1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform manipulations on basic blocks, and 11 // instructions contained within basic blocks. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <string> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 48 void llvm::DeleteDeadBlock(BasicBlock *BB, DeferredDominance *DDT) { 49 assert((pred_begin(BB) == pred_end(BB) || 50 // Can delete self loop. 51 BB->getSinglePredecessor() == BB) && "Block is not dead!"); 52 TerminatorInst *BBTerm = BB->getTerminator(); 53 std::vector<DominatorTree::UpdateType> Updates; 54 55 // Loop through all of our successors and make sure they know that one 56 // of their predecessors is going away. 57 if (DDT) 58 Updates.reserve(BBTerm->getNumSuccessors()); 59 for (BasicBlock *Succ : BBTerm->successors()) { 60 Succ->removePredecessor(BB); 61 if (DDT) 62 Updates.push_back({DominatorTree::Delete, BB, Succ}); 63 } 64 65 // Zap all the instructions in the block. 66 while (!BB->empty()) { 67 Instruction &I = BB->back(); 68 // If this instruction is used, replace uses with an arbitrary value. 69 // Because control flow can't get here, we don't care what we replace the 70 // value with. Note that since this block is unreachable, and all values 71 // contained within it must dominate their uses, that all uses will 72 // eventually be removed (they are themselves dead). 73 if (!I.use_empty()) 74 I.replaceAllUsesWith(UndefValue::get(I.getType())); 75 BB->getInstList().pop_back(); 76 } 77 78 if (DDT) { 79 DDT->applyUpdates(Updates); 80 DDT->deleteBB(BB); // Deferred deletion of BB. 81 } else { 82 BB->eraseFromParent(); // Zap the block! 83 } 84 } 85 86 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 87 MemoryDependenceResults *MemDep) { 88 if (!isa<PHINode>(BB->begin())) return; 89 90 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 91 if (PN->getIncomingValue(0) != PN) 92 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 93 else 94 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 95 96 if (MemDep) 97 MemDep->removeInstruction(PN); // Memdep updates AA itself. 98 99 PN->eraseFromParent(); 100 } 101 } 102 103 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 104 // Recursively deleting a PHI may cause multiple PHIs to be deleted 105 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 106 SmallVector<WeakTrackingVH, 8> PHIs; 107 for (PHINode &PN : BB->phis()) 108 PHIs.push_back(&PN); 109 110 bool Changed = false; 111 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 112 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 113 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 114 115 return Changed; 116 } 117 118 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT, 119 LoopInfo *LI, 120 MemoryDependenceResults *MemDep) { 121 // Don't merge away blocks who have their address taken. 122 if (BB->hasAddressTaken()) return false; 123 124 // Can't merge if there are multiple predecessors, or no predecessors. 125 BasicBlock *PredBB = BB->getUniquePredecessor(); 126 if (!PredBB) return false; 127 128 // Don't break self-loops. 129 if (PredBB == BB) return false; 130 // Don't break unwinding instructions. 131 if (PredBB->getTerminator()->isExceptional()) 132 return false; 133 134 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); 135 BasicBlock *OnlySucc = BB; 136 for (; SI != SE; ++SI) 137 if (*SI != OnlySucc) { 138 OnlySucc = nullptr; // There are multiple distinct successors! 139 break; 140 } 141 142 // Can't merge if there are multiple successors. 143 if (!OnlySucc) return false; 144 145 // Can't merge if there is PHI loop. 146 for (PHINode &PN : BB->phis()) 147 for (Value *IncValue : PN.incoming_values()) 148 if (IncValue == &PN) 149 return false; 150 151 // Begin by getting rid of unneeded PHIs. 152 SmallVector<Value *, 4> IncomingValues; 153 if (isa<PHINode>(BB->front())) { 154 for (PHINode &PN : BB->phis()) 155 if (PN.getIncomingValue(0) != &PN) 156 IncomingValues.push_back(PN.getIncomingValue(0)); 157 FoldSingleEntryPHINodes(BB, MemDep); 158 } 159 160 // Delete the unconditional branch from the predecessor... 161 PredBB->getInstList().pop_back(); 162 163 // Make all PHI nodes that referred to BB now refer to Pred as their 164 // source... 165 BB->replaceAllUsesWith(PredBB); 166 167 // Move all definitions in the successor to the predecessor... 