1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 void llvm::DetatchDeadBlocks( 55 ArrayRef<BasicBlock *> BBs, 56 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 57 bool KeepOneInputPHIs) { 58 for (auto *BB : BBs) { 59 // Loop through all of our successors and make sure they know that one 60 // of their predecessors is going away. 61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 62 for (BasicBlock *Succ : successors(BB)) { 63 Succ->removePredecessor(BB, KeepOneInputPHIs); 64 if (Updates && UniqueSuccessors.insert(Succ).second) 65 Updates->push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 } 86 } 87 88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 89 bool KeepOneInputPHIs) { 90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 91 } 92 93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 94 bool KeepOneInputPHIs) { 95 #ifndef NDEBUG 96 // Make sure that all predecessors of each dead block is also dead. 97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 98 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 99 for (auto *BB : Dead) 100 for (BasicBlock *Pred : predecessors(BB)) 101 assert(Dead.count(Pred) && "All predecessors must be dead!"); 102 #endif 103 104 SmallVector<DominatorTree::UpdateType, 4> Updates; 105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 106 107 if (DTU) 108 DTU->applyUpdatesPermissive(Updates); 109 110 for (BasicBlock *BB : BBs) 111 if (DTU) 112 DTU->deleteBB(BB); 113 else 114 BB->eraseFromParent(); 115 } 116 117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 118 bool KeepOneInputPHIs) { 119 df_iterator_default_set<BasicBlock*> Reachable; 120 121 // Mark all reachable blocks. 122 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 123 (void)BB/* Mark all reachable blocks */; 124 125 // Collect all dead blocks. 126 std::vector<BasicBlock*> DeadBlocks; 127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 128 if (!Reachable.count(&*I)) { 129 BasicBlock *BB = &*I; 130 DeadBlocks.push_back(BB); 131 } 132 133 // Delete the dead blocks. 134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 135 136 return !DeadBlocks.empty(); 137 } 138 139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 140 MemoryDependenceResults *MemDep) { 141 if (!isa<PHINode>(BB->begin())) return; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 } 155 156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI, 157 MemorySSAUpdater *MSSAU) { 158 // Recursively deleting a PHI may cause multiple PHIs to be deleted 159 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 160 SmallVector<WeakTrackingVH, 8> PHIs; 161 for (PHINode &PN : BB->phis()) 162 PHIs.push_back(&PN); 163 164 bool Changed = false; 165 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 166 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 167 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU); 168 169 return Changed; 170 } 171 172 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 173 LoopInfo *LI, MemorySSAUpdater *MSSAU, 174 MemoryDependenceResults *MemDep, 175 bool PredecessorWithTwoSuccessors) { 176 if (BB->hasAddressTaken()) 177 return false; 178 179 // Can't merge if there are multiple predecessors, or no predecessors. 180 BasicBlock *PredBB = BB->getUniquePredecessor(); 181 if (!PredBB) return false; 182 183 // Don't break self-loops. 184 if (PredBB == BB) return false; 185 // Don't break unwinding instructions. 186 if (PredBB->getTerminator()->isExceptionalTerminator()) 187 return false; 188 189 // Can't merge if there are multiple distinct successors. 190 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 191 return false; 192 193 // Currently only allow PredBB to have two predecessors, one being BB. 194 // Update BI to branch to BB's only successor instead of BB. 195 BranchInst *PredBB_BI; 196 BasicBlock *NewSucc = nullptr; 197 unsigned FallThruPath; 198 if (PredecessorWithTwoSuccessors) { 199 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 200 return false; 201 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 202 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 203 return false; 204 NewSucc = BB_JmpI->getSuccessor(0); 205 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 206 } 207 208 // Can't merge if there is PHI loop. 209 for (PHINode &PN : BB->phis()) 210 for (Value *IncValue : PN.incoming_values()) 211 if (IncValue == &PN) 212 return false; 213 214 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 215 << PredBB->getName() << "\n"); 216 217 // Begin by getting rid of unneeded PHIs. 218 SmallVector<AssertingVH<Value>, 4> IncomingValues; 219 if (isa<PHINode>(BB->front())) { 220 for (PHINode &PN : BB->phis()) 221 if (!isa<PHINode>(PN.getIncomingValue(0)) || 222 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 223 IncomingValues.push_back(PN.getIncomingValue(0)); 224 FoldSingleEntryPHINodes(BB, MemDep); 225 } 226 227 // DTU update: Collect all the edges that exit BB. 228 // These dominator edges will be redirected from Pred. 229 std::vector<DominatorTree::UpdateType> Updates; 230 if (DTU) { 231 Updates.reserve(1 + (2 * succ_size(BB))); 232 // Add insert edges first. Experimentally, for the particular case of two 233 // blocks that can be merged, with a single successor and single predecessor 234 // respectively, it is beneficial to have all insert updates first. Deleting 235 // edges first may lead to unreachable blocks, followed by inserting edges 236 // making the blocks reachable again. Such DT updates lead to high compile 237 // times. We add inserts before deletes here to reduce compile time. 238 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 239 // This successor of BB may already have PredBB as a predecessor. 240 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 241 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 242 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 243 Updates.push_back({DominatorTree::Delete, BB, *I}); 244 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 245 } 246 247 Instruction *PTI = PredBB->getTerminator(); 248 Instruction *STI = BB->getTerminator(); 249 Instruction *Start = &*BB->begin(); 250 // If there's nothing to move, mark the starting instruction as the last 251 // instruction in the block. Terminator instruction is handled separately. 