1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin())) return;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
157                           MemorySSAUpdater *MSSAU) {
158   // Recursively deleting a PHI may cause multiple PHIs to be deleted
159   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
160   SmallVector<WeakTrackingVH, 8> PHIs;
161   for (PHINode &PN : BB->phis())
162     PHIs.push_back(&PN);
163 
164   bool Changed = false;
165   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
166     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
167       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
168 
169   return Changed;
170 }
171 
172 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
173                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
174                                      MemoryDependenceResults *MemDep,
175                                      bool PredecessorWithTwoSuccessors) {
176   if (BB->hasAddressTaken())
177     return false;
178 
179   // Can't merge if there are multiple predecessors, or no predecessors.
180   BasicBlock *PredBB = BB->getUniquePredecessor();
181   if (!PredBB) return false;
182 
183   // Don't break self-loops.
184   if (PredBB == BB) return false;
185   // Don't break unwinding instructions.
186   if (PredBB->getTerminator()->isExceptionalTerminator())
187     return false;
188 
189   // Can't merge if there are multiple distinct successors.
190   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
191     return false;
192 
193   // Currently only allow PredBB to have two predecessors, one being BB.
194   // Update BI to branch to BB's only successor instead of BB.
195   BranchInst *PredBB_BI;
196   BasicBlock *NewSucc = nullptr;
197   unsigned FallThruPath;
198   if (PredecessorWithTwoSuccessors) {
199     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
200       return false;
201     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
202     if (!BB_JmpI || !BB_JmpI->isUnconditional())
203       return false;
204     NewSucc = BB_JmpI->getSuccessor(0);
205     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
206   }
207 
208   // Can't merge if there is PHI loop.
209   for (PHINode &PN : BB->phis())
210     for (Value *IncValue : PN.incoming_values())
211       if (IncValue == &PN)
212         return false;
213 
214   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
215                     << PredBB->getName() << "\n");
216 
217   // Begin by getting rid of unneeded PHIs.
218   SmallVector<AssertingVH<Value>, 4> IncomingValues;
219   if (isa<PHINode>(BB->front())) {
220     for (PHINode &PN : BB->phis())
221       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
222           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
223         IncomingValues.push_back(PN.getIncomingValue(0));
224     FoldSingleEntryPHINodes(BB, MemDep);
225   }
226 
227   // DTU update: Collect all the edges that exit BB.
228   // These dominator edges will be redirected from Pred.
229   std::vector<DominatorTree::UpdateType> Updates;
230   if (DTU) {
231     Updates.reserve(1 + (2 * succ_size(BB)));
232     // Add insert edges first. Experimentally, for the particular case of two
233     // blocks that can be merged, with a single successor and single predecessor
234     // respectively, it is beneficial to have all insert updates first. Deleting
235     // edges first may lead to unreachable blocks, followed by inserting edges
236     // making the blocks reachable again. Such DT updates lead to high compile
237     // times. We add inserts before deletes here to reduce compile time.
238     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
239       // This successor of BB may already have PredBB as a predecessor.
240       if (!llvm::is_contained(successors(PredBB), *I))
241         Updates.push_back({DominatorTree::Insert, PredBB, *I});
242     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
243       Updates.push_back({DominatorTree::Delete, BB, *I});
244     Updates.push_back({DominatorTree::Delete, PredBB, BB});
245   }
246 
247   Instruction *PTI = PredBB->getTerminator();
248   Instruction *STI = BB->getTerminator();
249   Instruction *Start = &*BB->begin();
250   // If there's nothing to move, mark the starting instruction as the last
251   // instruction in the block. Terminator instruction is handled separately.
252   if (Start == STI)
253     Start = PTI;
254 
255   // Move all definitions in the successor to the predecessor...
256   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
257                                BB->begin(), STI->getIterator());
258 
259   if (MSSAU)
260     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
261 
262   // Make all PHI nodes that referred to BB now refer to Pred as their
263   // source...
264   BB->replaceAllUsesWith(PredBB);
265 
266   if (PredecessorWithTwoSuccessors) {
267     // Delete the unconditional branch from BB.
268     BB->getInstList().pop_back();
269 
270     // Update branch in the predecessor.
271     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
272   } else {
273     // Delete the unconditional branch from the predecessor.
274     PredBB->getInstList().pop_back();
275 
276     // Move terminator instruction.
277     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
278 
279     // Terminator may be a memory accessing instruction too.
280     if (MSSAU)
281       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
282               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
283         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
284   }
285   // Add unreachable to now empty BB.
286   new UnreachableInst(BB->getContext(), BB);
287 
288   // Inherit predecessors name if it exists.