168 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 169 170 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 171 for (auto *Incoming : IncomingValues) { 172 if (isa<Instruction>(Incoming)) { 173 SmallVector<DbgValueInst *, 2> DbgValues; 174 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 175 DbgValueSet; 176 llvm::findDbgValues(DbgValues, Incoming); 177 for (auto &DVI : DbgValues) { 178 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 179 if (!R.second) 180 DVI->eraseFromParent(); 181 } 182 } 183 } 184 185 // Inherit predecessors name if it exists. 186 if (!PredBB->hasName()) 187 PredBB->takeName(BB); 188 189 // Finally, erase the old block and update dominator info. 190 if (DT) 191 if (DomTreeNode *DTN = DT->getNode(BB)) { 192 DomTreeNode *PredDTN = DT->getNode(PredBB); 193 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end()); 194 for (DomTreeNode *DI : Children) 195 DT->changeImmediateDominator(DI, PredDTN); 196 197 DT->eraseNode(BB); 198 } 199 200 if (LI) 201 LI->removeBlock(BB); 202 203 if (MemDep) 204 MemDep->invalidateCachedPredecessors(); 205 206 BB->eraseFromParent(); 207 return true; 208 } 209 210 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 211 BasicBlock::iterator &BI, Value *V) { 212 Instruction &I = *BI; 213 // Replaces all of the uses of the instruction with uses of the value 214 I.replaceAllUsesWith(V); 215 216 // Make sure to propagate a name if there is one already. 217 if (I.hasName() && !V->hasName()) 218 V->takeName(&I); 219 220 // Delete the unnecessary instruction now... 221 BI = BIL.erase(BI); 222 } 223 224 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 225 BasicBlock::iterator &BI, Instruction *I) { 226 assert(I->getParent() == nullptr && 227 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 228 229 // Copy debug location to newly added instruction, if it wasn't already set 230 // by the caller. 231 if (!I->getDebugLoc()) 232 I->setDebugLoc(BI->getDebugLoc()); 233 234 // Insert the new instruction into the basic block... 235 BasicBlock::iterator New = BIL.insert(BI, I); 236 237 // Replace all uses of the old instruction, and delete it. 238 ReplaceInstWithValue(BIL, BI, I); 239 240 // Move BI back to point to the newly inserted instruction 241 BI = New; 242 } 243 244 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 245 BasicBlock::iterator BI(From); 246 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 247 } 248 249 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 250 LoopInfo *LI) { 251 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 252 253 // If this is a critical edge, let SplitCriticalEdge do it. 254 TerminatorInst *LatchTerm = BB->getTerminator(); 255 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI) 256 .setPreserveLCSSA())) 257 return LatchTerm->getSuccessor(SuccNum); 258 259 // If the edge isn't critical, then BB has a single successor or Succ has a 260 // single pred. Split the block. 261 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 262 // If the successor only has a single pred, split the top of the successor 263 // block. 264 assert(SP == BB && "CFG broken"); 265 SP = nullptr; 266 return SplitBlock(Succ, &Succ->front(), DT, LI); 267 } 268 269 // Otherwise, if BB has a single successor, split it at the bottom of the 270 // block. 271 assert(BB->getTerminator()->getNumSuccessors() == 1 && 272 "Should have a single succ!"); 273 return SplitBlock(BB, BB->getTerminator(), DT, LI); 274 } 275 276 unsigned 277 llvm::SplitAllCriticalEdges(Function &F, 278 const CriticalEdgeSplittingOptions &Options) { 279 unsigned NumBroken = 0; 280 for (BasicBlock &BB : F) { 281 TerminatorInst *TI = BB.getTerminator(); 282 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 283 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 284 if (SplitCriticalEdge(TI, i, Options)) 285 ++NumBroken; 286 } 287 return NumBroken; 288 } 289 290 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 291 DominatorTree *DT, LoopInfo *LI) { 292 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 293 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 294 ++SplitIt; 295 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 296 297 // The new block lives in whichever loop the old one did. This preserves 298 // LCSSA as well, because we force the split point to be after any PHI nodes. 299 if (LI) 300 if (Loop *L = LI->getLoopFor(Old)) 301 L->addBasicBlockToLoop(New, *LI); 302 303 if (DT) 304 // Old dominates New. New node dominates all other nodes dominated by Old. 305 if (DomTreeNode *OldNode = DT->getNode(Old)) { 306 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 307 308 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 309 for (DomTreeNode *I : Children) 310 DT->changeImmediateDominator(I, NewNode); 311 } 312 313 return New; 314 } 315 316 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 317 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 318 ArrayRef<BasicBlock *> Preds, 319 DominatorTree *DT, LoopInfo *LI, 320 bool PreserveLCSSA, bool &HasLoopExit) { 321 // Update dominator tree if available. 