252 if (Start == STI) 253 Start = PTI; 254 255 // Move all definitions in the successor to the predecessor... 256 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 257 BB->begin(), STI->getIterator()); 258 259 if (MSSAU) 260 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 261 262 // Make all PHI nodes that referred to BB now refer to Pred as their 263 // source... 264 BB->replaceAllUsesWith(PredBB); 265 266 if (PredecessorWithTwoSuccessors) { 267 // Delete the unconditional branch from BB. 268 BB->getInstList().pop_back(); 269 270 // Update branch in the predecessor. 271 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 272 } else { 273 // Delete the unconditional branch from the predecessor. 274 PredBB->getInstList().pop_back(); 275 276 // Move terminator instruction. 277 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 278 279 // Terminator may be a memory accessing instruction too. 280 if (MSSAU) 281 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 282 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 283 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 284 } 285 // Add unreachable to now empty BB. 286 new UnreachableInst(BB->getContext(), BB); 287 288 // Inherit predecessors name if it exists. 289 if (!PredBB->hasName()) 290 PredBB->takeName(BB); 291 292 if (LI) 293 LI->removeBlock(BB); 294 295 if (MemDep) 296 MemDep->invalidateCachedPredecessors(); 297 298 // Finally, erase the old block and update dominator info. 299 if (DTU) { 300 assert(BB->getInstList().size() == 1 && 301 isa<UnreachableInst>(BB->getTerminator()) && 302 "The successor list of BB isn't empty before " 303 "applying corresponding DTU updates."); 304 DTU->applyUpdatesPermissive(Updates); 305 DTU->deleteBB(BB); 306 } else { 307 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 308 } 309 310 return true; 311 } 312 313 bool llvm::MergeBlockSuccessorsIntoGivenBlocks( 314 SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU, 315 LoopInfo *LI) { 316 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty"); 317 318 bool BlocksHaveBeenMerged = false; 319 while (!MergeBlocks.empty()) { 320 BasicBlock *BB = *MergeBlocks.begin(); 321 BasicBlock *Dest = BB->getSingleSuccessor(); 322 if (Dest && (!L || L->contains(Dest))) { 323 BasicBlock *Fold = Dest->getUniquePredecessor(); 324 (void)Fold; 325 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) { 326 assert(Fold == BB && 327 "Expecting BB to be unique predecessor of the Dest block"); 328 MergeBlocks.erase(Dest); 329 BlocksHaveBeenMerged = true; 330 } else 331 MergeBlocks.erase(BB); 332 } else 333 MergeBlocks.erase(BB); 334 } 335 return BlocksHaveBeenMerged; 336 } 337 338 /// Remove redundant instructions within sequences of consecutive dbg.value 339 /// instructions. This is done using a backward scan to keep the last dbg.value 340 /// describing a specific variable/fragment. 341 /// 342 /// BackwardScan strategy: 343 /// ---------------------- 344 /// Given a sequence of consecutive DbgValueInst like this 345 /// 346 /// dbg.value ..., "x", FragmentX1 (*) 347 /// dbg.value ..., "y", FragmentY1 348 /// dbg.value ..., "x", FragmentX2 349 /// dbg.value ..., "x", FragmentX1 (**) 350 /// 351 /// then the instruction marked with (*) can be removed (it is guaranteed to be 352 /// obsoleted by the instruction marked with (**) as the latter instruction is 353 /// describing the same variable using the same fragment info). 354 /// 355 /// Possible improvements: 356 /// - Check fully overlapping fragments and not only identical fragments. 357 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta 358 /// instructions being part of the sequence of consecutive instructions. 359 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) { 360 SmallVector<DbgValueInst *, 8> ToBeRemoved; 361 SmallDenseSet<DebugVariable> VariableSet; 362 for (auto &I : reverse(*BB)) { 363 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 364 DebugVariable Key(DVI->getVariable(), 365 DVI->getExpression(), 366 DVI->getDebugLoc()->getInlinedAt()); 367 auto R = VariableSet.insert(Key); 368 // If the same variable fragment is described more than once it is enough 369 // to keep the last one (i.e. the first found since we for reverse 370 // iteration). 371 if (!R.second) 372 ToBeRemoved.push_back(DVI); 373 continue; 374 } 375 // Sequence with consecutive dbg.value instrs ended. Clear the map to 376 // restart identifying redundant instructions if case we find another 377 // dbg.value sequence. 378 VariableSet.clear(); 379 } 380 381 for (auto &Instr : ToBeRemoved) 382 Instr->eraseFromParent(); 383 384 return !ToBeRemoved.empty(); 385 } 386 387 /// Remove redundant dbg.value instructions using a forward scan. This can 388 /// remove a dbg.value instruction that is redundant due to indicating that a 389 /// variable has the same value as already being indicated by an earlier 390 /// dbg.value. 391 /// 392 /// ForwardScan strategy: 393 /// --------------------- 394 /// Given two identical dbg.value instructions, separated by a block of 395 /// instructions that isn't describing the same variable, like this 396 /// 397 /// dbg.value X1, "x", FragmentX1 (**) 398 /// <block of instructions, none being "dbg.value ..., "x", ..."> 399 /// dbg.value X1, "x", FragmentX1 (*) 400 /// 401 /// then the instruction marked with (*) can be removed. Variable "x" is already 402 /// described as being mapped to the SSA value X1. 403 /// 404 /// Possible improvements: 405 /// - Keep track of non-overlapping fragments. 406 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) { 407 SmallVector<DbgValueInst *, 8> ToBeRemoved; 408 DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap; 409 for (auto &I : *BB) { 410 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) { 411 DebugVariable Key(DVI->getVariable(), 412 NoneType(), 413 DVI->getDebugLoc()->getInlinedAt()); 414 auto VMI = VariableMap.find(Key); 415 // Update the map if we found a new value/expression describing the 416 // variable, or if the variable wasn't mapped already. 