289   if (!PredBB->hasName())
290     PredBB->takeName(BB);
291 
292   if (LI)
293     LI->removeBlock(BB);
294 
295   if (MemDep)
296     MemDep->invalidateCachedPredecessors();
297 
298   // Finally, erase the old block and update dominator info.
299   if (DTU) {
300     assert(BB->getInstList().size() == 1 &&
301            isa<UnreachableInst>(BB->getTerminator()) &&
302            "The successor list of BB isn't empty before "
303            "applying corresponding DTU updates.");
304     DTU->applyUpdatesPermissive(Updates);
305     DTU->deleteBB(BB);
306   } else {
307     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
308   }
309 
310   return true;
311 }
312 
313 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
314     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
315     LoopInfo *LI) {
316   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
317 
318   bool BlocksHaveBeenMerged = false;
319   while (!MergeBlocks.empty()) {
320     BasicBlock *BB = *MergeBlocks.begin();
321     BasicBlock *Dest = BB->getSingleSuccessor();
322     if (Dest && (!L || L->contains(Dest))) {
323       BasicBlock *Fold = Dest->getUniquePredecessor();
324       (void)Fold;
325       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
326         assert(Fold == BB &&
327                "Expecting BB to be unique predecessor of the Dest block");
328         MergeBlocks.erase(Dest);
329         BlocksHaveBeenMerged = true;
330       } else
331         MergeBlocks.erase(BB);
332     } else
333       MergeBlocks.erase(BB);
334   }
335   return BlocksHaveBeenMerged;
336 }
337 
338 /// Remove redundant instructions within sequences of consecutive dbg.value
339 /// instructions. This is done using a backward scan to keep the last dbg.value
340 /// describing a specific variable/fragment.
341 ///
342 /// BackwardScan strategy:
343 /// ----------------------
344 /// Given a sequence of consecutive DbgValueInst like this
345 ///
346 ///   dbg.value ..., "x", FragmentX1  (*)
347 ///   dbg.value ..., "y", FragmentY1
348 ///   dbg.value ..., "x", FragmentX2
349 ///   dbg.value ..., "x", FragmentX1  (**)
350 ///
351 /// then the instruction marked with (*) can be removed (it is guaranteed to be
352 /// obsoleted by the instruction marked with (**) as the latter instruction is
353 /// describing the same variable using the same fragment info).
354 ///
355 /// Possible improvements:
356 /// - Check fully overlapping fragments and not only identical fragments.
357 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
358 ///   instructions being part of the sequence of consecutive instructions.
359 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
360   SmallVector<DbgValueInst *, 8> ToBeRemoved;
361   SmallDenseSet<DebugVariable> VariableSet;
362   for (auto &I : reverse(*BB)) {
363     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
364       DebugVariable Key(DVI->getVariable(),
365                         DVI->getExpression(),
366                         DVI->getDebugLoc()->getInlinedAt());
367       auto R = VariableSet.insert(Key);
368       // If the same variable fragment is described more than once it is enough
369       // to keep the last one (i.e. the first found since we for reverse
370       // iteration).
371       if (!R.second)
372         ToBeRemoved.push_back(DVI);
373       continue;
374     }
375     // Sequence with consecutive dbg.value instrs ended. Clear the map to
376     // restart identifying redundant instructions if case we find another
377     // dbg.value sequence.
378     VariableSet.clear();
379   }
380 
381   for (auto &Instr : ToBeRemoved)
382     Instr->eraseFromParent();
383 
384   return !ToBeRemoved.empty();
385 }
386 
387 /// Remove redundant dbg.value instructions using a forward scan. This can
388 /// remove a dbg.value instruction that is redundant due to indicating that a
389 /// variable has the same value as already being indicated by an earlier
390 /// dbg.value.
391 ///
392 /// ForwardScan strategy:
393 /// ---------------------
394 /// Given two identical dbg.value instructions, separated by a block of
395 /// instructions that isn't describing the same variable, like this
396 ///
397 ///   dbg.value X1, "x", FragmentX1  (**)
398 ///   <block of instructions, none being "dbg.value ..., "x", ...">
399 ///   dbg.value X1, "x", FragmentX1  (*)
400 ///
401 /// then the instruction marked with (*) can be removed. Variable "x" is already
402 /// described as being mapped to the SSA value X1.
403 ///
404 /// Possible improvements:
405 /// - Keep track of non-overlapping fragments.
406 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
407   SmallVector<DbgValueInst *, 8> ToBeRemoved;
408   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
409   for (auto &I : *BB) {
410     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
411       DebugVariable Key(DVI->getVariable(),
412                         NoneType(),
413                         DVI->getDebugLoc()->getInlinedAt());
414       auto VMI = VariableMap.find(Key);
415       // Update the map if we found a new value/expression describing the
416       // variable, or if the variable wasn't mapped already.