322 if (DT) 323 DT->splitBlock(NewBB); 324 325 // The rest of the logic is only relevant for updating the loop structures. 326 if (!LI) 327 return; 328 329 assert(DT && "DT should be available to update LoopInfo!"); 330 Loop *L = LI->getLoopFor(OldBB); 331 332 // If we need to preserve loop analyses, collect some information about how 333 // this split will affect loops. 334 bool IsLoopEntry = !!L; 335 bool SplitMakesNewLoopHeader = false; 336 for (BasicBlock *Pred : Preds) { 337 // Preds that are not reachable from entry should not be used to identify if 338 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 339 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 340 // as true and make the NewBB the header of some loop. This breaks LI. 341 if (!DT->isReachableFromEntry(Pred)) 342 continue; 343 // If we need to preserve LCSSA, determine if any of the preds is a loop 344 // exit. 345 if (PreserveLCSSA) 346 if (Loop *PL = LI->getLoopFor(Pred)) 347 if (!PL->contains(OldBB)) 348 HasLoopExit = true; 349 350 // If we need to preserve LoopInfo, note whether any of the preds crosses 351 // an interesting loop boundary. 352 if (!L) 353 continue; 354 if (L->contains(Pred)) 355 IsLoopEntry = false; 356 else 357 SplitMakesNewLoopHeader = true; 358 } 359 360 // Unless we have a loop for OldBB, nothing else to do here. 361 if (!L) 362 return; 363 364 if (IsLoopEntry) { 365 // Add the new block to the nearest enclosing loop (and not an adjacent 366 // loop). To find this, examine each of the predecessors and determine which 367 // loops enclose them, and select the most-nested loop which contains the 368 // loop containing the block being split. 369 Loop *InnermostPredLoop = nullptr; 370 for (BasicBlock *Pred : Preds) { 371 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 372 // Seek a loop which actually contains the block being split (to avoid 373 // adjacent loops). 374 while (PredLoop && !PredLoop->contains(OldBB)) 375 PredLoop = PredLoop->getParentLoop(); 376 377 // Select the most-nested of these loops which contains the block. 378 if (PredLoop && PredLoop->contains(OldBB) && 379 (!InnermostPredLoop || 380 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 381 InnermostPredLoop = PredLoop; 382 } 383 } 384 385 if (InnermostPredLoop) 386 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 387 } else { 388 L->addBasicBlockToLoop(NewBB, *LI); 389 if (SplitMakesNewLoopHeader) 390 L->moveToHeader(NewBB); 391 } 392 } 393 394 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 395 /// This also updates AliasAnalysis, if available. 396 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 397 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 398 bool HasLoopExit) { 399 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 400 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 401 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 402 PHINode *PN = cast<PHINode>(I++); 403 404 // Check to see if all of the values coming in are the same. If so, we 405 // don't need to create a new PHI node, unless it's needed for LCSSA. 406 Value *InVal = nullptr; 407 if (!HasLoopExit) { 408 InVal = PN->getIncomingValueForBlock(Preds[0]); 409 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 410 if (!PredSet.count(PN->getIncomingBlock(i))) 411 continue; 412 if (!InVal) 413 InVal = PN->getIncomingValue(i); 414 else if (InVal != PN->getIncomingValue(i)) { 415 InVal = nullptr; 416 break; 417 } 418 } 419 } 420 421 if (InVal) { 422 // If all incoming values for the new PHI would be the same, just don't 423 // make a new PHI. Instead, just remove the incoming values from the old 424 // PHI. 425 426 // NOTE! This loop walks backwards for a reason! First off, this minimizes 427 // the cost of removal if we end up removing a large number of values, and 428 // second off, this ensures that the indices for the incoming values 429 // aren't invalidated when we remove one. 430 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 431 if (PredSet.count(PN->getIncomingBlock(i))) 432 PN->removeIncomingValue(i, false); 433 434 // Add an incoming value to the PHI node in the loop for the preheader 435 // edge. 436 PN->addIncoming(InVal, NewBB); 437 continue; 438 } 439 440 // If the values coming into the block are not the same, we need a new 441 // PHI. 442 // Create the new PHI node, insert it into NewBB at