417 if (VMI == VariableMap.end() || 418 VMI->second.first != DVI->getValue() || 419 VMI->second.second != DVI->getExpression()) { 420 VariableMap[Key] = { DVI->getValue(), DVI->getExpression() }; 421 continue; 422 } 423 // Found an identical mapping. Remember the instruction for later removal. 424 ToBeRemoved.push_back(DVI); 425 } 426 } 427 428 for (auto &Instr : ToBeRemoved) 429 Instr->eraseFromParent(); 430 431 return !ToBeRemoved.empty(); 432 } 433 434 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) { 435 bool MadeChanges = false; 436 // By using the "backward scan" strategy before the "forward scan" strategy we 437 // can remove both dbg.value (2) and (3) in a situation like this: 438 // 439 // (1) dbg.value V1, "x", DIExpression() 440 // ... 441 // (2) dbg.value V2, "x", DIExpression() 442 // (3) dbg.value V1, "x", DIExpression() 443 // 444 // The backward scan will remove (2), it is made obsolete by (3). After 445 // getting (2) out of the way, the foward scan will remove (3) since "x" 446 // already is described as having the value V1 at (1). 447 MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB); 448 MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB); 449 450 if (MadeChanges) 451 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: " 452 << BB->getName() << "\n"); 453 return MadeChanges; 454 } 455 456 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 457 BasicBlock::iterator &BI, Value *V) { 458 Instruction &I = *BI; 459 // Replaces all of the uses of the instruction with uses of the value 460 I.replaceAllUsesWith(V); 461 462 // Make sure to propagate a name if there is one already. 463 if (I.hasName() && !V->hasName()) 464 V->takeName(&I); 465 466 // Delete the unnecessary instruction now... 467 BI = BIL.erase(BI); 468 } 469 470 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 471 BasicBlock::iterator &BI, Instruction *I) { 472 assert(I->getParent() == nullptr && 473 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 474 475 // Copy debug location to newly added instruction, if it wasn't already set 476 // by the caller. 477 if (!I->getDebugLoc()) 478 I->setDebugLoc(BI->getDebugLoc()); 479 480 // Insert the new instruction into the basic block... 481 BasicBlock::iterator New = BIL.insert(BI, I); 482 483 // Replace all uses of the old instruction, and delete it. 484 ReplaceInstWithValue(BIL, BI, I); 485 486 // Move BI back to point to the newly inserted instruction 487 BI = New; 488 } 489 490 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 491 BasicBlock::iterator BI(From); 492 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 493 } 494 495 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 496 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 497 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 498 499 // If this is a critical edge, let SplitCriticalEdge do it. 500 Instruction *LatchTerm = BB->getTerminator(); 501 if (SplitCriticalEdge( 502 LatchTerm, SuccNum, 503 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 504 return LatchTerm->getSuccessor(SuccNum); 505 506 // If the edge isn't critical, then BB has a single successor or Succ has a 507 // single pred. Split the block. 508 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 509 // If the successor only has a single pred, split the top of the successor 510 // block. 511 assert(SP == BB && "CFG broken"); 512 SP = nullptr; 513 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 514 } 515 516 // Otherwise, if BB has a single successor, split it at the bottom of the 517 // block. 518 assert(BB->getTerminator()->getNumSuccessors() == 1 && 519 "Should have a single succ!"); 520 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 521 } 522 523 unsigned 524 llvm::SplitAllCriticalEdges(Function &F, 525 const CriticalEdgeSplittingOptions &Options) { 526 unsigned NumBroken = 0; 527 for (BasicBlock &BB : F) { 528 Instruction *TI = BB.getTerminator(); 529 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) && 530 !isa<CallBrInst>(TI)) 531 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 532 if (SplitCriticalEdge(TI, i, Options)) 533 ++NumBroken; 534 } 535 return NumBroken; 536 } 537 538 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 539 DominatorTree *DT, LoopInfo *LI, 540 MemorySSAUpdater *MSSAU, const Twine &BBName) { 541 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 542 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 543 ++SplitIt; 544 std::string Name = BBName.str(); 545 BasicBlock *New = Old->splitBasicBlock( 546 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 547 548 // The new block lives in whichever loop the old one did. This preserves 549 // LCSSA as well, because we force the split point to be after any PHI nodes. 550 if (LI) 551 if (Loop *L = LI->getLoopFor(Old)) 552 L->addBasicBlockToLoop(New, *LI); 553 554 if (DT) 555 // Old dominates New. New node dominates all other nodes dominated by Old. 556 if (DomTreeNode *OldNode = DT->getNode(Old)) { 557 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 558 559 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 560 for (DomTreeNode *I : Children) 561 DT->changeImmediateDominator(I, NewNode); 562 } 563 564 // Move MemoryAccesses still tracked in Old, but part of New now. 565 // Update accesses in successor blocks accordingly. 566 if (MSSAU) 567 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 568 569 return New; 570 } 571 572 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 573 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 574 ArrayRef<BasicBlock *> Preds, 575 DominatorTree *DT, LoopInfo *LI, 576 MemorySSAUpdater *MSSAU, 577 bool PreserveLCSSA, bool &HasLoopExit) { 578 // Update dominator tree if available. 