417       if (VMI == VariableMap.end() ||
418           VMI->second.first != DVI->getValue() ||
419           VMI->second.second != DVI->getExpression()) {
420         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
421         continue;
422       }
423       // Found an identical mapping. Remember the instruction for later removal.
424       ToBeRemoved.push_back(DVI);
425     }
426   }
427 
428   for (auto &Instr : ToBeRemoved)
429     Instr->eraseFromParent();
430 
431   return !ToBeRemoved.empty();
432 }
433 
434 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
435   bool MadeChanges = false;
436   // By using the "backward scan" strategy before the "forward scan" strategy we
437   // can remove both dbg.value (2) and (3) in a situation like this:
438   //
439   //   (1) dbg.value V1, "x", DIExpression()
440   //       ...
441   //   (2) dbg.value V2, "x", DIExpression()
442   //   (3) dbg.value V1, "x", DIExpression()
443   //
444   // The backward scan will remove (2), it is made obsolete by (3). After
445   // getting (2) out of the way, the foward scan will remove (3) since "x"
446   // already is described as having the value V1 at (1).
447   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
448   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
449 
450   if (MadeChanges)
451     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
452                       << BB->getName() << "\n");
453   return MadeChanges;
454 }
455 
456 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
457                                 BasicBlock::iterator &BI, Value *V) {
458   Instruction &I = *BI;
459   // Replaces all of the uses of the instruction with uses of the value
460   I.replaceAllUsesWith(V);
461 
462   // Make sure to propagate a name if there is one already.
463   if (I.hasName() && !V->hasName())
464     V->takeName(&I);
465 
466   // Delete the unnecessary instruction now...
467   BI = BIL.erase(BI);
468 }
469 
470 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
471                                BasicBlock::iterator &BI, Instruction *I) {
472   assert(I->getParent() == nullptr &&
473          "ReplaceInstWithInst: Instruction already inserted into basic block!");
474 
475   // Copy debug location to newly added instruction, if it wasn't already set
476   // by the caller.
477   if (!I->getDebugLoc())
478     I->setDebugLoc(BI->getDebugLoc());
479 
480   // Insert the new instruction into the basic block...
481   BasicBlock::iterator New = BIL.insert(BI, I);
482 
483   // Replace all uses of the old instruction, and delete it.
484   ReplaceInstWithValue(BIL, BI, I);
485 
486   // Move BI back to point to the newly inserted instruction
487   BI = New;
488 }
489 
490 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
491   BasicBlock::iterator BI(From);
492   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
493 }
494 
495 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
496                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
497   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
498 
499   // If this is a critical edge, let SplitCriticalEdge do it.
500   Instruction *LatchTerm = BB->getTerminator();
501   if (SplitCriticalEdge(
502           LatchTerm, SuccNum,
503           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
504     return LatchTerm->getSuccessor(SuccNum);
505 
506   // If the edge isn't critical, then BB has a single successor or Succ has a
507   // single pred.  Split the block.
508   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
509     // If the successor only has a single pred, split the top of the successor
510     // block.
511     assert(SP == BB && "CFG broken");
512     SP = nullptr;
513     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, "", /*Before=*/true);
514   }
515 
516   // Otherwise, if BB has a single successor, split it at the bottom of the
517   // block.
518   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
519          "Should have a single succ!");
520   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
521 }
522 
523 unsigned
524 llvm::SplitAllCriticalEdges(Function &F,
525                             const CriticalEdgeSplittingOptions &Options) {
526   unsigned NumBroken = 0;
527   for (BasicBlock &BB : F) {
528     Instruction *TI = BB.getTerminator();
529     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
530         !isa<CallBrInst>(TI))
531       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
532         if (SplitCriticalEdge(TI, i, Options))
533           ++NumBroken;
534   }
535   return NumBroken;
536 }
537 
538 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
539                              DominatorTree *DT, LoopInfo *LI,
540                              MemorySSAUpdater *MSSAU, const Twine &BBName,
541                              bool Before) {
542   if (Before)
543     return splitBlockBefore(Old, SplitPt, DT, LI, MSSAU, BBName);
544   BasicBlock::iterator SplitIt = SplitPt->getIterator();
545   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
546     ++SplitIt;
547   std::string Name = BBName.str();
548   BasicBlock *New = Old->splitBasicBlock(
549       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
550 
551   // The new block lives in whichever loop the old one did. This preserves
552   // LCSSA as well, because we force the split point to be after any PHI nodes.
553   if (LI)
554     if (Loop *L = LI->getLoopFor(Old))
555       L->addBasicBlockToLoop(New, *LI);
556 
557   if (DT)
558     // Old dominates New. New node dominates all other nodes dominated by Old.
