1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <string>
43 #include <utility>
44 #include <vector>
45 
46 using namespace llvm;
47 
48 void llvm::DeleteDeadBlock(BasicBlock *BB, DeferredDominance *DDT) {
49   assert((pred_begin(BB) == pred_end(BB) ||
50          // Can delete self loop.
51          BB->getSinglePredecessor() == BB) && "Block is not dead!");
52   TerminatorInst *BBTerm = BB->getTerminator();
53   std::vector<DominatorTree::UpdateType> Updates;
54 
55   // Loop through all of our successors and make sure they know that one
56   // of their predecessors is going away.
57   if (DDT)
58     Updates.reserve(BBTerm->getNumSuccessors());
59   for (BasicBlock *Succ : BBTerm->successors()) {
60     Succ->removePredecessor(BB);
61     if (DDT)
62       Updates.push_back({DominatorTree::Delete, BB, Succ});
63   }
64 
65   // Zap all the instructions in the block.
66   while (!BB->empty()) {
67     Instruction &I = BB->back();
68     // If this instruction is used, replace uses with an arbitrary value.
69     // Because control flow can't get here, we don't care what we replace the
70     // value with.  Note that since this block is unreachable, and all values
71     // contained within it must dominate their uses, that all uses will
72     // eventually be removed (they are themselves dead).
73     if (!I.use_empty())
74       I.replaceAllUsesWith(UndefValue::get(I.getType()));
75     BB->getInstList().pop_back();
76   }
77 
78   if (DDT) {
79     DDT->applyUpdates(Updates);
80     DDT->deleteBB(BB); // Deferred deletion of BB.
81   } else {
82     BB->eraseFromParent(); // Zap the block!
83   }
84 }
85 
86 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
87                                    MemoryDependenceResults *MemDep) {
88   if (!isa<PHINode>(BB->begin())) return;
89 
90   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
91     if (PN->getIncomingValue(0) != PN)
92       PN->replaceAllUsesWith(PN->getIncomingValue(0));
93     else
94       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
95 
96     if (MemDep)
97       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
98 
99     PN->eraseFromParent();
100   }
101 }
102 
103 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
104   // Recursively deleting a PHI may cause multiple PHIs to be deleted
105   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
106   SmallVector<WeakTrackingVH, 8> PHIs;
107   for (PHINode &PN : BB->phis())
108     PHIs.push_back(&PN);
109 
110   bool Changed = false;
111   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
112     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
113       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
114 
115   return Changed;
116 }
117 
118 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
119                                      LoopInfo *LI,
120                                      MemoryDependenceResults *MemDep) {
121   // Don't merge away blocks who have their address taken.
122   if (BB->hasAddressTaken()) return false;
123 
124   // Can't merge if there are multiple predecessors, or no predecessors.
125   BasicBlock *PredBB = BB->getUniquePredecessor();
126   if (!PredBB) return false;
127 
128   // Don't break self-loops.
129   if (PredBB == BB) return false;
130   // Don't break unwinding instructions.
131   if (PredBB->getTerminator()->isExceptional())
132     return false;
133 
134   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
135   BasicBlock *OnlySucc = BB;
136   for (; SI != SE; ++SI)
137     if (*SI != OnlySucc) {
138       OnlySucc = nullptr;     // There are multiple distinct successors!
139       break;
140     }
141 
142   // Can't merge if there are multiple successors.
143   if (!OnlySucc) return false;
144 
145   // Can't merge if there is PHI loop.
146   for (PHINode &PN : BB->phis())
147     for (Value *IncValue : PN.incoming_values())
148       if (IncValue == &PN)
149         return false;
150 
151   // Begin by getting rid of unneeded PHIs.
152   SmallVector<Value *, 4> IncomingValues;
153   if (isa<PHINode>(BB->front())) {
154     for (PHINode &PN : BB->phis())
155       if (PN.getIncomingValue(0) != &PN)
156         IncomingValues.push_back(PN.getIncomingValue(0));
157     FoldSingleEntryPHINodes(BB, MemDep);
158   }
159 
160   // Delete the unconditional branch from the predecessor...
161   PredBB->getInstList().pop_back();
162 
163   // Make all PHI nodes that referred to BB now refer to Pred as their
164   // source...