579 if (DT) { 580 if (OldBB == DT->getRootNode()->getBlock()) { 581 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 582 DT->setNewRoot(NewBB); 583 } else { 584 // Split block expects NewBB to have a non-empty set of predecessors. 585 DT->splitBlock(NewBB); 586 } 587 } 588 589 // Update MemoryPhis after split if MemorySSA is available 590 if (MSSAU) 591 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 592 593 // The rest of the logic is only relevant for updating the loop structures. 594 if (!LI) 595 return; 596 597 assert(DT && "DT should be available to update LoopInfo!"); 598 Loop *L = LI->getLoopFor(OldBB); 599 600 // If we need to preserve loop analyses, collect some information about how 601 // this split will affect loops. 602 bool IsLoopEntry = !!L; 603 bool SplitMakesNewLoopHeader = false; 604 for (BasicBlock *Pred : Preds) { 605 // Preds that are not reachable from entry should not be used to identify if 606 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 607 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 608 // as true and make the NewBB the header of some loop. This breaks LI. 609 if (!DT->isReachableFromEntry(Pred)) 610 continue; 611 // If we need to preserve LCSSA, determine if any of the preds is a loop 612 // exit. 613 if (PreserveLCSSA) 614 if (Loop *PL = LI->getLoopFor(Pred)) 615 if (!PL->contains(OldBB)) 616 HasLoopExit = true; 617 618 // If we need to preserve LoopInfo, note whether any of the preds crosses 619 // an interesting loop boundary. 620 if (!L) 621 continue; 622 if (L->contains(Pred)) 623 IsLoopEntry = false; 624 else 625 SplitMakesNewLoopHeader = true; 626 } 627 628 // Unless we have a loop for OldBB, nothing else to do here. 629 if (!L) 630 return; 631 632 if (IsLoopEntry) { 633 // Add the new block to the nearest enclosing loop (and not an adjacent 634 // loop). To find this, examine each of the predecessors and determine which 635 // loops enclose them, and select the most-nested loop which contains the 636 // loop containing the block being split. 637 Loop *InnermostPredLoop = nullptr; 638 for (BasicBlock *Pred : Preds) { 639 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 640 // Seek a loop which actually contains the block being split (to avoid 641 // adjacent loops). 642 while (PredLoop && !PredLoop->contains(OldBB)) 643 PredLoop = PredLoop->getParentLoop(); 644 645 // Select the most-nested of these loops which contains the block. 646 if (PredLoop && PredLoop->contains(OldBB) && 647 (!InnermostPredLoop || 648 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 649 InnermostPredLoop = PredLoop; 650 } 651 } 652 653 if (InnermostPredLoop) 654 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 655 } else { 656 L->addBasicBlockToLoop(NewBB, *LI); 657 if (SplitMakesNewLoopHeader) 658 L->moveToHeader(NewBB); 659 } 660 } 661 662 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 663 /// This also updates AliasAnalysis, if available. 664 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 665 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 666 bool HasLoopExit) { 667 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 668 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 669 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 670 PHINode *PN = cast<PHINode>(I++); 671 672 // Check to see if all of the values coming in are the same. If so, we 673 // don't need to create a new PHI node, unless it's needed for LCSSA. 674 Value *InVal = nullptr; 675 if (!HasLoopExit) { 676 InVal = PN->getIncomingValueForBlock(Preds[0]); 677 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 678 if (!PredSet.count(PN->getIncomingBlock(i))) 679 continue; 680 if (!InVal) 681 InVal = PN->getIncomingValue(i); 682 else if (InVal != PN->getIncomingValue(i)) { 683 InVal = nullptr; 684 break; 685 } 686 } 687 } 688 689 if (InVal) { 690 // If all incoming values for the new PHI would be the same, just don't 691 // make a new PHI. Instead, just remove the incoming values from the old 692 // PHI. 693 694 // NOTE! This loop walks backwards for a reason! First off, this minimizes 695 // the cost of removal if we end up removing a large number of values, and 696 // second off, this ensures that the indices for the incoming values 697 // aren't invalidated when we remove one. 698 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 699 if (PredSet.count(PN->getIncomingBlock(i))) 700 PN->removeIncomingValue(i, false); 701 702 // Add an incoming value to the PHI node in the loop for the preheader 703 // edge. 704 PN->addIncoming(InVal, NewBB); 705 continue; 706 } 707 708 // If the values coming into the block are not the same, we need a new 709 // PHI. 710 // Create the new PHI node, insert it into NewBB at the end of the block 711 PHINode *NewPHI = 712 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 713 714 // NOTE! This loop walks backwards for a reason! First off, this minimizes 715 // the cost of removal if we end up removing a large number of values, and 716 // second off, this ensures that the indices for the incoming values aren't 717 // invalidated when we remove one. 718 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 719 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 720 if (PredSet.count(IncomingBB)) { 721 Value *V = PN->removeIncomingValue(i, false); 722 NewPHI->addIncoming(V, IncomingBB); 723 } 724 } 725 726 PN->addIncoming(NewPHI, NewBB); 727 } 728 } 729 730 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 731 ArrayRef<BasicBlock *> Preds, 732 const char *Suffix, DominatorTree *DT, 733 LoopInfo *LI, MemorySSAUpdater *MSSAU, 734 bool PreserveLCSSA) { 735 // Do not attempt to split that which cannot be split. 736 if (!BB->canSplitPredecessors()) 737 return nullptr; 738 739 // For the landingpads we need to act a bit differently. 740 // Delegate this work to the SplitLandingPadPredecessors. 741 if (BB->isLandingPad()) { 742 SmallVector<BasicBlock*, 2> NewBBs; 743 std::string NewName = std::string(Suffix) + ".split-lp"; 744 745 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 746 LI, MSSAU, PreserveLCSSA); 747 return NewBBs[0]; 748 } 749 750 // Create new basic block, insert right before the original block. 