559     if (DomTreeNode *OldNode = DT->getNode(Old)) {
560       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
561 
562       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
563       for (DomTreeNode *I : Children)
564         DT->changeImmediateDominator(I, NewNode);
565     }
566 
567   // Move MemoryAccesses still tracked in Old, but part of New now.
568   // Update accesses in successor blocks accordingly.
569   if (MSSAU)
570     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
571 
572   return New;
573 }
574 
575 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
576                                    DominatorTree *DT, LoopInfo *LI,
577                                    MemorySSAUpdater *MSSAU,
578                                    const Twine &BBName) {
579 
580   BasicBlock::iterator SplitIt = SplitPt->getIterator();
581   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
582     ++SplitIt;
583   std::string Name = BBName.str();
584   BasicBlock *New = Old->splitBasicBlock(
585       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
586       /* Before=*/true);
587 
588   // The new block lives in whichever loop the old one did. This preserves
589   // LCSSA as well, because we force the split point to be after any PHI nodes.
590   if (LI)
591     if (Loop *L = LI->getLoopFor(Old))
592       L->addBasicBlockToLoop(New, *LI);
593 
594   if (DT) {
595     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
596     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
597     // New dominates Old. The predecessor nodes of the Old node dominate
598     // New node.
599     DTUpdates.push_back({DominatorTree::Insert, New, Old});
600     for (BasicBlock *Pred : predecessors(New))
601       if (DT->getNode(Pred)) {
602         DTUpdates.push_back({DominatorTree::Insert, Pred, New});
603         DTUpdates.push_back({DominatorTree::Delete, Pred, Old});
604       }
605 
606     DTU.applyUpdates(DTUpdates);
607     DTU.flush();
608 
609     // Move MemoryAccesses still tracked in Old, but part of New now.
610     // Update accesses in successor blocks accordingly.
611     if (MSSAU) {
612       MSSAU->applyUpdates(DTUpdates, *DT);
613       if (VerifyMemorySSA)
614         MSSAU->getMemorySSA()->verifyMemorySSA();
615     }
616   }
617   return New;
618 }
619 
620 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
621 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
622                                       ArrayRef<BasicBlock *> Preds,
623                                       DominatorTree *DT, LoopInfo *LI,
624                                       MemorySSAUpdater *MSSAU,
625                                       bool PreserveLCSSA, bool &HasLoopExit) {
626   // Update dominator tree if available.
627   if (DT) {
628     if (OldBB == DT->getRootNode()->getBlock()) {
629       assert(NewBB == &NewBB->getParent()->getEntryBlock());
630       DT->setNewRoot(NewBB);
631     } else {
632       // Split block expects NewBB to have a non-empty set of predecessors.
633       DT->splitBlock(NewBB);
634     }
635   }
636 
637   // Update MemoryPhis after split if MemorySSA is available
638   if (MSSAU)
639     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
640 
641   // The rest of the logic is only relevant for updating the loop structures.
642   if (!LI)
643     return;
644 
645   assert(DT && "DT should be available to update LoopInfo!");
646   Loop *L = LI->getLoopFor(OldBB);
647 
648   // If we need to preserve loop analyses, collect some information about how
649   // this split will affect loops.
650   bool IsLoopEntry = !!L;
651   bool SplitMakesNewLoopHeader = false;
652   for (BasicBlock *Pred : Preds) {
653     // Preds that are not reachable from entry should not be used to identify if
654     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
655     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
656     // as true and make the NewBB the header of some loop. This breaks LI.
657     if (!DT->isReachableFromEntry(Pred))
658       continue;
659     // If we need to preserve LCSSA, determine if any of the preds is a loop
660     // exit.
661     if (PreserveLCSSA)
662       if (Loop *PL = LI->getLoopFor(Pred))
663         if (!PL->contains(OldBB))
664           HasLoopExit = true;
665 
666     // If we need to preserve LoopInfo, note whether any of the preds crosses
667     // an interesting loop boundary.
668     if (!L)
669       continue;
670     if (L->contains(Pred))
671       IsLoopEntry = false;
672     else
673       SplitMakesNewLoopHeader = true;
674   }
675 
676   // Unless we have a loop for OldBB, nothing else to do here.
677   if (!L)
678     return;
679 
680   if (IsLoopEntry) {
681     // Add the new block to the nearest enclosing loop (and not an adjacent
682     // loop). To find this, examine each of the predecessors and determine which
683     // loops enclose them, and select the most-nested loop which contains the
684     // loop containing the block being split.
685     Loop *InnermostPredLoop = nullptr;
686     for (BasicBlock *Pred : Preds) {
687       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
688         // Seek a loop which actually contains the block being split (to avoid
689         // adjacent loops).
690         while (PredLoop && !PredLoop->contains(OldBB))
691           PredLoop = PredLoop->getParentLoop();
692 
693         // Select the most-nested of these loops which contains the block.
