BB. 497 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 498 // This is slightly more strict than necessary; the minimum requirement 499 // is that there be no more than one indirectbr branching to BB. And 500 // all BlockAddress uses would need to be updated. 501 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 502 "Cannot split an edge from an IndirectBrInst"); 503 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 504 } 505 506 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 507 // node becomes an incoming value for BB's phi node. However, if the Preds 508 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 509 // account for the newly created predecessor. 510 if (Preds.size() == 0) { 511 // Insert dummy values as the incoming value. 512 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 513 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 514 return NewBB; 515 } 516 517 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 518 bool HasLoopExit = false; 519 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA, 520 HasLoopExit); 521 522 // Update the PHI nodes in BB with the values coming from NewBB. 523 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 524 return NewBB; 525 } 526 527 /// SplitLandingPadPredecessors - This method transforms the landing pad, 528 /// OrigBB, by introducing two new basic blocks into the function. One of those 529 /// new basic blocks gets the predecessors listed in Preds. The other basic 530 /// block gets the remaining predecessors of OrigBB. The landingpad instruction 531 /// OrigBB is clone into both of the new basic blocks. The new blocks are given 532 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector. 533 /// 534 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, 535 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular, 536 /// it does not preserve LoopSimplify (because it's complicated to handle the 537 /// case where one of the edges being split is an exit of a loop with other 538 /// exits). 539 /// 540 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 541 ArrayRef<BasicBlock *> Preds, 542 const char *Suffix1, const char *Suffix2, 543 SmallVectorImpl<BasicBlock *> &NewBBs, 544 DominatorTree *DT, LoopInfo *LI, 545 bool PreserveLCSSA) { 546 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 547 548 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 549 // it right before the original block. 550 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 551 OrigBB->getName() + Suffix1, 552 OrigBB->getParent(), OrigBB); 553 NewBBs.push_back(NewBB1); 554 555 // The new block unconditionally branches to the old block. 556 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 557 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 558 559 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 560 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 561 // This is slightly more strict than necessary; the minimum requirement 562 // is that there be no more than one indirectbr branching to BB. And 563 // all BlockAddress uses would need to be updated. 564 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 565 "Cannot split an edge from an IndirectBrInst"); 566 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 567 } 568 569 bool HasLoopExit = false; 570 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA, 571 HasLoopExit); 572 573 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 574 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 575 576 // Move the remaining edges from OrigBB to point to NewBB2. 577 SmallVector<BasicBlock*, 8> NewBB2Preds; 578 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 579 i != e; ) { 580 BasicBlock *Pred = *i++; 581 if (Pred == NewBB1) continue; 582 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 583 "Cannot split an edge from an IndirectBrInst"); 584 NewBB2Preds.push_back(Pred); 585 e = pred_end(OrigBB); 586 } 587 588 BasicBlock *NewBB2 = nullptr; 589 if (!NewBB2Preds.empty()) { 590 // Create another basic block for the rest of OrigBB's predecessors. 591 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 592 OrigBB->getName() + Suffix2, 593 OrigBB->getParent(), OrigBB); 594 NewBBs.push_back(NewBB2); 595 596 // The new block unconditionally branches to the old block. 597 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 598 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 599 600 // Move the remaining edges from OrigBB to point to NewBB2. 