751 BasicBlock *NewBB = BasicBlock::Create( 752 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 753 754 // The new block unconditionally branches to the old block. 755 BranchInst *BI = BranchInst::Create(BB, NewBB); 756 757 Loop *L = nullptr; 758 BasicBlock *OldLatch = nullptr; 759 // Splitting the predecessors of a loop header creates a preheader block. 760 if (LI && LI->isLoopHeader(BB)) { 761 L = LI->getLoopFor(BB); 762 // Using the loop start line number prevents debuggers stepping into the 763 // loop body for this instruction. 764 BI->setDebugLoc(L->getStartLoc()); 765 766 // If BB is the header of the Loop, it is possible that the loop is 767 // modified, such that the current latch does not remain the latch of the 768 // loop. If that is the case, the loop metadata from the current latch needs 769 // to be applied to the new latch. 770 OldLatch = L->getLoopLatch(); 771 } else 772 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 773 774 // Move the edges from Preds to point to NewBB instead of BB. 775 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 776 // This is slightly more strict than necessary; the minimum requirement 777 // is that there be no more than one indirectbr branching to BB. And 778 // all BlockAddress uses would need to be updated. 779 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 780 "Cannot split an edge from an IndirectBrInst"); 781 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 782 "Cannot split an edge from a CallBrInst"); 783 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 784 } 785 786 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 787 // node becomes an incoming value for BB's phi node. However, if the Preds 788 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 789 // account for the newly created predecessor. 790 if (Preds.empty()) { 791 // Insert dummy values as the incoming value. 792 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 793 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 794 } 795 796 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 797 bool HasLoopExit = false; 798 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 799 HasLoopExit); 800 801 if (!Preds.empty()) { 802 // Update the PHI nodes in BB with the values coming from NewBB. 803 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 804 } 805 806 if (OldLatch) { 807 BasicBlock *NewLatch = L->getLoopLatch(); 808 if (NewLatch != OldLatch) { 809 MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop"); 810 NewLatch->getTerminator()->setMetadata("llvm.loop", MD); 811 OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr); 812 } 813 } 814 815 return NewBB; 816 } 817 818 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 819 ArrayRef<BasicBlock *> Preds, 820 const char *Suffix1, const char *Suffix2, 821 SmallVectorImpl<BasicBlock *> &NewBBs, 822 DominatorTree *DT, LoopInfo *LI, 823 MemorySSAUpdater *MSSAU, 824 bool PreserveLCSSA) { 825 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 826 827 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 828 // it right before the original block. 829 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 830 OrigBB->getName() + Suffix1, 831 OrigBB->getParent(), OrigBB); 832 NewBBs.push_back(NewBB1); 833 834 // The new block unconditionally branches to the old block. 835 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 836 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 837 838 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 839 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 840 // This is slightly more strict than necessary; the minimum requirement 841 // is that there be no more than one indirectbr branching to BB. And 842 // all BlockAddress uses would need to be updated. 843 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 844 "Cannot split an edge from an IndirectBrInst"); 845 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 846 } 847 848 bool HasLoopExit = false; 849 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 850 HasLoopExit); 851 852 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 853 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 854 855 // Move the remaining edges from OrigBB to point to NewBB2. 856 SmallVector<BasicBlock*, 8> NewBB2Preds; 857 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 858 i != e; ) { 859 BasicBlock *Pred = *i++; 860 if (Pred == NewBB1) continue; 861 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 862 "Cannot split an edge from an IndirectBrInst"); 863 NewBB2Preds.push_back(Pred); 864 e = pred_end(OrigBB); 865 } 866 867 BasicBlock *NewBB2 = nullptr; 868 if (!NewBB2Preds.empty()) { 869 // Create another basic block for the rest of OrigBB's predecessors. 870 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 871 OrigBB->getName() + Suffix2, 872 OrigBB->getParent(), OrigBB); 873 NewBBs.push_back(NewBB2); 874 875 // The new block unconditionally branches to the old block. 876 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 877 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 878 879 // Move the remaining edges from OrigBB to point to NewBB2. 880 for (BasicBlock *NewBB2Pred : NewBB2Preds) 881 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 882 883 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 884 HasLoopExit = false; 885 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 886 PreserveLCSSA, HasLoopExit); 887 888 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 889 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 890 } 891 892 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 893 Instruction *Clone1 = LPad->clone(); 894 Clone1->setName(Twine("lpad") + Suffix1); 895 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 896 897 if (NewBB2) { 898 Instruction *Clone2 = LPad->clone(); 899 Clone2->setName(Twine("lpad") + Suffix2); 900 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 901 902 // Create a PHI node for the two cloned landingpad instructions only 903 // if the original landingpad instruction has some uses. 904 if (!LPad->use_empty()) { 905 assert(!LPad->getType()->isTokenTy() && 906 "Split cannot be applied if LPad is token type. Otherwise an " 907 "invalid PHINode of token type would be created."); 908 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 909 PN->addIncoming(Clone1, NewBB1); 910 PN->addIncoming(Clone2, NewBB2); 911 LPad->replaceAllUsesWith(PN); 912 } 913 LPad->eraseFromParent(); 914 } else { 915 // There is no second clone. Just replace the landing pad with the first 916 // clone. 