1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/PseudoProbe.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <string>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "basicblock-utils"
54 
55 void llvm::DetatchDeadBlocks(
56     ArrayRef<BasicBlock *> BBs,
57     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
58     bool KeepOneInputPHIs) {
59   for (auto *BB : BBs) {
60     // Loop through all of our successors and make sure they know that one
61     // of their predecessors is going away.
62     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
63     for (BasicBlock *Succ : successors(BB)) {
64       Succ->removePredecessor(BB, KeepOneInputPHIs);
65       if (Updates && UniqueSuccessors.insert(Succ).second)
66         Updates->push_back({DominatorTree::Delete, BB, Succ});
67     }
68 
69     // Zap all the instructions in the block.
70     while (!BB->empty()) {
71       Instruction &I = BB->back();
72       // If this instruction is used, replace uses with an arbitrary value.
73       // Because control flow can't get here, we don't care what we replace the
74       // value with.  Note that since this block is unreachable, and all values
75       // contained within it must dominate their uses, that all uses will
76       // eventually be removed (they are themselves dead).
77       if (!I.use_empty())
78         I.replaceAllUsesWith(UndefValue::get(I.getType()));
79       BB->getInstList().pop_back();
80     }
81     new UnreachableInst(BB->getContext(), BB);
82     assert(BB->getInstList().size() == 1 &&
83            isa<UnreachableInst>(BB->getTerminator()) &&
84            "The successor list of BB isn't empty before "
85            "applying corresponding DTU updates.");
86   }
87 }
88 
89 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
90                            bool KeepOneInputPHIs) {
91   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
92 }
93 
94 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
95                             bool KeepOneInputPHIs) {
96 #ifndef NDEBUG
97   // Make sure that all predecessors of each dead block is also dead.
98   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
99   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
100   for (auto *BB : Dead)
101     for (BasicBlock *Pred : predecessors(BB))
102       assert(Dead.count(Pred) && "All predecessors must be dead!");
103 #endif
104 
105   SmallVector<DominatorTree::UpdateType, 4> Updates;
106   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
107 
108   if (DTU)
109     DTU->applyUpdates(Updates);
110 
111   for (BasicBlock *BB : BBs)
112     if (DTU)
113       DTU->deleteBB(BB);
114     else
115       BB->eraseFromParent();
116 }
117 
118 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
119                                       bool KeepOneInputPHIs) {
120   df_iterator_default_set<BasicBlock*> Reachable;
121 
122   // Mark all reachable blocks.
123   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
124     (void)BB/* Mark all reachable blocks */;
125 
126   // Collect all dead blocks.
127   std::vector<BasicBlock*> DeadBlocks;
128   for (BasicBlock &BB : F)
129     if (!Reachable.count(&BB))
130       DeadBlocks.push_back(&BB);
131 
132   // Delete the dead blocks.
133   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
134 
135   return !DeadBlocks.empty();
136 }
137 
138 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
139                                    MemoryDependenceResults *MemDep) {
140   if (!isa<PHINode>(BB->begin()))
141     return false;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154   return true;
155 }
156 
157 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
158                           MemorySSAUpdater *MSSAU) {
159   // Recursively deleting a PHI may cause multiple PHIs to be deleted
160   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
161   SmallVector<WeakTrackingVH, 8> PHIs;
162   for (PHINode &PN : BB->phis())
163     PHIs.push_back(&PN);
164 
165   bool Changed = false;
166   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
167     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
168       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
169 
170   return Changed;
171 }
172 
173 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
174                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
175                                      MemoryDependenceResults *MemDep,
176                                      bool PredecessorWithTwoSuccessors) {
177   if (BB->hasAddressTaken())
178     return false;
179 
180   // Can't merge if there are multiple predecessors, or no predecessors.
181   BasicBlock *PredBB = BB->getUniquePredecessor();
182   if (!PredBB) return false;
183 
184   // Don't break self-loops.
185   if (PredBB == BB) return false;
186   // Don't break unwinding instructions.
187   if (PredBB->getTerminator()->isExceptionalTerminator())
188     return false;
189 
190   // Can't merge if there are multiple distinct successors.
191   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
192     return false;
193 
194   // Currently only allow PredBB to have two predecessors, one being BB.
195   // Update BI to branch to BB's only successor instead of BB.
196   BranchInst *PredBB_BI;
197   BasicBlock *NewSucc = nullptr;
198   unsigned FallThruPath;
199   if (PredecessorWithTwoSuccessors) {
200     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
201       return false;
202     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
203     if (!BB_JmpI || !BB_JmpI->isUnconditional())
204       return false;
205     NewSucc = BB_JmpI->getSuccessor(0);
206     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
207   }
208 
209   // Can't merge if there is PHI loop.
210   for (PHINode &PN : BB->phis())
211     if (llvm::is_contained(PN.incoming_values(), &PN))
212       return false;
213 
214   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215                     << PredBB->getName() << "\n");
216 
217   // Begin by getting rid of unneeded PHIs.
218   SmallVector<AssertingVH<Value>, 4> IncomingValues;
219   if (isa<PHINode>(BB->front())) {
220     for (PHINode &PN : BB->phis())
221       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223         IncomingValues.push_back(PN.getIncomingValue(0));
224     FoldSingleEntryPHINodes(BB, MemDep);
225   }
226 
227   // DTU update: Collect all the edges that exit BB.
228   // These dominator edges will be redirected from Pred.
229   std::vector<DominatorTree::UpdateType> Updates;
230   if (DTU) {
231     SmallPtrSet<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB), succ_end(BB));
232     Updates.reserve(1 + (2 * UniqueSuccessors.size()));
233     // Add insert edges first. Experimentally, for the particular case of two
234     // blocks that can be merged, with a single successor and single predecessor
235     // respectively, it is beneficial to have all insert updates first. Deleting
236     // edges first may lead to unreachable blocks, followed by inserting edges
237     // making the blocks reachable again. Such DT updates lead to high compile
238     // times. We add inserts before deletes here to reduce compile time.
239     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
240       // This successor of BB may already have PredBB as a predecessor.
241       if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
242         Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
243     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
244       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
245     Updates.push_back({DominatorTree::Delete, PredBB, BB});
246   }
247 
248   Instruction *PTI = PredBB->getTerminator();
249   Instruction *STI = BB->getTerminator();
250   Instruction *Start = &*BB->begin();
251   // If there's nothing to move, mark the starting instruction as the last
252   // instruction in the block. Terminator instruction is handled separately.
253   if (Start == STI)
254     Start = PTI;
255 
256   // Move all definitions in the successor to the predecessor...
257   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
258                                BB->begin(), STI->getIterator());
259 
260   if (MSSAU)
261     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
262 
263   // Make all PHI nodes that referred to BB now refer to Pred as their
264   // source...
265   BB->replaceAllUsesWith(PredBB);
266 
267   if (PredecessorWithTwoSuccessors) {
268     // Delete the unconditional branch from BB.
269     BB->getInstList().pop_back();
270 
271     // Update branch in the predecessor.
272     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
273   } else {
274     // Delete the unconditional branch from the predecessor.
275     PredBB->getInstList().pop_back();
276 
277     // Move terminator instruction.
278     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
279 
280     // Terminator may be a memory accessing instruction too.
281     if (MSSAU)
282       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
283               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
284         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
285   }
286   // Add unreachable to now empty BB.