the end of the block 443 PHINode *NewPHI = 444 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 445 446 // NOTE! This loop walks backwards for a reason! First off, this minimizes 447 // the cost of removal if we end up removing a large number of values, and 448 // second off, this ensures that the indices for the incoming values aren't 449 // invalidated when we remove one. 450 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 451 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 452 if (PredSet.count(IncomingBB)) { 453 Value *V = PN->removeIncomingValue(i, false); 454 NewPHI->addIncoming(V, IncomingBB); 455 } 456 } 457 458 PN->addIncoming(NewPHI, NewBB); 459 } 460 } 461 462 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 463 ArrayRef<BasicBlock *> Preds, 464 const char *Suffix, DominatorTree *DT, 465 LoopInfo *LI, bool PreserveLCSSA) { 466 // Do not attempt to split that which cannot be split. 467 if (!BB->canSplitPredecessors()) 468 return nullptr; 469 470 // For the landingpads we need to act a bit differently. 471 // Delegate this work to the SplitLandingPadPredecessors. 472 if (BB->isLandingPad()) { 473 SmallVector<BasicBlock*, 2> NewBBs; 474 std::string NewName = std::string(Suffix) + ".split-lp"; 475 476 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 477 LI, PreserveLCSSA); 478 return NewBBs[0]; 479 } 480 481 // Create new basic block, insert right before the original block. 482 BasicBlock *NewBB = BasicBlock::Create( 483 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 484 485 // The new block unconditionally branches to the old block. 486 BranchInst *BI = BranchInst::Create(BB, NewBB); 487 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 488 489 // Move the edges from Preds to point to NewBB instead of BB. 490 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 491 // This is slightly more strict than necessary; the minimum requirement 492 // is that there be no more than one indirectbr branching to BB. And 493 // all BlockAddress uses would need to be updated. 494 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 495 "Cannot split an edge from an IndirectBrInst"); 496 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 497 } 498 499 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 500 // node becomes an incoming value for BB's phi node. However, if the Preds 501 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 502 // account for the newly created predecessor. 503 if (Preds.empty()) { 504 // Insert dummy values as the incoming value. 505 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 506 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 507 return NewBB; 508 } 509 510 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 511 bool HasLoopExit = false; 512 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA, 513 HasLoopExit); 514 515 // Update the PHI nodes in BB with the values coming from NewBB. 516 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 517 return NewBB; 518 } 519 520 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 521 ArrayRef<BasicBlock *> Preds, 522 const char *Suffix1, const char *Suffix2, 523 SmallVectorImpl<BasicBlock *> &NewBBs, 524 DominatorTree *DT, LoopInfo *LI, 525 bool PreserveLCSSA) { 526 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 527 528 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 529 // it right before the original block. 530 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 531 OrigBB->getName() + Suffix1, 532 OrigBB->getParent(), OrigBB); 533 NewBBs.push_back(NewBB1); 534 535 // The new block unconditionally branches to the old block. 536 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 537 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 538 539 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 540 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 541 // This is slightly more strict than necessary; the minimum requirement 542 // is that there be no more than one indirectbr branching to BB. And 543 // all BlockAddress uses would need to be updated. 544 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 545 "Cannot split an edge from an IndirectBrInst"); 546 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 547 } 548 549 bool HasLoopExit = false; 550 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA, 551 HasLoopExit); 552 553 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 554 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 555 556 // Move the remaining edges from OrigBB to point to NewBB2. 