694         if (PredLoop && PredLoop->contains(OldBB) &&
695             (!InnermostPredLoop ||
696              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
697           InnermostPredLoop = PredLoop;
698       }
699     }
700 
701     if (InnermostPredLoop)
702       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
703   } else {
704     L->addBasicBlockToLoop(NewBB, *LI);
705     if (SplitMakesNewLoopHeader)
706       L->moveToHeader(NewBB);
707   }
708 }
709 
710 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
711 /// This also updates AliasAnalysis, if available.
712 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
713                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
714                            bool HasLoopExit) {
715   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
716   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
717   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
718     PHINode *PN = cast<PHINode>(I++);
719 
720     // Check to see if all of the values coming in are the same.  If so, we
721     // don't need to create a new PHI node, unless it's needed for LCSSA.
722     Value *InVal = nullptr;
723     if (!HasLoopExit) {
724       InVal = PN->getIncomingValueForBlock(Preds[0]);
725       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
726         if (!PredSet.count(PN->getIncomingBlock(i)))
727           continue;
728         if (!InVal)
729           InVal = PN->getIncomingValue(i);
730         else if (InVal != PN->getIncomingValue(i)) {
731           InVal = nullptr;
732           break;
733         }
734       }
735     }
736 
737     if (InVal) {
738       // If all incoming values for the new PHI would be the same, just don't
739       // make a new PHI.  Instead, just remove the incoming values from the old
740       // PHI.
741 
742       // NOTE! This loop walks backwards for a reason! First off, this minimizes
743       // the cost of removal if we end up removing a large number of values, and
744       // second off, this ensures that the indices for the incoming values
745       // aren't invalidated when we remove one.
746       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
747         if (PredSet.count(PN->getIncomingBlock(i)))
748           PN->removeIncomingValue(i, false);
749 
750       // Add an incoming value to the PHI node in the loop for the preheader
751       // edge.
752       PN->addIncoming(InVal, NewBB);
753       continue;
754     }
755 
756     // If the values coming into the block are not the same, we need a new
757     // PHI.
758     // Create the new PHI node, insert it into NewBB at the end of the block
759     PHINode *NewPHI =
760         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
761 
762     // NOTE! This loop walks backwards for a reason! First off, this minimizes
763     // the cost of removal if we end up removing a large number of values, and
764     // second off, this ensures that the indices for the incoming values aren't
765     // invalidated when we remove one.
766     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
767       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
768       if (PredSet.count(IncomingBB)) {
769         Value *V = PN->removeIncomingValue(i, false);
770         NewPHI->addIncoming(V, IncomingBB);
771       }
772     }
773 
774     PN->addIncoming(NewPHI, NewBB);
775   }
776 }
777 
778 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
779                                          ArrayRef<BasicBlock *> Preds,
780                                          const char *Suffix, DominatorTree *DT,
781                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
782                                          bool PreserveLCSSA) {
783   // Do not attempt to split that which cannot be split.
784   if (!BB->canSplitPredecessors())
785     return nullptr;
786 
787   // For the landingpads we need to act a bit differently.
788   // Delegate this work to the SplitLandingPadPredecessors.
789   if (BB->isLandingPad()) {
790     SmallVector<BasicBlock*, 2> NewBBs;
791     std::string NewName = std::string(Suffix) + ".split-lp";
792 
793     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
794                                 LI, MSSAU, PreserveLCSSA);
795     return NewBBs[0];
796   }
797 
798   // Create new basic block, insert right before the original block.
799   BasicBlock *NewBB = BasicBlock::Create(
800       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
801 
802   // The new block unconditionally branches to the old block.
803   BranchInst *BI = BranchInst::Create(BB, NewBB);
804 
805   Loop *L = nullptr;
806   BasicBlock *OldLatch = nullptr;
807   // Splitting the predecessors of a loop header creates a preheader block.
808   if (LI && LI->isLoopHeader(BB)) {
809     L = LI->getLoopFor(BB);
810     // Using the loop start line number prevents debuggers stepping into the
811     // loop body for this instruction.
812     BI->setDebugLoc(L->getStartLoc());
813 
814     // If BB is the header of the Loop, it is possible that the loop is
815     // modified, such that the current latch does not remain the latch of the
816     // loop. If that is the case, the loop metadata from the current latch needs
817     // to be applied to the new latch.
818     OldLatch = L->getLoopLatch();
819   } else
820     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
821 
822   // Move the edges from Preds to point to NewBB instead of BB.
823   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
824     // This is slightly more strict than necessary; the minimum requirement
825     // is that there be no more than one indirectbr branching to BB. And
826     // all BlockAddress uses would need to be updated.