917 LPad->replaceAllUsesWith(Clone1); 918 LPad->eraseFromParent(); 919 } 920 } 921 922 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 923 BasicBlock *Pred, 924 DomTreeUpdater *DTU) { 925 Instruction *UncondBranch = Pred->getTerminator(); 926 // Clone the return and add it to the end of the predecessor. 927 Instruction *NewRet = RI->clone(); 928 Pred->getInstList().push_back(NewRet); 929 930 // If the return instruction returns a value, and if the value was a 931 // PHI node in "BB", propagate the right value into the return. 932 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 933 i != e; ++i) { 934 Value *V = *i; 935 Instruction *NewBC = nullptr; 936 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 937 // Return value might be bitcasted. Clone and insert it before the 938 // return instruction. 939 V = BCI->getOperand(0); 940 NewBC = BCI->clone(); 941 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 942 *i = NewBC; 943 } 944 945 Instruction *NewEV = nullptr; 946 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 947 V = EVI->getOperand(0); 948 NewEV = EVI->clone(); 949 if (NewBC) { 950 NewBC->setOperand(0, NewEV); 951 Pred->getInstList().insert(NewBC->getIterator(), NewEV); 952 } else { 953 Pred->getInstList().insert(NewRet->getIterator(), NewEV); 954 *i = NewEV; 955 } 956 } 957 958 if (PHINode *PN = dyn_cast<PHINode>(V)) { 959 if (PN->getParent() == BB) { 960 if (NewEV) { 961 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred)); 962 } else if (NewBC) 963 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 964 else 965 *i = PN->getIncomingValueForBlock(Pred); 966 } 967 } 968 } 969 970 // Update any PHI nodes in the returning block to realize that we no 971 // longer branch to them. 972 BB->removePredecessor(Pred); 973 UncondBranch->eraseFromParent(); 974 975 if (DTU) 976 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 977 978 return cast<ReturnInst>(NewRet); 979 } 980 981 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 982 Instruction *SplitBefore, 983 bool Unreachable, 984 MDNode *BranchWeights, 985 DominatorTree *DT, LoopInfo *LI, 986 BasicBlock *ThenBlock) { 987 BasicBlock *Head = SplitBefore->getParent(); 988 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 989 Instruction *HeadOldTerm = Head->getTerminator(); 990 LLVMContext &C = Head->getContext(); 991 Instruction *CheckTerm; 992 bool CreateThenBlock = (ThenBlock == nullptr); 993 if (CreateThenBlock) { 994 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 995 if (Unreachable) 996 CheckTerm = new UnreachableInst(C, ThenBlock); 997 else 998 CheckTerm = BranchInst::Create(Tail, ThenBlock); 999 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 1000 } else 1001 CheckTerm = ThenBlock->getTerminator(); 1002 BranchInst *HeadNewTerm = 1003 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 1004 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1005 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1006 1007 if (DT) { 1008 if (DomTreeNode *OldNode = DT->getNode(Head)) { 1009 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 1010 1011 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 1012 for (DomTreeNode *Child : Children) 1013 DT->changeImmediateDominator(Child, NewNode); 1014 1015 // Head dominates ThenBlock. 1016 if (CreateThenBlock) 1017 DT->addNewBlock(ThenBlock, Head); 1018 else 1019 DT->changeImmediateDominator(ThenBlock, Head); 1020 } 1021 } 1022 1023 if (LI) { 1024 if (Loop *L = LI->getLoopFor(Head)) { 1025 L->addBasicBlockToLoop(ThenBlock, *LI); 1026 L->addBasicBlockToLoop(Tail, *LI); 1027 } 1028 } 1029 1030 return CheckTerm; 1031 } 1032 1033 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 1034 Instruction **ThenTerm, 1035 Instruction **ElseTerm, 1036 MDNode *BranchWeights) { 1037 BasicBlock *Head = SplitBefore->getParent(); 1038 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 1039 Instruction *HeadOldTerm = Head->getTerminator(); 1040 LLVMContext &C = Head->getContext(); 1041 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1042 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 1043 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 1044 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1045 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 1046 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 1047 BranchInst *HeadNewTerm = 1048 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 1049 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 1050 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 1051 } 1052 1053 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 1054 BasicBlock *&IfFalse) { 1055 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 1056 BasicBlock *Pred1 = nullptr; 1057 BasicBlock *Pred2 = nullptr; 1058 1059 if (SomePHI) { 1060 if (SomePHI->getNumIncomingValues() != 2) 1061 return nullptr; 1062 Pred1 = SomePHI->getIncomingBlock(0); 1063 Pred2 = SomePHI->getIncomingBlock(1); 1064 } else { 1065 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 1066 if (PI == PE) // No predecessor 1067 return nullptr; 1068 Pred1 = *PI++; 1069 if (PI == PE) // Only one predecessor 1070 return nullptr; 1071 Pred2 = *PI++; 1072 if (PI != PE) // More than two predecessors 1073 return nullptr; 1074 } 1075 1076 // We can only handle branches. Other control flow will be lowered to 1077 // branches if possible anyway. 