287   new UnreachableInst(BB->getContext(), BB);
288 
289   // Inherit predecessors name if it exists.
290   if (!PredBB->hasName())
291     PredBB->takeName(BB);
292 
293   if (LI)
294     LI->removeBlock(BB);
295 
296   if (MemDep)
297     MemDep->invalidateCachedPredecessors();
298 
299   // Finally, erase the old block and update dominator info.
300   if (DTU) {
301     assert(BB->getInstList().size() == 1 &&
302            isa<UnreachableInst>(BB->getTerminator()) &&
303            "The successor list of BB isn't empty before "
304            "applying corresponding DTU updates.");
305     DTU->applyUpdates(Updates);
306     DTU->deleteBB(BB);
307   } else {
308     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
309   }
310 
311   return true;
312 }
313 
314 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
315     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
316     LoopInfo *LI) {
317   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
318 
319   bool BlocksHaveBeenMerged = false;
320   while (!MergeBlocks.empty()) {
321     BasicBlock *BB = *MergeBlocks.begin();
322     BasicBlock *Dest = BB->getSingleSuccessor();
323     if (Dest && (!L || L->contains(Dest))) {
324       BasicBlock *Fold = Dest->getUniquePredecessor();
325       (void)Fold;
326       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
327         assert(Fold == BB &&
328                "Expecting BB to be unique predecessor of the Dest block");
329         MergeBlocks.erase(Dest);
330         BlocksHaveBeenMerged = true;
331       } else
332         MergeBlocks.erase(BB);
333     } else
334       MergeBlocks.erase(BB);
335   }
336   return BlocksHaveBeenMerged;
337 }
338 
339 /// Remove redundant instructions within sequences of consecutive dbg.value
340 /// instructions. This is done using a backward scan to keep the last dbg.value
341 /// describing a specific variable/fragment.
342 ///
343 /// BackwardScan strategy:
344 /// ----------------------
345 /// Given a sequence of consecutive DbgValueInst like this
346 ///
347 ///   dbg.value ..., "x", FragmentX1  (*)
348 ///   dbg.value ..., "y", FragmentY1
349 ///   dbg.value ..., "x", FragmentX2
350 ///   dbg.value ..., "x", FragmentX1  (**)
351 ///
352 /// then the instruction marked with (*) can be removed (it is guaranteed to be
353 /// obsoleted by the instruction marked with (**) as the latter instruction is
354 /// describing the same variable using the same fragment info).
355 ///
356 /// Possible improvements:
357 /// - Check fully overlapping fragments and not only identical fragments.
358 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
359 ///   instructions being part of the sequence of consecutive instructions.
360 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
361   SmallVector<DbgValueInst *, 8> ToBeRemoved;
362   SmallDenseSet<DebugVariable> VariableSet;
363   for (auto &I : reverse(*BB)) {
364     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
365       DebugVariable Key(DVI->getVariable(),
366                         DVI->getExpression(),
367                         DVI->getDebugLoc()->getInlinedAt());
368       auto R = VariableSet.insert(Key);
369       // If the same variable fragment is described more than once it is enough
370       // to keep the last one (i.e. the first found since we for reverse
371       // iteration).
372       if (!R.second)
373         ToBeRemoved.push_back(DVI);
374       continue;
375     }
376     // Sequence with consecutive dbg.value instrs ended. Clear the map to
377     // restart identifying redundant instructions if case we find another
378     // dbg.value sequence.
379     VariableSet.clear();
380   }
381 
382   for (auto &Instr : ToBeRemoved)
383     Instr->eraseFromParent();
384 
385   return !ToBeRemoved.empty();
386 }
387 
388 /// Remove redundant dbg.value instructions using a forward scan. This can
389 /// remove a dbg.value instruction that is redundant due to indicating that a
390 /// variable has the same value as already being indicated by an earlier
391 /// dbg.value.
392 ///
393 /// ForwardScan strategy:
394 /// ---------------------
395 /// Given two identical dbg.value instructions, separated by a block of
396 /// instructions that isn't describing the same variable, like this
397 ///
398 ///   dbg.value X1, "x", FragmentX1  (**)
399 ///   <block of instructions, none being "dbg.value ..., "x", ...">
400 ///   dbg.value X1, "x", FragmentX1  (*)
401 ///
402 /// then the instruction marked with (*) can be removed. Variable "x" is already
403 /// described as being mapped to the SSA value X1.
404 ///
405 /// Possible improvements:
406 /// - Keep track of non-overlapping fragments.
407 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
408   SmallVector<DbgValueInst *, 8> ToBeRemoved;
409   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
410       VariableMap;
411   for (auto &I : *BB) {
412     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
413       DebugVariable Key(DVI->getVariable(),
414                         NoneType(),
415                         DVI->getDebugLoc()->getInlinedAt());
416       auto VMI = VariableMap.find(Key);
417       // Update the map if we found a new value/expression describing the
418       // variable, or if the variable wasn't mapped already.
419       SmallVector<Value *, 4> Values(DVI->getValues());
420       if (VMI == VariableMap.end() || VMI->second.first != Values ||
421           VMI->second.second != DVI->getExpression()) {
422         VariableMap[Key] = {Values, DVI->getExpression()};
423         continue;
424       }
425       // Found an identical mapping. Remember the instruction for later removal.
426       ToBeRemoved.push_back(DVI);
427     }
428   }
429 
430   for (auto &Instr : ToBeRemoved)
431     Instr->eraseFromParent();
432 
433   return !ToBeRemoved.empty();
434 }
435 
436 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB, bool RemovePseudoOp) {
437   bool MadeChanges = false;
438   // By using the "backward scan" strategy before the "forward scan" strategy we
439   // can remove both dbg.value (2) and (3) in a situation like this:
440   //
441   //   (1) dbg.value V1, "x", DIExpression()
442   //       ...
443   //   (2) dbg.value V2, "x", DIExpression()
444   //   (3) dbg.value V1, "x", DIExpression()
445   //
446   // The backward scan will remove (2), it is made obsolete by (3). After
447   // getting (2) out of the way, the foward scan will remove (3) since "x"
448   // already is described as having the value V1 at (1).
449   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
450   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
451   if (RemovePseudoOp)
452     MadeChanges |= removeRedundantPseudoProbes(BB);
453 
454   if (MadeChanges)
455     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
456                       << BB->getName() << "\n");
457   return MadeChanges;
458 }
459 
460 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
461                                 BasicBlock::iterator &BI, Value *V) {
462   Instruction &I = *BI;
463   // Replaces all of the uses of the instruction with uses of the value
464   I.replaceAllUsesWith(V);
465 
466   // Make sure to propagate a name if there is one already.
467   if (I.hasName() && !V->hasName())
468     V->takeName(&I);
469 
470   // Delete the unnecessary instruction now...
471   BI = BIL.erase(BI);
472 }
473 
474 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
475                                BasicBlock::iterator &BI, Instruction *I) {
476   assert(I->getParent() == nullptr &&
477          "ReplaceInstWithInst: Instruction already inserted into basic block!");
478 
479   // Copy debug location to newly added instruction, if it wasn't already set
480   // by the caller.
481   if (!I->getDebugLoc())
482     I->setDebugLoc(BI->getDebugLoc());
483 
484   // Insert the new instruction into the basic block...
485   BasicBlock::iterator New = BIL.insert(BI, I);
486 
487   // Replace all uses of the old instruction, and delete it.