557 SmallVector<BasicBlock*, 8> NewBB2Preds; 558 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 559 i != e; ) { 560 BasicBlock *Pred = *i++; 561 if (Pred == NewBB1) continue; 562 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 563 "Cannot split an edge from an IndirectBrInst"); 564 NewBB2Preds.push_back(Pred); 565 e = pred_end(OrigBB); 566 } 567 568 BasicBlock *NewBB2 = nullptr; 569 if (!NewBB2Preds.empty()) { 570 // Create another basic block for the rest of OrigBB's predecessors. 571 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 572 OrigBB->getName() + Suffix2, 573 OrigBB->getParent(), OrigBB); 574 NewBBs.push_back(NewBB2); 575 576 // The new block unconditionally branches to the old block. 577 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 578 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 579 580 // Move the remaining edges from OrigBB to point to NewBB2. 581 for (BasicBlock *NewBB2Pred : NewBB2Preds) 582 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 583 584 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 585 HasLoopExit = false; 586 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, 587 PreserveLCSSA, HasLoopExit); 588 589 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 590 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 591 } 592 593 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 594 Instruction *Clone1 = LPad->clone(); 595 Clone1->setName(Twine("lpad") + Suffix1); 596 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 597 598 if (NewBB2) { 599 Instruction *Clone2 = LPad->clone(); 600 Clone2->setName(Twine("lpad") + Suffix2); 601 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 602 603 // Create a PHI node for the two cloned landingpad instructions only 604 // if the original landingpad instruction has some uses. 605 if (!LPad->use_empty()) { 606 assert(!LPad->getType()->isTokenTy() && 607 "Split cannot be applied if LPad is token type. Otherwise an " 608 "invalid PHINode of token type would be created."); 609 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 610 PN->addIncoming(Clone1, NewBB1); 611 PN->addIncoming(Clone2, NewBB2); 612 LPad->replaceAllUsesWith(PN); 613 } 614 LPad->eraseFromParent(); 615 } else { 616 // There is no second clone. Just replace the landing pad with the first 617 // clone. 618 LPad->replaceAllUsesWith(Clone1); 619 LPad->eraseFromParent(); 620 } 621 } 622 623 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 624 BasicBlock *Pred) { 625 Instruction *UncondBranch = Pred->getTerminator(); 626 // Clone the return and add it to the end of the predecessor. 627 Instruction *NewRet = RI->clone(); 628 Pred->getInstList().push_back(NewRet); 629 630 // If the return instruction returns a value, and if the value was a 631 // PHI node in "BB", propagate the right value into the return. 632 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 633 i != e; ++i) { 634 Value *V = *i; 635 Instruction *NewBC = nullptr; 636 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 637 // Return value might be bitcasted. Clone and insert it before the 638 // return instruction. 639 V = BCI->getOperand(0); 640 NewBC = BCI->clone(); 641 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 642 *i = NewBC; 643 } 644 if (PHINode *PN = dyn_cast<PHINode>(V)) { 645 if (PN->getParent() == BB) { 646 if (NewBC) 647 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 648 else 649 *i = PN->getIncomingValueForBlock(Pred); 650 } 651 } 652 } 653 654 // Update any PHI nodes in the returning block to realize that we no 655 // longer branch to them. 656 BB->removePredecessor(Pred); 657 UncondBranch->eraseFromParent(); 658 return cast<ReturnInst>(NewRet); 659 } 660 661 TerminatorInst * 662 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore, 663 bool Unreachable, MDNode *BranchWeights, 664 DominatorTree *DT, LoopInfo *LI) { 665 BasicBlock *Head = SplitBefore->getParent(); 666 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 667 TerminatorInst *HeadOldTerm = Head->getTerminator(); 668 LLVMContext &C = Head->getContext(); 669 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 670 TerminatorInst *CheckTerm; 671 if (Unreachable) 672 CheckTerm = new UnreachableInst(C, ThenBlock); 673 else 674 CheckTerm = BranchInst::Create(Tail, ThenBlock); 675 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 676 BranchInst *HeadNewTerm = 677 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 678 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 679 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 680 681 if (DT) { 682 if (DomTreeNode *OldNode = DT->getNode(Head)) { 683 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 684 685 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 686 for (DomTreeNode *Child : Children) 687 DT->changeImmediateDominator(Child, NewNode); 688 689 // Head dominates ThenBlock. 