1078 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 1079 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 1080 if (!Pred1Br || !Pred2Br) 1081 return nullptr; 1082 1083 // Eliminate code duplication by ensuring that Pred1Br is conditional if 1084 // either are. 1085 if (Pred2Br->isConditional()) { 1086 // If both branches are conditional, we don't have an "if statement". In 1087 // reality, we could transform this case, but since the condition will be 1088 // required anyway, we stand no chance of eliminating it, so the xform is 1089 // probably not profitable. 1090 if (Pred1Br->isConditional()) 1091 return nullptr; 1092 1093 std::swap(Pred1, Pred2); 1094 std::swap(Pred1Br, Pred2Br); 1095 } 1096 1097 if (Pred1Br->isConditional()) { 1098 // The only thing we have to watch out for here is to make sure that Pred2 1099 // doesn't have incoming edges from other blocks. If it does, the condition 1100 // doesn't dominate BB. 1101 if (!Pred2->getSinglePredecessor()) 1102 return nullptr; 1103 1104 // If we found a conditional branch predecessor, make sure that it branches 1105 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 1106 if (Pred1Br->getSuccessor(0) == BB && 1107 Pred1Br->getSuccessor(1) == Pred2) { 1108 IfTrue = Pred1; 1109 IfFalse = Pred2; 1110 } else if (Pred1Br->getSuccessor(0) == Pred2 && 1111 Pred1Br->getSuccessor(1) == BB) { 1112 IfTrue = Pred2; 1113 IfFalse = Pred1; 1114 } else { 1115 // We know that one arm of the conditional goes to BB, so the other must 1116 // go somewhere unrelated, and this must not be an "if statement". 1117 return nullptr; 1118 } 1119 1120 return Pred1Br->getCondition(); 1121 } 1122 1123 // Ok, if we got here, both predecessors end with an unconditional branch to 1124 // BB. Don't panic! If both blocks only have a single (identical) 1125 // predecessor, and THAT is a conditional branch, then we're all ok! 1126 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 1127 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 1128 return nullptr; 1129 1130 // Otherwise, if this is a conditional branch, then we can use it! 1131 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 1132 if (!BI) return nullptr; 1133 1134 assert(BI->isConditional() && "Two successors but not conditional?"); 1135 if (BI->getSuccessor(0) == Pred1) { 1136 IfTrue = Pred1; 1137 IfFalse = Pred2; 1138 } else { 1139 IfTrue = Pred2; 1140 IfFalse = Pred1; 1141 } 1142 return BI->getCondition(); 1143 } 1144 1145 // After creating a control flow hub, the operands of PHINodes in an outgoing 1146 // block Out no longer match the predecessors of that block. Predecessors of Out 1147 // that are incoming blocks to the hub are now replaced by just one edge from 1148 // the hub. To match this new control flow, the corresponding values from each 1149 // PHINode must now be moved a new PHINode in the first guard block of the hub. 1150 // 1151 // This operation cannot be performed with SSAUpdater, because it involves one 1152 // new use: If the block Out is in the list of Incoming blocks, then the newly 1153 // created PHI in the Hub will use itself along that edge from Out to Hub. 1154 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock, 1155 const SetVector<BasicBlock *> &Incoming, 1156 BasicBlock *FirstGuardBlock) { 1157 auto I = Out->begin(); 1158 while (I != Out->end() && isa<PHINode>(I)) { 1159 auto Phi = cast<PHINode>(I); 1160 auto NewPhi = 1161 PHINode::Create(Phi->getType(), Incoming.size(), 1162 Phi->getName() + ".moved", &FirstGuardBlock->back()); 1163 for (auto In : Incoming) { 1164 Value *V = UndefValue::get(Phi->getType()); 1165 if (In == Out) { 1166 V = NewPhi; 1167 } else if (Phi->getBasicBlockIndex(In) != -1) { 1168 V = Phi->removeIncomingValue(In, false); 1169 } 1170 NewPhi->addIncoming(V, In); 1171 } 1172 assert(NewPhi->getNumIncomingValues() == Incoming.size()); 1173 if (Phi->getNumOperands() == 0) { 1174 Phi->replaceAllUsesWith(NewPhi); 1175 I = Phi->eraseFromParent(); 1176 continue; 1177 } 1178 Phi->addIncoming(NewPhi, GuardBlock); 1179 ++I; 1180 } 1181 } 1182 1183 using BBPredicates = DenseMap<BasicBlock *, PHINode *>; 1184 using BBSetVector = SetVector<BasicBlock *>; 1185 1186 // Redirects the terminator of the incoming block to the first guard 1187 // block in the hub. The condition of the original terminator (if it 1188 // was conditional) and its original successors are returned as a 1189 // tuple <condition, succ0, succ1>. The function additionally filters 1190 // out successors that are not in the set of outgoing blocks. 1191 // 1192 // - condition is non-null iff the branch is conditional. 1193 // - Succ1 is non-null iff the sole/taken target is an outgoing block. 1194 // - Succ2 is non-null iff condition is non-null and the fallthrough 1195 // target is an outgoing block. 1196 static std::tuple<Value *, BasicBlock *, BasicBlock *> 1197 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock, 1198 const BBSetVector &Outgoing) { 1199 auto Branch = cast<BranchInst>(BB->getTerminator()); 1200 auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr; 1201 1202 BasicBlock *Succ0 = Branch->getSuccessor(0); 1203 BasicBlock *Succ1 = nullptr; 1204 Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr; 1205 1206 if (Branch->isUnconditional()) { 1207 Branch->setSuccessor(0, FirstGuardBlock); 1208 assert(Succ0); 1209 } else { 1210 Succ1 = Branch->getSuccessor(1); 1211 Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr; 1212 assert(Succ0 || Succ1); 1213 if (Succ0 && !Succ1) { 1214 Branch->setSuccessor(0, FirstGuardBlock); 1215 } else if (Succ1 && !Succ0) { 1216 Branch->setSuccessor(1, FirstGuardBlock); 1217 } else { 1218 Branch->eraseFromParent(); 1219 BranchInst::Create(FirstGuardBlock, BB); 1220 } 1221 } 1222 1223 assert(Succ0 || Succ1); 1224 return std::make_tuple(Condition, Succ0, Succ1); 1225 } 1226 1227 // Capture the existing control flow as guard predicates, and redirect 1228 // control flow from every incoming block to the first guard block in 1229 // the hub. 1230 // 1231 // There is one guard predicate for each outgoing block OutBB. The 1232 // predicate is a PHINode with one input for each InBB which 1233 // represents whether the hub should transfer control flow to OutBB if 1234 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub 1235 // evaluates them in the same order as the Outgoing set-vector, and 1236 // control branches to the first outgoing block whose predicate 1237 // evaluates to true. 1238 static void convertToGuardPredicates( 1239 BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates, 1240 SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming, 1241 const BBSetVector &Outgoing) { 1242 auto &Context = Incoming.front()->getContext(); 1243 auto BoolTrue = ConstantInt::getTrue(Context); 1244 auto BoolFalse = ConstantInt::getFalse(Context); 1245 1246 // The predicate for the last outgoing is trivially true, and so we 1247 // process only the first N-1 successors. 