488   ReplaceInstWithValue(BIL, BI, I);
489 
490   // Move BI back to point to the newly inserted instruction
491   BI = New;
492 }
493 
494 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
495   BasicBlock::iterator BI(From);
496   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
497 }
498 
499 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
500                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
501                             const Twine &BBName) {
502   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
503 
504   Instruction *LatchTerm = BB->getTerminator();
505 
506   CriticalEdgeSplittingOptions Options =
507       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
508 
509   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
510     // If it is a critical edge, and the succesor is an exception block, handle
511     // the split edge logic in this specific function
512     if (Succ->isEHPad())
513       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
514 
515     // If this is a critical edge, let SplitKnownCriticalEdge do it.
516     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
517   }
518 
519   // If the edge isn't critical, then BB has a single successor or Succ has a
520   // single pred.  Split the block.
521   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
522     // If the successor only has a single pred, split the top of the successor
523     // block.
524     assert(SP == BB && "CFG broken");
525     SP = nullptr;
526     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
527                       /*Before=*/true);
528   }
529 
530   // Otherwise, if BB has a single successor, split it at the bottom of the
531   // block.
532   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
533          "Should have a single succ!");
534   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
535 }
536 
537 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
538   if (auto *II = dyn_cast<InvokeInst>(TI))
539     II->setUnwindDest(Succ);
540   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
541     CS->setUnwindDest(Succ);
542   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
543     CR->setUnwindDest(Succ);
544   else
545     llvm_unreachable("unexpected terminator instruction");
546 }
547 
548 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
549                           BasicBlock *NewPred, PHINode *Until) {
550   int BBIdx = 0;
551   for (PHINode &PN : DestBB->phis()) {
552     // We manually update the LandingPadReplacement PHINode and it is the last
553     // PHI Node. So, if we find it, we are done.
554     if (Until == &PN)
555       break;
556 
557     // Reuse the previous value of BBIdx if it lines up.  In cases where we
558     // have multiple phi nodes with *lots* of predecessors, this is a speed
559     // win because we don't have to scan the PHI looking for TIBB.  This
560     // happens because the BB list of PHI nodes are usually in the same
561     // order.
562     if (PN.getIncomingBlock(BBIdx) != OldPred)
563       BBIdx = PN.getBasicBlockIndex(OldPred);
564 
565     assert(BBIdx != -1 && "Invalid PHI Index!");
566     PN.setIncomingBlock(BBIdx, NewPred);
567   }
568 }
569 
570 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
571                                    LandingPadInst *OriginalPad,
572                                    PHINode *LandingPadReplacement,
573                                    const CriticalEdgeSplittingOptions &Options,
574                                    const Twine &BBName) {
575 
576   auto *PadInst = Succ->getFirstNonPHI();
577   if (!LandingPadReplacement && !PadInst->isEHPad())
578     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
579 
580   auto *LI = Options.LI;
581   SmallVector<BasicBlock *, 4> LoopPreds;
582   // Check if extra modifications will be required to preserve loop-simplify
583   // form after splitting. If it would require splitting blocks with IndirectBr
584   // terminators, bail out if preserving loop-simplify form is requested.
585   if (Options.PreserveLoopSimplify && LI) {
586     if (Loop *BBLoop = LI->getLoopFor(BB)) {
587 
588       // The only way that we can break LoopSimplify form by splitting a
589       // critical edge is when there exists some edge from BBLoop to Succ *and*
590       // the only edge into Succ from outside of BBLoop is that of NewBB after
591       // the split. If the first isn't true, then LoopSimplify still holds,
592       // NewBB is the new exit block and it has no non-loop predecessors. If the
593       // second isn't true, then Succ was not in LoopSimplify form prior to
594       // the split as it had a non-loop predecessor. In both of these cases,
595       // the predecessor must be directly in BBLoop, not in a subloop, or again
596       // LoopSimplify doesn't hold.
597       for (BasicBlock *P : predecessors(Succ)) {
598         if (P == BB)
599           continue; // The new block is known.
600         if (LI->getLoopFor(P) != BBLoop) {
601           // Loop is not in LoopSimplify form, no need to re simplify after
602           // splitting edge.
603           LoopPreds.clear();
604           break;
605         }
606         LoopPreds.push_back(P);
607       }
608       // Loop-simplify form can be preserved, if we can split all in-loop
609       // predecessors.
610       if (any_of(LoopPreds, [](BasicBlock *Pred) {
611             return isa<IndirectBrInst>(Pred->getTerminator());
612           })) {
613         return nullptr;
614       }
615     }
616   }
617 
618   auto *NewBB =
619       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
620   setUnwindEdgeTo(BB->getTerminator(), NewBB);
621   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
622 
623   if (LandingPadReplacement) {
624     auto *NewLP = OriginalPad->clone();
625     auto *Terminator = BranchInst::Create(Succ, NewBB);
626     NewLP->insertBefore(Terminator);
627     LandingPadReplacement->addIncoming(NewLP, NewBB);
628   } else {
629     Value *ParentPad = nullptr;
630     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
631       ParentPad = FuncletPad->getParentPad();
632     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
633       ParentPad = CatchSwitch->getParentPad();
634     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
635       ParentPad = CleanupPad->getParentPad();
636     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
637       ParentPad = LandingPad->getParent();
638     else
639       llvm_unreachable("handling for other EHPads not implemented yet");
640 
641     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
642     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
643   }
644 
645   auto *DT = Options.DT;
646   auto *MSSAU = Options.MSSAU;
647   if (!DT && !LI)
648     return NewBB;
649 
650   if (DT) {
651     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
652     SmallVector<DominatorTree::UpdateType, 3> Updates;
653 
654     Updates.push_back({DominatorTree::Insert, BB, NewBB});
655     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
656     Updates.push_back({DominatorTree::Delete, BB, Succ});
657 
658     DTU.applyUpdates(Updates);
659     DTU.flush();
660 
661     if (MSSAU) {
662       MSSAU->applyUpdates(Updates, *DT);
663       if (VerifyMemorySSA)
664         MSSAU->getMemorySSA()->verifyMemorySSA();
665     }
666   }
667 
668   if (LI) {
669     if (Loop *BBLoop = LI->getLoopFor(BB)) {
670       // If one or the other blocks were not in a loop, the new block is not
671       // either, and thus LI doesn't need to be updated.
672       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
673         if (BBLoop == SuccLoop) {
674           // Both in the same loop, the NewBB joins loop.
675           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
676         } else if (BBLoop->contains(SuccLoop)) {
677           // Edge from an outer loop to an inner loop.  Add to the outer loop.
678           BBLoop->addBasicBlockToLoop(NewBB, *LI);
679         } else if (SuccLoop->contains(BBLoop)) {
680           // Edge from an inner loop to an outer loop.  Add to the outer loop.
681           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
682         } else {
683           // Edge from two loops with no containment relation.  Because these
684           // are natural loops, we know that the destination block must be the
685           // header of its loop (adding a branch into a loop elsewhere would
686           // create an irreducible loop).
687           assert(SuccLoop->getHeader() == Succ &&
688                  "Should not create irreducible loops!");
689           if (Loop *P = SuccLoop->getParentLoop())
690             P->addBasicBlockToLoop(NewBB, *LI);
691         }
692       }
693 
694       // If BB is in a loop and Succ is outside of that loop, we may need to
695       // update LoopSimplify form and LCSSA form.