601 for (SmallVectorImpl<BasicBlock*>::iterator 602 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i) 603 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 604 605 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 606 HasLoopExit = false; 607 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, 608 PreserveLCSSA, HasLoopExit); 609 610 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 611 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 612 } 613 614 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 615 Instruction *Clone1 = LPad->clone(); 616 Clone1->setName(Twine("lpad") + Suffix1); 617 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 618 619 if (NewBB2) { 620 Instruction *Clone2 = LPad->clone(); 621 Clone2->setName(Twine("lpad") + Suffix2); 622 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 623 624 // Create a PHI node for the two cloned landingpad instructions. 625 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 626 PN->addIncoming(Clone1, NewBB1); 627 PN->addIncoming(Clone2, NewBB2); 628 LPad->replaceAllUsesWith(PN); 629 LPad->eraseFromParent(); 630 } else { 631 // There is no second clone. Just replace the landing pad with the first 632 // clone. 633 LPad->replaceAllUsesWith(Clone1); 634 LPad->eraseFromParent(); 635 } 636 } 637 638 /// FoldReturnIntoUncondBranch - This method duplicates the specified return 639 /// instruction into a predecessor which ends in an unconditional branch. If 640 /// the return instruction returns a value defined by a PHI, propagate the 641 /// right value into the return. It returns the new return instruction in the 642 /// predecessor. 643 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 644 BasicBlock *Pred) { 645 Instruction *UncondBranch = Pred->getTerminator(); 646 // Clone the return and add it to the end of the predecessor. 647 Instruction *NewRet = RI->clone(); 648 Pred->getInstList().push_back(NewRet); 649 650 // If the return instruction returns a value, and if the value was a 651 // PHI node in "BB", propagate the right value into the return. 652 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 653 i != e; ++i) { 654 Value *V = *i; 655 Instruction *NewBC = nullptr; 656 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 657 // Return value might be bitcasted. Clone and insert it before the 658 // return instruction. 659 V = BCI->getOperand(0); 660 NewBC = BCI->clone(); 661 Pred->getInstList().insert(NewRet, NewBC); 662 *i = NewBC; 663 } 664 if (PHINode *PN = dyn_cast<PHINode>(V)) { 665 if (PN->getParent() == BB) { 666 if (NewBC) 667 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 668 else 669 *i = PN->getIncomingValueForBlock(Pred); 670 } 671 } 672 } 673 674 // Update any PHI nodes in the returning block to realize that we no 675 // longer branch to them. 676 BB->removePredecessor(Pred); 677 UncondBranch->eraseFromParent(); 678 return cast<ReturnInst>(NewRet); 679 } 680 681 /// SplitBlockAndInsertIfThen - Split the containing block at the 682 /// specified instruction - everything before and including SplitBefore stays 683 /// in the old basic block, and everything after SplitBefore is moved to a 684 /// new block. The two blocks are connected by a conditional branch 685 /// (with value of Cmp being the condition). 686 /// Before: 687 /// Head 688 /// SplitBefore 689 /// Tail 690 /// After: 691 /// Head 692 /// if (Cond) 693 /// ThenBlock 694 /// SplitBefore 695 /// Tail 696 /// 697 /// If Unreachable is true, then ThenBlock ends with 698 /// UnreachableInst, otherwise it branches to Tail. 699 /// Returns the NewBasicBlock's terminator. 700 701 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond, 702 Instruction *SplitBefore, 703 bool Unreachable, 704 MDNode *BranchWeights, 705 DominatorTree *DT) { 706 BasicBlock *Head = SplitBefore->getParent(); 707 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 708 TerminatorInst *HeadOldTerm = Head->getTerminator(); 709 LLVMContext &C = Head->getContext(); 710 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 711 TerminatorInst *CheckTerm; 712 if (Unreachable) 713 CheckTerm = new UnreachableInst(C, ThenBlock); 714 else 715 CheckTerm = BranchInst::Create(Tail, ThenBlock); 716 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 717 BranchInst *HeadNewTerm = 718 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 719 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 720 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 721 722 if (DT) { 723 if (DomTreeNode *OldNode = DT->getNode(Head)) { 724 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 725 726 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 727 for (auto Child : Children) 728 DT->changeImmediateDominator(Child, NewNode); 729 730 // Head dominates ThenBlock. 731 DT->addNewBlock(ThenBlock, Head); 732 } 733 } 734 735 return CheckTerm; 736 } 737 738 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, 739 /// but also creates the ElseBlock. 