1248 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1249 auto Out = Outgoing[i]; 1250 LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n"); 1251 auto Phi = 1252 PHINode::Create(Type::getInt1Ty(Context), Incoming.size(), 1253 StringRef("Guard.") + Out->getName(), FirstGuardBlock); 1254 GuardPredicates[Out] = Phi; 1255 } 1256 1257 for (auto In : Incoming) { 1258 Value *Condition; 1259 BasicBlock *Succ0; 1260 BasicBlock *Succ1; 1261 std::tie(Condition, Succ0, Succ1) = 1262 redirectToHub(In, FirstGuardBlock, Outgoing); 1263 1264 // Optimization: Consider an incoming block A with both successors 1265 // Succ0 and Succ1 in the set of outgoing blocks. The predicates 1266 // for Succ0 and Succ1 complement each other. If Succ0 is visited 1267 // first in the loop below, control will branch to Succ0 using the 1268 // corresponding predicate. But if that branch is not taken, then 1269 // control must reach Succ1, which means that the predicate for 1270 // Succ1 is always true. 1271 bool OneSuccessorDone = false; 1272 for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) { 1273 auto Out = Outgoing[i]; 1274 auto Phi = GuardPredicates[Out]; 1275 if (Out != Succ0 && Out != Succ1) { 1276 Phi->addIncoming(BoolFalse, In); 1277 continue; 1278 } 1279 // Optimization: When only one successor is an outgoing block, 1280 // the predicate is always true. 1281 if (!Succ0 || !Succ1 || OneSuccessorDone) { 1282 Phi->addIncoming(BoolTrue, In); 1283 continue; 1284 } 1285 assert(Succ0 && Succ1); 1286 OneSuccessorDone = true; 1287 if (Out == Succ0) { 1288 Phi->addIncoming(Condition, In); 1289 continue; 1290 } 1291 auto Inverted = invertCondition(Condition); 1292 DeletionCandidates.push_back(Condition); 1293 Phi->addIncoming(Inverted, In); 1294 } 1295 } 1296 } 1297 1298 // For each outgoing block OutBB, create a guard block in the Hub. The 1299 // first guard block was already created outside, and available as the 1300 // first element in the vector of guard blocks. 1301 // 1302 // Each guard block terminates in a conditional branch that transfers 1303 // control to the corresponding outgoing block or the next guard 1304 // block. The last guard block has two outgoing blocks as successors 1305 // since the condition for the final outgoing block is trivially 1306 // true. So we create one less block (including the first guard block) 1307 // than the number of outgoing blocks. 1308 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks, 1309 Function *F, const BBSetVector &Outgoing, 1310 BBPredicates &GuardPredicates, StringRef Prefix) { 1311 for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) { 1312 GuardBlocks.push_back( 1313 BasicBlock::Create(F->getContext(), Prefix + ".guard", F)); 1314 } 1315 assert(GuardBlocks.size() == GuardPredicates.size()); 1316 1317 // To help keep the loop simple, temporarily append the last 1318 // outgoing block to the list of guard blocks. 1319 GuardBlocks.push_back(Outgoing.back()); 1320 1321 for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) { 1322 auto Out = Outgoing[i]; 1323 assert(GuardPredicates.count(Out)); 1324 BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out], 1325 GuardBlocks[i]); 1326 } 1327 1328 // Remove the last block from the guard list. 1329 GuardBlocks.pop_back(); 1330 } 1331 1332 BasicBlock *llvm::CreateControlFlowHub( 1333 DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks, 1334 const BBSetVector &Incoming, const BBSetVector &Outgoing, 1335 const StringRef Prefix) { 1336 auto F = Incoming.front()->getParent(); 1337 auto FirstGuardBlock = 1338 BasicBlock::Create(F->getContext(), Prefix + ".guard", F); 1339 1340 SmallVector<DominatorTree::UpdateType, 16> Updates; 1341 if (DTU) { 1342 for (auto In : Incoming) { 1343 for (auto Succ : successors(In)) { 1344 if (Outgoing.count(Succ)) 1345 Updates.push_back({DominatorTree::Delete, In, Succ}); 1346 } 1347 Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock}); 1348 } 1349 } 1350 1351 BBPredicates GuardPredicates; 1352 SmallVector<WeakVH, 8> DeletionCandidates; 1353 convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates, 1354 Incoming, Outgoing); 1355 1356 GuardBlocks.push_back(FirstGuardBlock); 1357 createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix); 1358 1359 // Update the PHINodes in each outgoing block to match the new control flow. 1360 for (int i = 0, e = GuardBlocks.size(); i != e; ++i) { 1361 reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock); 1362 } 1363 reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock); 1364 1365 if (DTU) { 1366 int NumGuards = GuardBlocks.size(); 1367 assert((int)Outgoing.size() == NumGuards + 1); 1368 for (int i = 0; i != NumGuards - 1; ++i) { 1369 Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]}); 1370 Updates.push_back( 1371 {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]}); 1372 } 1373 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1374 Outgoing[NumGuards - 1]}); 1375 Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1], 1376 Outgoing[NumGuards]}); 1377 DTU->applyUpdates(Updates); 1378 } 1379 1380 for (auto I : DeletionCandidates) { 1381 if (I->use_empty()) 1382 if (auto Inst = dyn_cast_or_null<Instruction>(I)) 1383 Inst->eraseFromParent(); 1384 } 1385 1386 return FirstGuardBlock; 1387 } 1388