696       if (!BBLoop->contains(Succ)) {
697         assert(!BBLoop->contains(NewBB) &&
698                "Split point for loop exit is contained in loop!");
699 
700         // Update LCSSA form in the newly created exit block.
701         if (Options.PreserveLCSSA) {
702           createPHIsForSplitLoopExit(BB, NewBB, Succ);
703         }
704 
705         if (!LoopPreds.empty()) {
706           BasicBlock *NewExitBB = SplitBlockPredecessors(
707               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
708           if (Options.PreserveLCSSA)
709             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
710         }
711       }
712     }
713   }
714 
715   return NewBB;
716 }
717 
718 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
719                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
720   // SplitBB shouldn't have anything non-trivial in it yet.
721   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
722           SplitBB->isLandingPad()) &&
723          "SplitBB has non-PHI nodes!");
724 
725   // For each PHI in the destination block.
726   for (PHINode &PN : DestBB->phis()) {
727     int Idx = PN.getBasicBlockIndex(SplitBB);
728     assert(Idx >= 0 && "Invalid Block Index");
729     Value *V = PN.getIncomingValue(Idx);
730 
731     // If the input is a PHI which already satisfies LCSSA, don't create
732     // a new one.
733     if (const PHINode *VP = dyn_cast<PHINode>(V))
734       if (VP->getParent() == SplitBB)
735         continue;
736 
737     // Otherwise a new PHI is needed. Create one and populate it.
738     PHINode *NewPN = PHINode::Create(
739         PN.getType(), Preds.size(), "split",
740         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
741     for (BasicBlock *BB : Preds)
742       NewPN->addIncoming(V, BB);
743 
744     // Update the original PHI.
745     PN.setIncomingValue(Idx, NewPN);
746   }
747 }
748 
749 unsigned
750 llvm::SplitAllCriticalEdges(Function &F,
751                             const CriticalEdgeSplittingOptions &Options) {
752   unsigned NumBroken = 0;
753   for (BasicBlock &BB : F) {
754     Instruction *TI = BB.getTerminator();
755     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
756         !isa<CallBrInst>(TI))
757       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
758         if (SplitCriticalEdge(TI, i, Options))
759           ++NumBroken;
760   }
761   return NumBroken;
762 }
763 
764 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
765                                   DomTreeUpdater *DTU, DominatorTree *DT,
766                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
767                                   const Twine &BBName, bool Before) {
768   if (Before) {
769     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
770     return splitBlockBefore(Old, SplitPt,
771                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
772                             BBName);
773   }
774   BasicBlock::iterator SplitIt = SplitPt->getIterator();
775   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
776     ++SplitIt;
777   std::string Name = BBName.str();
778   BasicBlock *New = Old->splitBasicBlock(
779       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
780 
781   // The new block lives in whichever loop the old one did. This preserves
782   // LCSSA as well, because we force the split point to be after any PHI nodes.
783   if (LI)
784     if (Loop *L = LI->getLoopFor(Old))
785       L->addBasicBlockToLoop(New, *LI);
786 
787   if (DTU) {
788     SmallVector<DominatorTree::UpdateType, 8> Updates;
789     // Old dominates New. New node dominates all other nodes dominated by Old.
790     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
791                                                        succ_end(New));
792     Updates.push_back({DominatorTree::Insert, Old, New});
793     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
794     for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
795       Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
796       Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
797     }
798 
799     DTU->applyUpdates(Updates);
800   } else if (DT)
801     // Old dominates New. New node dominates all other nodes dominated by Old.
802     if (DomTreeNode *OldNode = DT->getNode(Old)) {
803       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
804 
805       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
806       for (DomTreeNode *I : Children)
807         DT->changeImmediateDominator(I, NewNode);
808     }
809 
810   // Move MemoryAccesses still tracked in Old, but part of New now.
811   // Update accesses in successor blocks accordingly.
812   if (MSSAU)
813     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
814 
815   return New;
816 }
817 
818 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
819                              DominatorTree *DT, LoopInfo *LI,
820                              MemorySSAUpdater *MSSAU, const Twine &BBName,
821                              bool Before) {
822   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
823                         Before);
824 }
825 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
826                              DomTreeUpdater *DTU, LoopInfo *LI,
827                              MemorySSAUpdater *MSSAU, const Twine &BBName,
828                              bool Before) {
829   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
830                         Before);
831 }
832 
833 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
834                                    DomTreeUpdater *DTU, LoopInfo *LI,
835                                    MemorySSAUpdater *MSSAU,
836                                    const Twine &BBName) {
837 
838   BasicBlock::iterator SplitIt = SplitPt->getIterator();
839   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
840     ++SplitIt;
841   std::string Name = BBName.str();
842   BasicBlock *New = Old->splitBasicBlock(
843       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
844       /* Before=*/true);
845 
846   // The new block lives in whichever loop the old one did. This preserves
847   // LCSSA as well, because we force the split point to be after any PHI nodes.
848   if (LI)
849     if (Loop *L = LI->getLoopFor(Old))
850       L->addBasicBlockToLoop(New, *LI);
851 
852   if (DTU) {
853     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
854     // New dominates Old. The predecessor nodes of the Old node dominate
855     // New node.
856     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
857                                                          pred_end(New));
858     DTUpdates.push_back({DominatorTree::Insert, New, Old});
859     DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
860     for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
861       DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
862       DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
863     }
864 
865     DTU->applyUpdates(DTUpdates);
866 
867     // Move MemoryAccesses still tracked in Old, but part of New now.
868     // Update accesses in successor blocks accordingly.
869     if (MSSAU) {
870       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
871       if (VerifyMemorySSA)
872         MSSAU->getMemorySSA()->verifyMemorySSA();
873     }
874   }
875   return New;
876 }
877 
878 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
879 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
880                                       ArrayRef<BasicBlock *> Preds,
881                                       DomTreeUpdater *DTU, DominatorTree *DT,
882                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
883                                       bool PreserveLCSSA, bool &HasLoopExit) {
884   // Update dominator tree if available.
885   if (DTU) {
886     // Recalculation of DomTree is needed when updating a forward DomTree and
887     // the Entry BB is replaced.
888     if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
889       // The entry block was removed and there is no external interface for
890       // the dominator tree to be notified of this change. In this corner-case
891       // we recalculate the entire tree.
892       DTU->recalculate(*NewBB->getParent());
893     } else {
894       // Split block expects NewBB to have a non-empty set of predecessors.
895       SmallVector<DominatorTree::UpdateType, 8> Updates;
896       SmallPtrSet<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
897       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
898       Updates.reserve(Updates.size() + 2 * UniquePreds.size());
899       for (auto *UniquePred : UniquePreds) {
900         Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
901         Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
902       }
903       DTU->applyUpdates(Updates);
904     }
905   } else if (DT) {
906     if (OldBB == DT->getRootNode()->getBlock()) {
907       assert(NewBB == &NewBB->getParent()->getEntryBlock());
908       DT->setNewRoot(NewBB);
909     } else {
910       // Split block expects NewBB to have a non-empty set of predecessors.
911       DT->splitBlock(NewBB);
912     }
913   }
914 
915   // Update MemoryPhis after split if MemorySSA is available
916   if (MSSAU)
917     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
918 
919   // The rest of the logic is only relevant for updating the loop structures.