740 /// Before: 741 /// Head 742 /// SplitBefore 743 /// Tail 744 /// After: 745 /// Head 746 /// if (Cond) 747 /// ThenBlock 748 /// else 749 /// ElseBlock 750 /// SplitBefore 751 /// Tail 752 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 753 TerminatorInst **ThenTerm, 754 TerminatorInst **ElseTerm, 755 MDNode *BranchWeights) { 756 BasicBlock *Head = SplitBefore->getParent(); 757 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore); 758 TerminatorInst *HeadOldTerm = Head->getTerminator(); 759 LLVMContext &C = Head->getContext(); 760 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 761 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 762 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 763 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 764 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 765 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 766 BranchInst *HeadNewTerm = 767 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 768 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 769 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 770 } 771 772 773 /// GetIfCondition - Given a basic block (BB) with two predecessors, 774 /// check to see if the merge at this block is due 775 /// to an "if condition". If so, return the boolean condition that determines 776 /// which entry into BB will be taken. Also, return by references the block 777 /// that will be entered from if the condition is true, and the block that will 778 /// be entered if the condition is false. 779 /// 780 /// This does no checking to see if the true/false blocks have large or unsavory 781 /// instructions in them. 782 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 783 BasicBlock *&IfFalse) { 784 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 785 BasicBlock *Pred1 = nullptr; 786 BasicBlock *Pred2 = nullptr; 787 788 if (SomePHI) { 789 if (SomePHI->getNumIncomingValues() != 2) 790 return nullptr; 791 Pred1 = SomePHI->getIncomingBlock(0); 792 Pred2 = SomePHI->getIncomingBlock(1); 793 } else { 794 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 795 if (PI == PE) // No predecessor 796 return nullptr; 797 Pred1 = *PI++; 798 if (PI == PE) // Only one predecessor 799 return nullptr; 800 Pred2 = *PI++; 801 if (PI != PE) // More than two predecessors 802 return nullptr; 803 } 804 805 // We can only handle branches. Other control flow will be lowered to 806 // branches if possible anyway. 807 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 808 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 809 if (!Pred1Br || !Pred2Br) 810 return nullptr; 811 812 // Eliminate code duplication by ensuring that Pred1Br is conditional if 813 // either are. 814 if (Pred2Br->isConditional()) { 815 // If both branches are conditional, we don't have an "if statement". In 816 // reality, we could transform this case, but since the condition will be 817 // required anyway, we stand no chance of eliminating it, so the xform is 818 // probably not profitable. 819 if (Pred1Br->isConditional()) 820 return nullptr; 821 822 std::swap(Pred1, Pred2); 823 std::swap(Pred1Br, Pred2Br); 824 } 825 826 if (Pred1Br->isConditional()) { 827 // The only thing we have to watch out for here is to make sure that Pred2 828 // doesn't have incoming edges from other blocks. If it does, the condition 829 // doesn't dominate BB. 830 if (!Pred2->getSinglePredecessor()) 831 return nullptr; 832 833 // If we found a conditional branch predecessor, make sure that it branches 834 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 835 if (Pred1Br->getSuccessor(0) == BB && 836 Pred1Br->getSuccessor(1) == Pred2) { 837 IfTrue = Pred1; 838 IfFalse = Pred2; 839 } else if (Pred1Br->getSuccessor(0) == Pred2 && 840 Pred1Br->getSuccessor(1) == BB) { 841 IfTrue = Pred2; 842 IfFalse = Pred1; 843 } else { 844 // We know that one arm of the conditional goes to BB, so the other must 845 // go somewhere unrelated, and this must not be an "if statement". 846 return nullptr; 847 } 848 849 return Pred1Br->getCondition(); 850 } 851 852 // Ok, if we got here, both predecessors end with an unconditional branch to 853 // BB. Don't panic! If both blocks only have a single (identical) 854 // predecessor, and THAT is a conditional branch, then we're all ok! 855 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 856 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 857 return nullptr; 858 859 // Otherwise, if this is a conditional branch, then we can use it! 860 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 861 if (!BI) return nullptr; 862 863 assert(BI->isConditional() && "Two successors but not conditional?"); 864 if (BI->getSuccessor(0) == Pred1) { 865 IfTrue = Pred1; 866 IfFalse = Pred2; 867 } else { 868 IfTrue = Pred2; 869 IfFalse = Pred1; 870 } 871 return BI->getCondition(); 872 } 873