165   BB->replaceAllUsesWith(PredBB);
166 
167   // Move all definitions in the successor to the predecessor...
168   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
169 
170   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
171   for (auto *Incoming : IncomingValues) {
172     if (isa<Instruction>(Incoming)) {
173       SmallVector<DbgValueInst *, 2> DbgValues;
174       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
175           DbgValueSet;
176       llvm::findDbgValues(DbgValues, Incoming);
177       for (auto &DVI : DbgValues) {
178         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
179         if (!R.second)
180           DVI->eraseFromParent();
181       }
182     }
183   }
184 
185   // Inherit predecessors name if it exists.
186   if (!PredBB->hasName())
187     PredBB->takeName(BB);
188 
189   // Finally, erase the old block and update dominator info.
190   if (DT)
191     if (DomTreeNode *DTN = DT->getNode(BB)) {
192       DomTreeNode *PredDTN = DT->getNode(PredBB);
193       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
194       for (DomTreeNode *DI : Children)
195         DT->changeImmediateDominator(DI, PredDTN);
196 
197       DT->eraseNode(BB);
198     }
199 
200   if (LI)
201     LI->removeBlock(BB);
202 
203   if (MemDep)
204     MemDep->invalidateCachedPredecessors();
205 
206   BB->eraseFromParent();
207   return true;
208 }
209 
210 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
211                                 BasicBlock::iterator &BI, Value *V) {
212   Instruction &I = *BI;
213   // Replaces all of the uses of the instruction with uses of the value
214   I.replaceAllUsesWith(V);
215 
216   // Make sure to propagate a name if there is one already.
217   if (I.hasName() && !V->hasName())
218     V->takeName(&I);
219 
220   // Delete the unnecessary instruction now...
221   BI = BIL.erase(BI);
222 }
223 
224 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
225                                BasicBlock::iterator &BI, Instruction *I) {
226   assert(I->getParent() == nullptr &&
227          "ReplaceInstWithInst: Instruction already inserted into basic block!");
228 
229   // Copy debug location to newly added instruction, if it wasn't already set
230   // by the caller.
231   if (!I->getDebugLoc())
232     I->setDebugLoc(BI->getDebugLoc());
233 
234   // Insert the new instruction into the basic block...
235   BasicBlock::iterator New = BIL.insert(BI, I);
236 
237   // Replace all uses of the old instruction, and delete it.
238   ReplaceInstWithValue(BIL, BI, I);
239 
240   // Move BI back to point to the newly inserted instruction
241   BI = New;
242 }
243 
244 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
245   BasicBlock::iterator BI(From);
246   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
247 }
248 
249 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
250                             LoopInfo *LI) {
251   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
252 
253   // If this is a critical edge, let SplitCriticalEdge do it.
254   TerminatorInst *LatchTerm = BB->getTerminator();
255   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
256                                                 .setPreserveLCSSA()))
257     return LatchTerm->getSuccessor(SuccNum);
258 
259   // If the edge isn't critical, then BB has a single successor or Succ has a
260   // single pred.  Split the block.
261   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
262     // If the successor only has a single pred, split the top of the successor
263     // block.
264     assert(SP == BB && "CFG broken");
265     SP = nullptr;
266     return SplitBlock(Succ, &Succ->front(), DT, LI);
267   }
268 
269   // Otherwise, if BB has a single successor, split it at the bottom of the
270   // block.
271   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
272          "Should have a single succ!");
273   return SplitBlock(BB, BB->getTerminator(), DT, LI);
274 }
275 
276 unsigned
277 llvm::SplitAllCriticalEdges(Function &F,
278                             const CriticalEdgeSplittingOptions &Options) {
279   unsigned NumBroken = 0;
280   for (BasicBlock &BB : F) {
281     TerminatorInst *TI = BB.getTerminator();
282     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
283       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
284         if (SplitCriticalEdge(TI, i, Options))
285           ++NumBroken;
286   }
287   return NumBroken;
288 }
289 
290 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
291                              DominatorTree *DT, LoopInfo *LI) {
292   BasicBlock::iterator SplitIt = SplitPt->getIterator();
293   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
294     ++SplitIt;
295   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
296 
297   // The new block lives in whichever loop the old one did. This preserves
298   // LCSSA as well, because we force the split point to be after any PHI nodes.