920   if (!LI)
921     return;
922 
923   if (DTU && DTU->hasDomTree())
924     DT = &DTU->getDomTree();
925   assert(DT && "DT should be available to update LoopInfo!");
926   Loop *L = LI->getLoopFor(OldBB);
927 
928   // If we need to preserve loop analyses, collect some information about how
929   // this split will affect loops.
930   bool IsLoopEntry = !!L;
931   bool SplitMakesNewLoopHeader = false;
932   for (BasicBlock *Pred : Preds) {
933     // Preds that are not reachable from entry should not be used to identify if
934     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
935     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
936     // as true and make the NewBB the header of some loop. This breaks LI.
937     if (!DT->isReachableFromEntry(Pred))
938       continue;
939     // If we need to preserve LCSSA, determine if any of the preds is a loop
940     // exit.
941     if (PreserveLCSSA)
942       if (Loop *PL = LI->getLoopFor(Pred))
943         if (!PL->contains(OldBB))
944           HasLoopExit = true;
945 
946     // If we need to preserve LoopInfo, note whether any of the preds crosses
947     // an interesting loop boundary.
948     if (!L)
949       continue;
950     if (L->contains(Pred))
951       IsLoopEntry = false;
952     else
953       SplitMakesNewLoopHeader = true;
954   }
955 
956   // Unless we have a loop for OldBB, nothing else to do here.
957   if (!L)
958     return;
959 
960   if (IsLoopEntry) {
961     // Add the new block to the nearest enclosing loop (and not an adjacent
962     // loop). To find this, examine each of the predecessors and determine which
963     // loops enclose them, and select the most-nested loop which contains the
964     // loop containing the block being split.
965     Loop *InnermostPredLoop = nullptr;
966     for (BasicBlock *Pred : Preds) {
967       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
968         // Seek a loop which actually contains the block being split (to avoid
969         // adjacent loops).
970         while (PredLoop && !PredLoop->contains(OldBB))
971           PredLoop = PredLoop->getParentLoop();
972 
973         // Select the most-nested of these loops which contains the block.
974         if (PredLoop && PredLoop->contains(OldBB) &&
975             (!InnermostPredLoop ||
976              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
977           InnermostPredLoop = PredLoop;
978       }
979     }
980 
981     if (InnermostPredLoop)
982       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
983   } else {
984     L->addBasicBlockToLoop(NewBB, *LI);
985     if (SplitMakesNewLoopHeader)
986       L->moveToHeader(NewBB);
987   }
988 }
989 
990 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
991 /// This also updates AliasAnalysis, if available.
992 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
993                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
994                            bool HasLoopExit) {
995   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
996   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
997   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
998     PHINode *PN = cast<PHINode>(I++);
999 
1000     // Check to see if all of the values coming in are the same.  If so, we
1001     // don't need to create a new PHI node, unless it's needed for LCSSA.
1002     Value *InVal = nullptr;
1003     if (!HasLoopExit) {
1004       InVal = PN->getIncomingValueForBlock(Preds[0]);
1005       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1006         if (!PredSet.count(PN->getIncomingBlock(i)))
1007           continue;
1008         if (!InVal)
1009           InVal = PN->getIncomingValue(i);
1010         else if (InVal != PN->getIncomingValue(i)) {
1011           InVal = nullptr;
1012           break;
1013         }
1014       }
1015     }
1016 
1017     if (InVal) {
1018       // If all incoming values for the new PHI would be the same, just don't
1019       // make a new PHI.  Instead, just remove the incoming values from the old
1020       // PHI.
1021 
1022       // NOTE! This loop walks backwards for a reason! First off, this minimizes
1023       // the cost of removal if we end up removing a large number of values, and
1024       // second off, this ensures that the indices for the incoming values
1025       // aren't invalidated when we remove one.
1026       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1027         if (PredSet.count(PN->getIncomingBlock(i)))
1028           PN->removeIncomingValue(i, false);
1029 
1030       // Add an incoming value to the PHI node in the loop for the preheader
1031       // edge.
1032       PN->addIncoming(InVal, NewBB);
1033       continue;
1034     }
1035 
1036     // If the values coming into the block are not the same, we need a new
1037     // PHI.
1038     // Create the new PHI node, insert it into NewBB at the end of the block
1039     PHINode *NewPHI =
1040         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1041 
1042     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1043     // the cost of removal if we end up removing a large number of values, and
1044     // second off, this ensures that the indices for the incoming values aren't
1045     // invalidated when we remove one.
1046     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1047       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1048       if (PredSet.count(IncomingBB)) {
1049         Value *V = PN->removeIncomingValue(i, false);
1050         NewPHI->addIncoming(V, IncomingBB);
1051       }
1052     }
1053 
1054     PN->addIncoming(NewPHI, NewBB);
1055   }
1056 }
1057 
1058 static void SplitLandingPadPredecessorsImpl(
1059     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1060     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1061     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1062     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1063 
1064 static BasicBlock *
1065 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1066                            const char *Suffix, DomTreeUpdater *DTU,
1067                            DominatorTree *DT, LoopInfo *LI,
1068                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1069   // Do not attempt to split that which cannot be split.
1070   if (!BB->canSplitPredecessors())
1071     return nullptr;
1072 
1073   // For the landingpads we need to act a bit differently.
1074   // Delegate this work to the SplitLandingPadPredecessors.
1075   if (BB->isLandingPad()) {
1076     SmallVector<BasicBlock*, 2> NewBBs;
1077     std::string NewName = std::string(Suffix) + ".split-lp";
1078 
1079     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1080                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1081     return NewBBs[0];
1082   }
1083 
1084   // Create new basic block, insert right before the original block.
1085   BasicBlock *NewBB = BasicBlock::Create(
1086       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1087 
1088   // The new block unconditionally branches to the old block.
1089   BranchInst *BI = BranchInst::Create(BB, NewBB);
1090 
1091   Loop *L = nullptr;
1092   BasicBlock *OldLatch = nullptr;
1093   // Splitting the predecessors of a loop header creates a preheader block.
1094   if (LI && LI->isLoopHeader(BB)) {
1095     L = LI->getLoopFor(BB);
1096     // Using the loop start line number prevents debuggers stepping into the
1097     // loop body for this instruction.
1098     BI->setDebugLoc(L->getStartLoc());
1099 
1100     // If BB is the header of the Loop, it is possible that the loop is
1101     // modified, such that the current latch does not remain the latch of the
1102     // loop. If that is the case, the loop metadata from the current latch needs
1103     // to be applied to the new latch.
1104     OldLatch = L->getLoopLatch();
1105   } else
1106     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1107 
1108   // Move the edges from Preds to point to NewBB instead of BB.
1109   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1110     // This is slightly more strict than necessary; the minimum requirement
1111     // is that there be no more than one indirectbr branching to BB. And
1112     // all BlockAddress uses would need to be updated.
1113     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1114            "Cannot split an edge from an IndirectBrInst");
1115     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
1116            "Cannot split an edge from a CallBrInst");
1117     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
1118   }
1119 
1120   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1121   // node becomes an incoming value for BB's phi node.  However, if the Preds
1122   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1123   // account for the newly created predecessor.
1124   if (Preds.empty()) {
1125     // Insert dummy values as the incoming value.