690 DT->addNewBlock(ThenBlock, Head); 691 } 692 } 693 694 if (LI) { 695 if (Loop *L = LI->getLoopFor(Head)) { 696 L->addBasicBlockToLoop(ThenBlock, *LI); 697 L->addBasicBlockToLoop(Tail, *LI); 698 } 699 } 700 701 return CheckTerm; 702 } 703 704 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 705 TerminatorInst **ThenTerm, 706 TerminatorInst **ElseTerm, 707 MDNode *BranchWeights) { 708 BasicBlock *Head = SplitBefore->getParent(); 709 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 710 TerminatorInst *HeadOldTerm = Head->getTerminator(); 711 LLVMContext &C = Head->getContext(); 712 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 713 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 714 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 715 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 716 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 717 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 718 BranchInst *HeadNewTerm = 719 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 720 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 721 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 722 } 723 724 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 725 BasicBlock *&IfFalse) { 726 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 727 BasicBlock *Pred1 = nullptr; 728 BasicBlock *Pred2 = nullptr; 729 730 if (SomePHI) { 731 if (SomePHI->getNumIncomingValues() != 2) 732 return nullptr; 733 Pred1 = SomePHI->getIncomingBlock(0); 734 Pred2 = SomePHI->getIncomingBlock(1); 735 } else { 736 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 737 if (PI == PE) // No predecessor 738 return nullptr; 739 Pred1 = *PI++; 740 if (PI == PE) // Only one predecessor 741 return nullptr; 742 Pred2 = *PI++; 743 if (PI != PE) // More than two predecessors 744 return nullptr; 745 } 746 747 // We can only handle branches. Other control flow will be lowered to 748 // branches if possible anyway. 749 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 750 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 751 if (!Pred1Br || !Pred2Br) 752 return nullptr; 753 754 // Eliminate code duplication by ensuring that Pred1Br is conditional if 755 // either are. 756 if (Pred2Br->isConditional()) { 757 // If both branches are conditional, we don't have an "if statement". In 758 // reality, we could transform this case, but since the condition will be 759 // required anyway, we stand no chance of eliminating it, so the xform is 760 // probably not profitable. 761 if (Pred1Br->isConditional()) 762 return nullptr; 763 764 std::swap(Pred1, Pred2); 765 std::swap(Pred1Br, Pred2Br); 766 } 767 768 if (Pred1Br->isConditional()) { 769 // The only thing we have to watch out for here is to make sure that Pred2 770 // doesn't have incoming edges from other blocks. If it does, the condition 771 // doesn't dominate BB. 772 if (!Pred2->getSinglePredecessor()) 773 return nullptr; 774 775 // If we found a conditional branch predecessor, make sure that it branches 776 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 777 if (Pred1Br->getSuccessor(0) == BB && 778 Pred1Br->getSuccessor(1) == Pred2) { 779 IfTrue = Pred1; 780 IfFalse = Pred2; 781 } else if (Pred1Br->getSuccessor(0) == Pred2 && 782 Pred1Br->getSuccessor(1) == BB) { 783 IfTrue = Pred2; 784 IfFalse = Pred1; 785 } else { 786 // We know that one arm of the conditional goes to BB, so the other must 787 // go somewhere unrelated, and this must not be an "if statement". 788 return nullptr; 789 } 790 791 return Pred1Br->getCondition(); 792 } 793 794 // Ok, if we got here, both predecessors end with an unconditional branch to 795 // BB. Don't panic! If both blocks only have a single (identical) 796 // predecessor, and THAT is a conditional branch, then we're all ok! 797 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 798 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 799 return nullptr; 800 801 // Otherwise, if this is a conditional branch, then we can use it! 802 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 803 if (!BI) return nullptr; 804 805 assert(BI->isConditional() && "Two successors but not conditional?"); 806 if (BI->getSuccessor(0) == Pred1) { 807 IfTrue = Pred1; 808 IfFalse = Pred2; 809 } else { 810 IfTrue = Pred2; 811 IfFalse = Pred1; 812 } 813 return BI->getCondition(); 814 } 815