827     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
828            "Cannot split an edge from an IndirectBrInst");
829     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
830            "Cannot split an edge from a CallBrInst");
831     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
832   }
833 
834   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
835   // node becomes an incoming value for BB's phi node.  However, if the Preds
836   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
837   // account for the newly created predecessor.
838   if (Preds.empty()) {
839     // Insert dummy values as the incoming value.
840     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
841       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
842   }
843 
844   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
845   bool HasLoopExit = false;
846   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
847                             HasLoopExit);
848 
849   if (!Preds.empty()) {
850     // Update the PHI nodes in BB with the values coming from NewBB.
851     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
852   }
853 
854   if (OldLatch) {
855     BasicBlock *NewLatch = L->getLoopLatch();
856     if (NewLatch != OldLatch) {
857       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
858       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
859       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
860     }
861   }
862 
863   return NewBB;
864 }
865 
866 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
867                                        ArrayRef<BasicBlock *> Preds,
868                                        const char *Suffix1, const char *Suffix2,
869                                        SmallVectorImpl<BasicBlock *> &NewBBs,
870                                        DominatorTree *DT, LoopInfo *LI,
871                                        MemorySSAUpdater *MSSAU,
872                                        bool PreserveLCSSA) {
873   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
874 
875   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
876   // it right before the original block.
877   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
878                                           OrigBB->getName() + Suffix1,
879                                           OrigBB->getParent(), OrigBB);
880   NewBBs.push_back(NewBB1);
881 
882   // The new block unconditionally branches to the old block.
883   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
884   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
885 
886   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
887   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
888     // This is slightly more strict than necessary; the minimum requirement
889     // is that there be no more than one indirectbr branching to BB. And
890     // all BlockAddress uses would need to be updated.
891     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
892            "Cannot split an edge from an IndirectBrInst");
893     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
894   }
895 
896   bool HasLoopExit = false;
897   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
898                             HasLoopExit);
899 
900   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
901   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
902 
903   // Move the remaining edges from OrigBB to point to NewBB2.
904   SmallVector<BasicBlock*, 8> NewBB2Preds;
905   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
906        i != e; ) {
907     BasicBlock *Pred = *i++;
908     if (Pred == NewBB1) continue;
909     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
910            "Cannot split an edge from an IndirectBrInst");
911     NewBB2Preds.push_back(Pred);
912     e = pred_end(OrigBB);
913   }
914 
915   BasicBlock *NewBB2 = nullptr;
916   if (!NewBB2Preds.empty()) {
917     // Create another basic block for the rest of OrigBB's predecessors.
918     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
919                                 OrigBB->getName() + Suffix2,
920                                 OrigBB->getParent(), OrigBB);
921     NewBBs.push_back(NewBB2);
922 
923     // The new block unconditionally branches to the old block.
924     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
925     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
926 
927     // Move the remaining edges from OrigBB to point to NewBB2.
928     for (BasicBlock *NewBB2Pred : NewBB2Preds)
929       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
930 
931     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
932     HasLoopExit = false;
933     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
934                               PreserveLCSSA, HasLoopExit);
935 
936     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
937     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
938   }
939 
940   LandingPadInst *LPad = OrigBB->getLandingPadInst();
941   Instruction *Clone1 = LPad->clone();
942   Clone1->setName(Twine("lpad") + Suffix1);
943   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
944 
945   if (NewBB2) {
946     Instruction *Clone2 = LPad->clone();
947     Clone2->setName(Twine("lpad") + Suffix2);
948     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
949 
950     // Create a PHI node for the two cloned landingpad instructions only
951     // if the original landingpad instruction has some uses.
952     if (!LPad->use_empty()) {
953       assert(!LPad->getType()->isTokenTy() &&
954              "Split cannot be applied if LPad is token type. Otherwise an "
955              "invalid PHINode of token type would be created.");
956       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
957       PN->addIncoming(Clone1, NewBB1);
958       PN->addIncoming(Clone2, NewBB2);
959       LPad->replaceAllUsesWith(PN);
960     }
961     LPad->eraseFromParent();
962   } else {
963     // There is no second clone. Just replace the landing pad with the first
964     // clone.
965     LPad->replaceAllUsesWith(Clone1);
966     LPad->eraseFromParent();
967   }
968 }
969 
970 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
971                                              BasicBlock *Pred,
972                                              DomTreeUpdater *DTU) {
973   Instruction *UncondBranch = Pred->getTerminator();
974   // Clone the return and add it to the end of the predecessor.
975   Instruction *NewRet = RI->clone();
976   Pred->getInstList().push_back(NewRet);
977 
978   // If the return instruction returns a value, and if the value was a
979   // PHI node in "BB", propagate the right value into the return.
980   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
981        i != e; ++i) {
982     Value *V = *i;
983     Instruction *NewBC = nullptr;
984     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
985       // Return value might be bitcasted. Clone and insert it before the
986       // return instruction.