1126     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1127       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
1128   }
1129 
1130   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1131   bool HasLoopExit = false;
1132   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1133                             HasLoopExit);
1134 
1135   if (!Preds.empty()) {
1136     // Update the PHI nodes in BB with the values coming from NewBB.
1137     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1138   }
1139 
1140   if (OldLatch) {
1141     BasicBlock *NewLatch = L->getLoopLatch();
1142     if (NewLatch != OldLatch) {
1143       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1144       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1145       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1146     }
1147   }
1148 
1149   return NewBB;
1150 }
1151 
1152 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1153                                          ArrayRef<BasicBlock *> Preds,
1154                                          const char *Suffix, DominatorTree *DT,
1155                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1156                                          bool PreserveLCSSA) {
1157   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1158                                     MSSAU, PreserveLCSSA);
1159 }
1160 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1161                                          ArrayRef<BasicBlock *> Preds,
1162                                          const char *Suffix,
1163                                          DomTreeUpdater *DTU, LoopInfo *LI,
1164                                          MemorySSAUpdater *MSSAU,
1165                                          bool PreserveLCSSA) {
1166   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1167                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1168 }
1169 
1170 static void SplitLandingPadPredecessorsImpl(
1171     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1172     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1173     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1174     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1175   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1176 
1177   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1178   // it right before the original block.
1179   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1180                                           OrigBB->getName() + Suffix1,
1181                                           OrigBB->getParent(), OrigBB);
1182   NewBBs.push_back(NewBB1);
1183 
1184   // The new block unconditionally branches to the old block.
1185   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1186   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1187 
1188   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1189   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1190     // This is slightly more strict than necessary; the minimum requirement
1191     // is that there be no more than one indirectbr branching to BB. And
1192     // all BlockAddress uses would need to be updated.
1193     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1194            "Cannot split an edge from an IndirectBrInst");
1195     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1196   }
1197 
1198   bool HasLoopExit = false;
1199   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1200                             PreserveLCSSA, HasLoopExit);
1201 
1202   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1203   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1204 
1205   // Move the remaining edges from OrigBB to point to NewBB2.
1206   SmallVector<BasicBlock*, 8> NewBB2Preds;
1207   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1208        i != e; ) {
1209     BasicBlock *Pred = *i++;
1210     if (Pred == NewBB1) continue;
1211     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1212            "Cannot split an edge from an IndirectBrInst");
1213     NewBB2Preds.push_back(Pred);
1214     e = pred_end(OrigBB);
1215   }
1216 
1217   BasicBlock *NewBB2 = nullptr;
1218   if (!NewBB2Preds.empty()) {
1219     // Create another basic block for the rest of OrigBB's predecessors.
1220     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1221                                 OrigBB->getName() + Suffix2,
1222                                 OrigBB->getParent(), OrigBB);
1223     NewBBs.push_back(NewBB2);
1224 
1225     // The new block unconditionally branches to the old block.
1226     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1227     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1228 
1229     // Move the remaining edges from OrigBB to point to NewBB2.
1230     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1231       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1232 
1233     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1234     HasLoopExit = false;
1235     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1236                               PreserveLCSSA, HasLoopExit);
1237 
1238     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1239     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1240   }
1241 
1242   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1243   Instruction *Clone1 = LPad->clone();
1244   Clone1->setName(Twine("lpad") + Suffix1);
1245   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1246 
1247   if (NewBB2) {
1248     Instruction *Clone2 = LPad->clone();
1249     Clone2->setName(Twine("lpad") + Suffix2);
1250     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1251 
1252     // Create a PHI node for the two cloned landingpad instructions only
1253     // if the original landingpad instruction has some uses.
1254     if (!LPad->use_empty()) {
1255       assert(!LPad->getType()->isTokenTy() &&
1256              "Split cannot be applied if LPad is token type. Otherwise an "
1257              "invalid PHINode of token type would be created.");
1258       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1259       PN->addIncoming(Clone1, NewBB1);
1260       PN->addIncoming(Clone2, NewBB2);
1261       LPad->replaceAllUsesWith(PN);
1262     }
1263     LPad->eraseFromParent();
1264   } else {
1265     // There is no second clone. Just replace the landing pad with the first
1266     // clone.
1267     LPad->replaceAllUsesWith(Clone1);
1268     LPad->eraseFromParent();
1269   }
1270 }
1271 
1272 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1273                                        ArrayRef<BasicBlock *> Preds,
1274                                        const char *Suffix1, const char *Suffix2,
1275                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1276                                        DominatorTree *DT, LoopInfo *LI,
1277                                        MemorySSAUpdater *MSSAU,
1278                                        bool PreserveLCSSA) {
1279   return SplitLandingPadPredecessorsImpl(
1280       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1281       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1282 }
1283 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1284                                        ArrayRef<BasicBlock *> Preds,
1285                                        const char *Suffix1, const char *Suffix2,
1286                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1287                                        DomTreeUpdater *DTU, LoopInfo *LI,
1288                                        MemorySSAUpdater *MSSAU,
1289                                        bool PreserveLCSSA) {
1290   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1291                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1292                                          PreserveLCSSA);
1293 }
1294 
1295 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1296                                              BasicBlock *Pred,
1297                                              DomTreeUpdater *DTU) {
1298   Instruction *UncondBranch = Pred->getTerminator();
1299   // Clone the return and add it to the end of the predecessor.
1300   Instruction *NewRet = RI->clone();
1301   Pred->getInstList().push_back(NewRet);
1302 
1303   // If the return instruction returns a value, and if the value was a
1304   // PHI node in "BB", propagate the right value into the return.
1305   for (Use &Op : NewRet->operands()) {
1306     Value *V = Op;
1307     Instruction *NewBC = nullptr;
1308     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1309       // Return value might be bitcasted. Clone and insert it before the
1310       // return instruction.
1311       V = BCI->getOperand(0);
1312       NewBC = BCI->clone();
1313       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1314       Op = NewBC;
1315     }
1316 
1317     Instruction *NewEV = nullptr;
1318     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1319       V = EVI->getOperand(0);
1320       NewEV = EVI->clone();
1321       if (NewBC) {
1322         NewBC->setOperand(0, NewEV);
1323         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1324       } else {
1325         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1326         Op = NewEV;
1327       }
1328     }
1329 
1330     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1331       if (PN->getParent() == BB) {
1332         if (NewEV) {
1333           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1334         } else if (NewBC)
1335           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1336         else
1337           Op = PN->getIncomingValueForBlock(Pred);
1338       }
1339     }
1340   }
1341 
1342   // Update any PHI nodes in the returning block to realize that we no
1343   // longer branch to them.