299   if (LI)
300     if (Loop *L = LI->getLoopFor(Old))
301       L->addBasicBlockToLoop(New, *LI);
302 
303   if (DT)
304     // Old dominates New. New node dominates all other nodes dominated by Old.
305     if (DomTreeNode *OldNode = DT->getNode(Old)) {
306       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
307 
308       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
309       for (DomTreeNode *I : Children)
310         DT->changeImmediateDominator(I, NewNode);
311     }
312 
313   return New;
314 }
315 
316 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
317 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
318                                       ArrayRef<BasicBlock *> Preds,
319                                       DominatorTree *DT, LoopInfo *LI,
320                                       bool PreserveLCSSA, bool &HasLoopExit) {
321   // Update dominator tree if available.
322   if (DT)
323     DT->splitBlock(NewBB);
324 
325   // The rest of the logic is only relevant for updating the loop structures.
326   if (!LI)
327     return;
328 
329   assert(DT && "DT should be available to update LoopInfo!");
330   Loop *L = LI->getLoopFor(OldBB);
331 
332   // If we need to preserve loop analyses, collect some information about how
333   // this split will affect loops.
334   bool IsLoopEntry = !!L;
335   bool SplitMakesNewLoopHeader = false;
336   for (BasicBlock *Pred : Preds) {
337     // Preds that are not reachable from entry should not be used to identify if
338     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
339     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
340     // as true and make the NewBB the header of some loop. This breaks LI.
341     if (!DT->isReachableFromEntry(Pred))
342       continue;
343     // If we need to preserve LCSSA, determine if any of the preds is a loop
344     // exit.
345     if (PreserveLCSSA)
346       if (Loop *PL = LI->getLoopFor(Pred))
347         if (!PL->contains(OldBB))
348           HasLoopExit = true;
349 
350     // If we need to preserve LoopInfo, note whether any of the preds crosses
351     // an interesting loop boundary.
352     if (!L)
353       continue;
354     if (L->contains(Pred))
355       IsLoopEntry = false;
356     else
357       SplitMakesNewLoopHeader = true;
358   }
359 
360   // Unless we have a loop for OldBB, nothing else to do here.
361   if (!L)
362     return;
363 
364   if (IsLoopEntry) {
365     // Add the new block to the nearest enclosing loop (and not an adjacent
366     // loop). To find this, examine each of the predecessors and determine which
367     // loops enclose them, and select the most-nested loop which contains the
368     // loop containing the block being split.
369     Loop *InnermostPredLoop = nullptr;
370     for (BasicBlock *Pred : Preds) {
371       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
372         // Seek a loop which actually contains the block being split (to avoid
373         // adjacent loops).
374         while (PredLoop && !PredLoop->contains(OldBB))
375           PredLoop = PredLoop->getParentLoop();
376 
377         // Select the most-nested of these loops which contains the block.
378         if (PredLoop && PredLoop->contains(OldBB) &&
379             (!InnermostPredLoop ||
380              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
381           InnermostPredLoop = PredLoop;
382       }
383     }
384 
385     if (InnermostPredLoop)
386       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
387   } else {
388     L->addBasicBlockToLoop(NewBB, *LI);
389     if (SplitMakesNewLoopHeader)
390       L->moveToHeader(NewBB);
391   }
392 }
393 
394 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
395 /// This also updates AliasAnalysis, if available.
396 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
397                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
398                            bool HasLoopExit) {
399   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
400   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
401   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
402     PHINode *PN = cast<PHINode>(I++);
403 
404     // Check to see if all of the values coming in are the same.  If so, we
405     // don't need to create a new PHI node, unless it's needed for LCSSA.
406     Value *InVal = nullptr;
407     if (!HasLoopExit) {
408       InVal = PN->getIncomingValueForBlock(Preds[0]);
409       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
410         if (!PredSet.count(PN->getIncomingBlock(i)))
411           continue;
412         if (!InVal)
413           InVal = PN->getIncomingValue(i);
414         else if (InVal != PN->getIncomingValue(i)) {
415           InVal = nullptr;
416           break;
417         }
418       }
419     }
420 
421     if (InVal) {
422       // If all incoming values for the new PHI would be the same, just don't
423       // make a new PHI.  Instead, just remove the incoming values from the old
424       // PHI.