987       V = BCI->getOperand(0);
988       NewBC = BCI->clone();
989       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
990       *i = NewBC;
991     }
992 
993     Instruction *NewEV = nullptr;
994     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
995       V = EVI->getOperand(0);
996       NewEV = EVI->clone();
997       if (NewBC) {
998         NewBC->setOperand(0, NewEV);
999         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1000       } else {
1001         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1002         *i = NewEV;
1003       }
1004     }
1005 
1006     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1007       if (PN->getParent() == BB) {
1008         if (NewEV) {
1009           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1010         } else if (NewBC)
1011           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1012         else
1013           *i = PN->getIncomingValueForBlock(Pred);
1014       }
1015     }
1016   }
1017 
1018   // Update any PHI nodes in the returning block to realize that we no
1019   // longer branch to them.
1020   BB->removePredecessor(Pred);
1021   UncondBranch->eraseFromParent();
1022 
1023   if (DTU)
1024     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1025 
1026   return cast<ReturnInst>(NewRet);
1027 }
1028 
1029 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1030                                              Instruction *SplitBefore,
1031                                              bool Unreachable,
1032                                              MDNode *BranchWeights,
1033                                              DominatorTree *DT, LoopInfo *LI,
1034                                              BasicBlock *ThenBlock) {
1035   BasicBlock *Head = SplitBefore->getParent();
1036   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1037   Instruction *HeadOldTerm = Head->getTerminator();
1038   LLVMContext &C = Head->getContext();
1039   Instruction *CheckTerm;
1040   bool CreateThenBlock = (ThenBlock == nullptr);
1041   if (CreateThenBlock) {
1042     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1043     if (Unreachable)
1044       CheckTerm = new UnreachableInst(C, ThenBlock);
1045     else
1046       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1047     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1048   } else
1049     CheckTerm = ThenBlock->getTerminator();
1050   BranchInst *HeadNewTerm =
1051     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
1052   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1053   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1054 
1055   if (DT) {
1056     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1057       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1058 
1059       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1060       for (DomTreeNode *Child : Children)
1061         DT->changeImmediateDominator(Child, NewNode);
1062 
1063       // Head dominates ThenBlock.
1064       if (CreateThenBlock)
1065         DT->addNewBlock(ThenBlock, Head);
1066       else
1067         DT->changeImmediateDominator(ThenBlock, Head);
1068     }
1069   }
1070 
1071   if (LI) {
1072     if (Loop *L = LI->getLoopFor(Head)) {
1073       L->addBasicBlockToLoop(ThenBlock, *LI);
1074       L->addBasicBlockToLoop(Tail, *LI);
1075     }
1076   }
1077 
1078   return CheckTerm;
1079 }
1080 
1081 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1082                                          Instruction **ThenTerm,
1083                                          Instruction **ElseTerm,
1084                                          MDNode *BranchWeights) {
1085   BasicBlock *Head = SplitBefore->getParent();
1086   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1087   Instruction *HeadOldTerm = Head->getTerminator();
1088   LLVMContext &C = Head->getContext();
1089   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1090   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1091   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1092   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1093   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1094   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1095   BranchInst *HeadNewTerm =
1096     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1097   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1098   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1099 }
1100 
1101 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1102                              BasicBlock *&IfFalse) {
1103   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1104   BasicBlock *Pred1 = nullptr;
1105   BasicBlock *Pred2 = nullptr;
1106 
1107   if (SomePHI) {
1108     if (SomePHI->getNumIncomingValues() != 2)
1109       return nullptr;
1110     Pred1 = SomePHI->getIncomingBlock(0);
1111     Pred2 = SomePHI->getIncomingBlock(1);
1112   } else {
1113     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1114     if (PI == PE) // No predecessor
1115       return nullptr;
1116     Pred1 = *PI++;
1117     if (PI == PE) // Only one predecessor
1118       return nullptr;
1119     Pred2 = *PI++;
1120     if (PI != PE) // More than two predecessors
1121       return nullptr;
1122   }
1123 
1124   // We can only handle branches.  Other control flow will be lowered to
1125   // branches if possible anyway.
1126   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1127   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1128   if (!Pred1Br || !Pred2Br)
1129     return nullptr;
1130 
1131   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1132   // either are.
1133   if (Pred2Br->isConditional()) {
1134     // If both branches are conditional, we don't have an "if statement".  In
1135     // reality, we could transform this case, but since the condition will be
1136     // required anyway, we stand no chance of eliminating it, so the xform is
1137     // probably not profitable.