1344   BB->removePredecessor(Pred);
1345   UncondBranch->eraseFromParent();
1346 
1347   if (DTU)
1348     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1349 
1350   return cast<ReturnInst>(NewRet);
1351 }
1352 
1353 static Instruction *
1354 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1355                               bool Unreachable, MDNode *BranchWeights,
1356                               DomTreeUpdater *DTU, DominatorTree *DT,
1357                               LoopInfo *LI, BasicBlock *ThenBlock) {
1358   SmallVector<DominatorTree::UpdateType, 8> Updates;
1359   BasicBlock *Head = SplitBefore->getParent();
1360   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1361   if (DTU) {
1362     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
1363                                                         succ_end(Tail));
1364     Updates.push_back({DominatorTree::Insert, Head, Tail});
1365     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
1366     for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
1367       Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
1368       Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
1369     }
1370   }
1371   Instruction *HeadOldTerm = Head->getTerminator();
1372   LLVMContext &C = Head->getContext();
1373   Instruction *CheckTerm;
1374   bool CreateThenBlock = (ThenBlock == nullptr);
1375   if (CreateThenBlock) {
1376     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1377     if (Unreachable)
1378       CheckTerm = new UnreachableInst(C, ThenBlock);
1379     else {
1380       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1381       if (DTU)
1382         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1383     }
1384     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1385   } else
1386     CheckTerm = ThenBlock->getTerminator();
1387   BranchInst *HeadNewTerm =
1388       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1389   if (DTU)
1390     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1391   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1392   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1393 
1394   if (DTU)
1395     DTU->applyUpdates(Updates);
1396   else if (DT) {
1397     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1398       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1399 
1400       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1401       for (DomTreeNode *Child : Children)
1402         DT->changeImmediateDominator(Child, NewNode);
1403 
1404       // Head dominates ThenBlock.
1405       if (CreateThenBlock)
1406         DT->addNewBlock(ThenBlock, Head);
1407       else
1408         DT->changeImmediateDominator(ThenBlock, Head);
1409     }
1410   }
1411 
1412   if (LI) {
1413     if (Loop *L = LI->getLoopFor(Head)) {
1414       L->addBasicBlockToLoop(ThenBlock, *LI);
1415       L->addBasicBlockToLoop(Tail, *LI);
1416     }
1417   }
1418 
1419   return CheckTerm;
1420 }
1421 
1422 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1423                                              Instruction *SplitBefore,
1424                                              bool Unreachable,
1425                                              MDNode *BranchWeights,
1426                                              DominatorTree *DT, LoopInfo *LI,
1427                                              BasicBlock *ThenBlock) {
1428   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1429                                        BranchWeights,
1430                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1431 }
1432 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1433                                              Instruction *SplitBefore,
1434                                              bool Unreachable,
1435                                              MDNode *BranchWeights,
1436                                              DomTreeUpdater *DTU, LoopInfo *LI,
1437                                              BasicBlock *ThenBlock) {
1438   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1439                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1440                                        ThenBlock);
1441 }
1442 
1443 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1444                                          Instruction **ThenTerm,
1445                                          Instruction **ElseTerm,
1446                                          MDNode *BranchWeights) {
1447   BasicBlock *Head = SplitBefore->getParent();
1448   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1449   Instruction *HeadOldTerm = Head->getTerminator();
1450   LLVMContext &C = Head->getContext();
1451   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1452   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1453   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1454   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1455   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1456   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1457   BranchInst *HeadNewTerm =
1458     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1459   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1460   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1461 }
1462 
1463 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1464                              BasicBlock *&IfFalse) {
1465   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1466   BasicBlock *Pred1 = nullptr;
1467   BasicBlock *Pred2 = nullptr;
1468 
1469   if (SomePHI) {
1470     if (SomePHI->getNumIncomingValues() != 2)
1471       return nullptr;
1472     Pred1 = SomePHI->getIncomingBlock(0);
1473     Pred2 = SomePHI->getIncomingBlock(1);
1474   } else {
1475     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1476     if (PI == PE) // No predecessor
1477       return nullptr;
1478     Pred1 = *PI++;
1479     if (PI == PE) // Only one predecessor
1480       return nullptr;
1481     Pred2 = *PI++;
1482     if (PI != PE) // More than two predecessors
1483       return nullptr;
1484   }
1485 
1486   // We can only handle branches.  Other control flow will be lowered to
1487   // branches if possible anyway.
1488   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1489   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1490   if (!Pred1Br || !Pred2Br)
1491     return nullptr;
1492 
1493   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1494   // either are.
1495   if (Pred2Br->isConditional()) {
1496     // If both branches are conditional, we don't have an "if statement".  In
1497     // reality, we could transform this case, but since the condition will be
1498     // required anyway, we stand no chance of eliminating it, so the xform is
1499     // probably not profitable.
1500     if (Pred1Br->isConditional())
1501       return nullptr;
1502 
1503     std::swap(Pred1, Pred2);
1504     std::swap(Pred1Br, Pred2Br);
1505   }
1506 
1507   if (Pred1Br->isConditional()) {
1508     // The only thing we have to watch out for here is to make sure that Pred2
1509     // doesn't have incoming edges from other blocks.  If it does, the condition
1510     // doesn't dominate BB.
1511     if (!Pred2->getSinglePredecessor())
1512       return nullptr;
1513 
1514     // If we found a conditional branch predecessor, make sure that it branches
1515     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1516     if (Pred1Br->getSuccessor(0) == BB &&
1517         Pred1Br->getSuccessor(1) == Pred2) {
1518       IfTrue = Pred1;
1519       IfFalse = Pred2;
1520     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1521                Pred1Br->getSuccessor(1) == BB) {
1522       IfTrue = Pred2;
1523       IfFalse = Pred1;
1524     } else {
1525       // We know that one arm of the conditional goes to BB, so the other must
1526       // go somewhere unrelated, and this must not be an "if statement".
1527       return nullptr;
1528     }
1529 
1530     return Pred1Br->getCondition();
1531   }
1532 
1533   // Ok, if we got here, both predecessors end with an unconditional branch to
1534   // BB.  Don't panic!  If both blocks only have a single (identical)
1535   // predecessor, and THAT is a conditional branch, then we're all ok!
1536   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1537   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1538     return nullptr;
1539 
1540   // Otherwise, if this is a conditional branch, then we can use it!
1541   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1542   if (!BI) return nullptr;
1543 
1544   assert(BI->isConditional() && "Two successors but not conditional?");
1545   if (BI->getSuccessor(0) == Pred1) {
1546     IfTrue = Pred1;
1547     IfFalse = Pred2;
1548   } else {
1549     IfTrue = Pred2;
1550     IfFalse = Pred1;
1551   }
1552   return BI->getCondition();
1553 }
1554 
1555 // After creating a control flow hub, the operands of PHINodes in an outgoing
1556 // block Out no longer match the predecessors of that block. Predecessors of Out
1557 // that are incoming blocks to the hub are now replaced by just one edge from
1558 // the hub. To match this new control flow, the corresponding values from each
1559 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1560 //
1561 // This operation cannot be performed with SSAUpdater, because it involves one
1562 // new use: If the block Out is in the list of Incoming blocks, then the newly
1563 // created PHI in the Hub will use itself along that edge from Out to Hub.
1564 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1565                           const SetVector<BasicBlock *> &Incoming,
1566                           BasicBlock *FirstGuardBlock) {
1567   auto I = Out->begin();
1568   while (I != Out->end() && isa<PHINode>(I)) {
1569     auto Phi = cast<PHINode>(I);
1570     auto NewPhi =
1571         PHINode::Create(Phi->getType(), Incoming.size(),
1572                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1573     for (auto In : Incoming) {
1574       Value *V = UndefValue::get(Phi->getType());
1575       if (In == Out) {
1576         V = NewPhi;
1577       } else if (Phi->getBasicBlockIndex(In) != -1) {
1578         V = Phi->removeIncomingValue(In, false);
1579       }
1580       NewPhi->addIncoming(V, In);
1581     }
1582     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1583     if (Phi->getNumOperands() == 0) {
1584       Phi->replaceAllUsesWith(NewPhi);
1585       I = Phi->eraseFromParent();
1586       continue;
1587     }
1588     Phi->addIncoming(NewPhi, GuardBlock);
1589     ++I;
1590   }
1591 }
1592 
1593 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1594 using BBSetVector = SetVector<BasicBlock *>;
1595 
1596 // Redirects the terminator of the incoming block to the first guard
1597 // block in the hub. The condition of the original terminator (if it
1598 // was conditional) and its original successors are returned as a
1599 // tuple <condition, succ0, succ1>. The function additionally filters
1600 // out successors that are not in the set of outgoing blocks.