425 
426       // NOTE! This loop walks backwards for a reason! First off, this minimizes
427       // the cost of removal if we end up removing a large number of values, and
428       // second off, this ensures that the indices for the incoming values
429       // aren't invalidated when we remove one.
430       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
431         if (PredSet.count(PN->getIncomingBlock(i)))
432           PN->removeIncomingValue(i, false);
433 
434       // Add an incoming value to the PHI node in the loop for the preheader
435       // edge.
436       PN->addIncoming(InVal, NewBB);
437       continue;
438     }
439 
440     // If the values coming into the block are not the same, we need a new
441     // PHI.
442     // Create the new PHI node, insert it into NewBB at the end of the block
443     PHINode *NewPHI =
444         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
445 
446     // NOTE! This loop walks backwards for a reason! First off, this minimizes
447     // the cost of removal if we end up removing a large number of values, and
448     // second off, this ensures that the indices for the incoming values aren't
449     // invalidated when we remove one.
450     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
451       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
452       if (PredSet.count(IncomingBB)) {
453         Value *V = PN->removeIncomingValue(i, false);
454         NewPHI->addIncoming(V, IncomingBB);
455       }
456     }
457 
458     PN->addIncoming(NewPHI, NewBB);
459   }
460 }
461 
462 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
463                                          ArrayRef<BasicBlock *> Preds,
464                                          const char *Suffix, DominatorTree *DT,
465                                          LoopInfo *LI, bool PreserveLCSSA) {
466   // Do not attempt to split that which cannot be split.
467   if (!BB->canSplitPredecessors())
468     return nullptr;
469 
470   // For the landingpads we need to act a bit differently.
471   // Delegate this work to the SplitLandingPadPredecessors.
472   if (BB->isLandingPad()) {
473     SmallVector<BasicBlock*, 2> NewBBs;
474     std::string NewName = std::string(Suffix) + ".split-lp";
475 
476     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
477                                 LI, PreserveLCSSA);
478     return NewBBs[0];
479   }
480 
481   // Create new basic block, insert right before the original block.
482   BasicBlock *NewBB = BasicBlock::Create(
483       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
484 
485   // The new block unconditionally branches to the old block.
486   BranchInst *BI = BranchInst::Create(BB, NewBB);
487   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
488 
489   // Move the edges from Preds to point to NewBB instead of BB.
490   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
491     // This is slightly more strict than necessary; the minimum requirement
492     // is that there be no more than one indirectbr branching to BB. And
493     // all BlockAddress uses would need to be updated.
494     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
495            "Cannot split an edge from an IndirectBrInst");
496     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
497   }
498 
499   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
500   // node becomes an incoming value for BB's phi node.  However, if the Preds
501   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
502   // account for the newly created predecessor.
503   if (Preds.empty()) {
504     // Insert dummy values as the incoming value.
505     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
506       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
507     return NewBB;
508   }
509 
510   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
511   bool HasLoopExit = false;
512   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
513                             HasLoopExit);
514 
515   // Update the PHI nodes in BB with the values coming from NewBB.
516   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
517   return NewBB;
518 }
519 
520 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
521                                        ArrayRef<BasicBlock *> Preds,
522                                        const char *Suffix1, const char *Suffix2,
523                                        SmallVectorImpl<BasicBlock *> &NewBBs,
524                                        DominatorTree *DT, LoopInfo *LI,
525                                        bool PreserveLCSSA) {
526   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
527 
528   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
529   // it right before the original block.
530   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
531                                           OrigBB->getName() + Suffix1,
532                                           OrigBB->getParent(), OrigBB);
533   NewBBs.push_back(NewBB1);
534 
535   // The new block unconditionally branches to the old block.
536   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
537   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
538 
539   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
540   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
541     // This is slightly more strict than necessary; the minimum requirement
542     // is that there be no more than one indirectbr branching to BB. And
543     // all BlockAddress uses would need to be updated.
544     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
545            "Cannot split an edge from an IndirectBrInst");
546     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
547   }
548 
549   bool HasLoopExit = false;
550   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
551                             HasLoopExit);
552 
553   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
554   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
555 
556   // Move the remaining edges from OrigBB to point to NewBB2.
557   SmallVector<BasicBlock*, 8> NewBB2Preds;
558   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
559        i != e; ) {
560     BasicBlock *Pred = *i++;
561     if (Pred == NewBB1) continue;
562     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
563            "Cannot split an edge from an IndirectBrInst");
564     NewBB2Preds.push_back(Pred);
565     e = pred_end(OrigBB);
566   }
567 
568   BasicBlock *NewBB2 = nullptr;
569   if (!NewBB2Preds.empty()) {
570     // Create another basic block for the rest of OrigBB's predecessors.
571     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
572                                 OrigBB->getName() + Suffix2,
573                                 OrigBB->getParent(), OrigBB);
574     NewBBs.push_back(NewBB2);
575 
576     // The new block unconditionally branches to the old block.
577     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
578     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
579 
580     // Move the remaining edges from OrigBB to point to NewBB2.
581     for (BasicBlock *NewBB2Pred : NewBB2Preds)
582       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
583 
584     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
585     HasLoopExit = false;
586     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
587                               PreserveLCSSA, HasLoopExit);
588 
589     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
590     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
591   }
592 
593   LandingPadInst *LPad = OrigBB->getLandingPadInst();
594   Instruction *Clone1 = LPad->clone();
595   Clone1->setName(Twine("lpad") + Suffix1);
596   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
597 
598   if (NewBB2) {
599     Instruction *Clone2 = LPad->clone();
600     Clone2->setName(Twine("lpad") + Suffix2);
601     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
602 
603     // Create a PHI node for the two cloned landingpad instructions only
604     // if the original landingpad instruction has some uses.
605     if (!LPad->use_empty()) {
606       assert(!LPad->getType()->isTokenTy() &&
607              "Split cannot be applied if LPad is token type. Otherwise an "
608              "invalid PHINode of token type would be created.");
609       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
610       PN->addIncoming(Clone1, NewBB1);
611       PN->addIncoming(Clone2, NewBB2);
612       LPad->replaceAllUsesWith(PN);
613     }
614     LPad->eraseFromParent();
615   } else {
616     // There is no second clone. Just replace the landing pad with the first
617     // clone.
618     LPad->replaceAllUsesWith(Clone1);
619     LPad->eraseFromParent();
620   }
621 }
622 
623 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
624                                              BasicBlock *Pred) {
625   Instruction *UncondBranch = Pred->getTerminator();
626   // Clone the return and add it to the end of the predecessor.
627   Instruction *NewRet = RI->clone();
628   Pred->getInstList().push_back(NewRet);
629 
630   // If the return instruction returns a value, and if the value was a
631   // PHI node in "BB", propagate the right value into the return.
632   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
633        i != e; ++i) {
634     Value *V = *i;
635     Instruction *NewBC = nullptr;
636     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
637       // Return value might be bitcasted. Clone and insert it before the
638       // return instruction.
639       V = BCI->getOperand(0);
640       NewBC = BCI->clone();
641       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
642       *i = NewBC;
643     }
644     if (PHINode *PN = dyn_cast<PHINode>(V)) {
645       if (PN->getParent() == BB) {
646         if (NewBC)
647           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
648         else
649           *i = PN->getIncomingValueForBlock(Pred);
650       }
651     }
652   }
653 
654   // Update any PHI nodes in the returning block to realize that we no
655   // longer branch to them.
656   BB->removePredecessor(Pred);
657   UncondBranch->eraseFromParent();
658   return cast<ReturnInst>(NewRet);
659 }
660 
661 TerminatorInst *
662 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
663                                 bool Unreachable, MDNode *BranchWeights,
664                                 DominatorTree *DT, LoopInfo *LI) {
665   BasicBlock *Head = SplitBefore->getParent();
666   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
667   TerminatorInst *HeadOldTerm = Head->getTerminator();
668   LLVMContext &C = Head->getContext();
669   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
670   TerminatorInst *CheckTerm;
671   if (Unreachable)
672     CheckTerm = new UnreachableInst(C, ThenBlock);
673   else
674     CheckTerm = BranchInst::Create(Tail, ThenBlock);
675   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
676   BranchInst *HeadNewTerm =
677     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
678   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
679   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
680 
681   if (DT) {
682     if (DomTreeNode *OldNode = DT->getNode(Head)) {
683       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
684 
685       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
686       for (DomTreeNode *Child : Children)
687         DT->changeImmediateDominator(Child, NewNode);
688 
689       // Head dominates ThenBlock.