1601 //
1602 // - condition is non-null iff the branch is conditional.
1603 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1604 // - Succ2 is non-null iff condition is non-null and the fallthrough
1605 //         target is an outgoing block.
1606 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1607 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1608               const BBSetVector &Outgoing) {
1609   auto Branch = cast<BranchInst>(BB->getTerminator());
1610   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1611 
1612   BasicBlock *Succ0 = Branch->getSuccessor(0);
1613   BasicBlock *Succ1 = nullptr;
1614   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1615 
1616   if (Branch->isUnconditional()) {
1617     Branch->setSuccessor(0, FirstGuardBlock);
1618     assert(Succ0);
1619   } else {
1620     Succ1 = Branch->getSuccessor(1);
1621     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1622     assert(Succ0 || Succ1);
1623     if (Succ0 && !Succ1) {
1624       Branch->setSuccessor(0, FirstGuardBlock);
1625     } else if (Succ1 && !Succ0) {
1626       Branch->setSuccessor(1, FirstGuardBlock);
1627     } else {
1628       Branch->eraseFromParent();
1629       BranchInst::Create(FirstGuardBlock, BB);
1630     }
1631   }
1632 
1633   assert(Succ0 || Succ1);
1634   return std::make_tuple(Condition, Succ0, Succ1);
1635 }
1636 
1637 // Capture the existing control flow as guard predicates, and redirect
1638 // control flow from every incoming block to the first guard block in
1639 // the hub.
1640 //
1641 // There is one guard predicate for each outgoing block OutBB. The
1642 // predicate is a PHINode with one input for each InBB which
1643 // represents whether the hub should transfer control flow to OutBB if
1644 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1645 // evaluates them in the same order as the Outgoing set-vector, and
1646 // control branches to the first outgoing block whose predicate
1647 // evaluates to true.
1648 static void convertToGuardPredicates(
1649     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1650     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1651     const BBSetVector &Outgoing) {
1652   auto &Context = Incoming.front()->getContext();
1653   auto BoolTrue = ConstantInt::getTrue(Context);
1654   auto BoolFalse = ConstantInt::getFalse(Context);
1655 
1656   // The predicate for the last outgoing is trivially true, and so we
1657   // process only the first N-1 successors.
1658   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1659     auto Out = Outgoing[i];
1660     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1661     auto Phi =
1662         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1663                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1664     GuardPredicates[Out] = Phi;
1665   }
1666 
1667   for (auto In : Incoming) {
1668     Value *Condition;
1669     BasicBlock *Succ0;
1670     BasicBlock *Succ1;
1671     std::tie(Condition, Succ0, Succ1) =
1672         redirectToHub(In, FirstGuardBlock, Outgoing);
1673 
1674     // Optimization: Consider an incoming block A with both successors
1675     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1676     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1677     // first in the loop below, control will branch to Succ0 using the
1678     // corresponding predicate. But if that branch is not taken, then
1679     // control must reach Succ1, which means that the predicate for
1680     // Succ1 is always true.
1681     bool OneSuccessorDone = false;
1682     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1683       auto Out = Outgoing[i];
1684       auto Phi = GuardPredicates[Out];
1685       if (Out != Succ0 && Out != Succ1) {
1686         Phi->addIncoming(BoolFalse, In);
1687         continue;
1688       }
1689       // Optimization: When only one successor is an outgoing block,
1690       // the predicate is always true.
1691       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1692         Phi->addIncoming(BoolTrue, In);
1693         continue;
1694       }
1695       assert(Succ0 && Succ1);
1696       OneSuccessorDone = true;
1697       if (Out == Succ0) {
1698         Phi->addIncoming(Condition, In);
1699         continue;
1700       }
1701       auto Inverted = invertCondition(Condition);
1702       DeletionCandidates.push_back(Condition);
1703       Phi->addIncoming(Inverted, In);
1704     }
1705   }
1706 }
1707 
1708 // For each outgoing block OutBB, create a guard block in the Hub. The
1709 // first guard block was already created outside, and available as the
1710 // first element in the vector of guard blocks.
1711 //
1712 // Each guard block terminates in a conditional branch that transfers
1713 // control to the corresponding outgoing block or the next guard
1714 // block. The last guard block has two outgoing blocks as successors
1715 // since the condition for the final outgoing block is trivially
1716 // true. So we create one less block (including the first guard block)
1717 // than the number of outgoing blocks.
1718 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1719                               Function *F, const BBSetVector &Outgoing,
1720                               BBPredicates &GuardPredicates, StringRef Prefix) {
1721   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1722     GuardBlocks.push_back(
1723         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1724   }
1725   assert(GuardBlocks.size() == GuardPredicates.size());
1726 
1727   // To help keep the loop simple, temporarily append the last
1728   // outgoing block to the list of guard blocks.
1729   GuardBlocks.push_back(Outgoing.back());
1730 
1731   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1732     auto Out = Outgoing[i];
1733     assert(GuardPredicates.count(Out));
1734     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1735                        GuardBlocks[i]);
1736   }
1737 
1738   // Remove the last block from the guard list.
1739   GuardBlocks.pop_back();
1740 }
1741 
1742 BasicBlock *llvm::CreateControlFlowHub(
1743     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1744     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1745     const StringRef Prefix) {
1746   auto F = Incoming.front()->getParent();
1747   auto FirstGuardBlock =
1748       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1749 
1750   SmallVector<DominatorTree::UpdateType, 16> Updates;
1751   if (DTU) {
1752     for (auto In : Incoming) {
1753       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1754       for (auto Succ : successors(In)) {
1755         if (Outgoing.count(Succ))
1756           Updates.push_back({DominatorTree::Delete, In, Succ});
1757       }
1758     }
1759   }
1760 
1761   BBPredicates GuardPredicates;
1762   SmallVector<WeakVH, 8> DeletionCandidates;
1763   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1764                            Incoming, Outgoing);
1765 
1766   GuardBlocks.push_back(FirstGuardBlock);
1767   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1768 
1769   // Update the PHINodes in each outgoing block to match the new control flow.
1770   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1771     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1772   }
1773   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1774 
1775   if (DTU) {
1776     int NumGuards = GuardBlocks.size();
1777     assert((int)Outgoing.size() == NumGuards + 1);
1778     for (int i = 0; i != NumGuards - 1; ++i) {
1779       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1780       Updates.push_back(
1781           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1782     }
1783     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1784                        Outgoing[NumGuards - 1]});
1785     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1786                        Outgoing[NumGuards]});
1787     DTU->applyUpdates(Updates);
1788   }
1789 
1790   for (auto I : DeletionCandidates) {
1791     if (I->use_empty())
1792       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1793         Inst->eraseFromParent();
1794   }
1795 
1796   return FirstGuardBlock;
1797 }
1798