690       DT->addNewBlock(ThenBlock, Head);
691     }
692   }
693 
694   if (LI) {
695     if (Loop *L = LI->getLoopFor(Head)) {
696       L->addBasicBlockToLoop(ThenBlock, *LI);
697       L->addBasicBlockToLoop(Tail, *LI);
698     }
699   }
700 
701   return CheckTerm;
702 }
703 
704 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
705                                          TerminatorInst **ThenTerm,
706                                          TerminatorInst **ElseTerm,
707                                          MDNode *BranchWeights) {
708   BasicBlock *Head = SplitBefore->getParent();
709   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
710   TerminatorInst *HeadOldTerm = Head->getTerminator();
711   LLVMContext &C = Head->getContext();
712   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
713   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
714   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
715   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
716   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
717   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
718   BranchInst *HeadNewTerm =
719     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
720   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
721   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
722 }
723 
724 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
725                              BasicBlock *&IfFalse) {
726   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
727   BasicBlock *Pred1 = nullptr;
728   BasicBlock *Pred2 = nullptr;
729 
730   if (SomePHI) {
731     if (SomePHI->getNumIncomingValues() != 2)
732       return nullptr;
733     Pred1 = SomePHI->getIncomingBlock(0);
734     Pred2 = SomePHI->getIncomingBlock(1);
735   } else {
736     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
737     if (PI == PE) // No predecessor
738       return nullptr;
739     Pred1 = *PI++;
740     if (PI == PE) // Only one predecessor
741       return nullptr;
742     Pred2 = *PI++;
743     if (PI != PE) // More than two predecessors
744       return nullptr;
745   }
746 
747   // We can only handle branches.  Other control flow will be lowered to
748   // branches if possible anyway.
749   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
750   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
751   if (!Pred1Br || !Pred2Br)
752     return nullptr;
753 
754   // Eliminate code duplication by ensuring that Pred1Br is conditional if
755   // either are.
756   if (Pred2Br->isConditional()) {
757     // If both branches are conditional, we don't have an "if statement".  In
758     // reality, we could transform this case, but since the condition will be
759     // required anyway, we stand no chance of eliminating it, so the xform is
760     // probably not profitable.
761     if (Pred1Br->isConditional())
762       return nullptr;
763 
764     std::swap(Pred1, Pred2);
765     std::swap(Pred1Br, Pred2Br);
766   }
767 
768   if (Pred1Br->isConditional()) {
769     // The only thing we have to watch out for here is to make sure that Pred2
770     // doesn't have incoming edges from other blocks.  If it does, the condition
771     // doesn't dominate BB.
772     if (!Pred2->getSinglePredecessor())
773       return nullptr;
774 
775     // If we found a conditional branch predecessor, make sure that it branches
776     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
777     if (Pred1Br->getSuccessor(0) == BB &&
778         Pred1Br->getSuccessor(1) == Pred2) {
779       IfTrue = Pred1;
780       IfFalse = Pred2;
781     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
782                Pred1Br->getSuccessor(1) == BB) {
783       IfTrue = Pred2;
784       IfFalse = Pred1;
785     } else {
786       // We know that one arm of the conditional goes to BB, so the other must
787       // go somewhere unrelated, and this must not be an "if statement".
788       return nullptr;
789     }
790 
791     return Pred1Br->getCondition();
792   }
793 
794   // Ok, if we got here, both predecessors end with an unconditional branch to
795   // BB.  Don't panic!  If both blocks only have a single (identical)
796   // predecessor, and THAT is a conditional branch, then we're all ok!
797   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
798   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
799     return nullptr;
800 
801   // Otherwise, if this is a conditional branch, then we can use it!
802   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
803   if (!BI) return nullptr;
804 
805   assert(BI->isConditional() && "Two successors but not conditional?");
806   if (BI->getSuccessor(0) == Pred1) {
807     IfTrue = Pred1;
808     IfFalse = Pred2;
809   } else {
810     IfTrue = Pred2;
811     IfFalse = Pred1;
812   }
813   return BI->getCondition();
814 }
815