1138     if (Pred1Br->isConditional())
1139       return nullptr;
1140 
1141     std::swap(Pred1, Pred2);
1142     std::swap(Pred1Br, Pred2Br);
1143   }
1144 
1145   if (Pred1Br->isConditional()) {
1146     // The only thing we have to watch out for here is to make sure that Pred2
1147     // doesn't have incoming edges from other blocks.  If it does, the condition
1148     // doesn't dominate BB.
1149     if (!Pred2->getSinglePredecessor())
1150       return nullptr;
1151 
1152     // If we found a conditional branch predecessor, make sure that it branches
1153     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1154     if (Pred1Br->getSuccessor(0) == BB &&
1155         Pred1Br->getSuccessor(1) == Pred2) {
1156       IfTrue = Pred1;
1157       IfFalse = Pred2;
1158     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1159                Pred1Br->getSuccessor(1) == BB) {
1160       IfTrue = Pred2;
1161       IfFalse = Pred1;
1162     } else {
1163       // We know that one arm of the conditional goes to BB, so the other must
1164       // go somewhere unrelated, and this must not be an "if statement".
1165       return nullptr;
1166     }
1167 
1168     return Pred1Br->getCondition();
1169   }
1170 
1171   // Ok, if we got here, both predecessors end with an unconditional branch to
1172   // BB.  Don't panic!  If both blocks only have a single (identical)
1173   // predecessor, and THAT is a conditional branch, then we're all ok!
1174   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1175   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1176     return nullptr;
1177 
1178   // Otherwise, if this is a conditional branch, then we can use it!
1179   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1180   if (!BI) return nullptr;
1181 
1182   assert(BI->isConditional() && "Two successors but not conditional?");
1183   if (BI->getSuccessor(0) == Pred1) {
1184     IfTrue = Pred1;
1185     IfFalse = Pred2;
1186   } else {
1187     IfTrue = Pred2;
1188     IfFalse = Pred1;
1189   }
1190   return BI->getCondition();
1191 }
1192 
1193 // After creating a control flow hub, the operands of PHINodes in an outgoing
1194 // block Out no longer match the predecessors of that block. Predecessors of Out
1195 // that are incoming blocks to the hub are now replaced by just one edge from
1196 // the hub. To match this new control flow, the corresponding values from each
1197 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1198 //
1199 // This operation cannot be performed with SSAUpdater, because it involves one
1200 // new use: If the block Out is in the list of Incoming blocks, then the newly
1201 // created PHI in the Hub will use itself along that edge from Out to Hub.
1202 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1203                           const SetVector<BasicBlock *> &Incoming,
1204                           BasicBlock *FirstGuardBlock) {
1205   auto I = Out->begin();
1206   while (I != Out->end() && isa<PHINode>(I)) {
1207     auto Phi = cast<PHINode>(I);
1208     auto NewPhi =
1209         PHINode::Create(Phi->getType(), Incoming.size(),
1210                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1211     for (auto In : Incoming) {
1212       Value *V = UndefValue::get(Phi->getType());
1213       if (In == Out) {
1214         V = NewPhi;
1215       } else if (Phi->getBasicBlockIndex(In) != -1) {
1216         V = Phi->removeIncomingValue(In, false);
1217       }
1218       NewPhi->addIncoming(V, In);
1219     }
1220     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1221     if (Phi->getNumOperands() == 0) {
1222       Phi->replaceAllUsesWith(NewPhi);
1223       I = Phi->eraseFromParent();
1224       continue;
1225     }
1226     Phi->addIncoming(NewPhi, GuardBlock);
1227     ++I;
1228   }
1229 }
1230 
1231 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1232 using BBSetVector = SetVector<BasicBlock *>;
1233 
1234 // Redirects the terminator of the incoming block to the first guard
1235 // block in the hub. The condition of the original terminator (if it
1236 // was conditional) and its original successors are returned as a
1237 // tuple <condition, succ0, succ1>. The function additionally filters
1238 // out successors that are not in the set of outgoing blocks.
1239 //
1240 // - condition is non-null iff the branch is conditional.
1241 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1242 // - Succ2 is non-null iff condition is non-null and the fallthrough
1243 //         target is an outgoing block.
1244 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1245 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1246               const BBSetVector &Outgoing) {
1247   auto Branch = cast<BranchInst>(BB->getTerminator());
1248   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1249 
1250   BasicBlock *Succ0 = Branch->getSuccessor(0);
1251   BasicBlock *Succ1 = nullptr;
1252   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1253 
1254   if (Branch->isUnconditional()) {
1255     Branch->setSuccessor(0, FirstGuardBlock);
1256     assert(Succ0);
1257   } else {
1258     Succ1 = Branch->getSuccessor(1);
1259     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1260     assert(Succ0 || Succ1);
1261     if (Succ0 && !Succ1) {
1262       Branch->setSuccessor(0, FirstGuardBlock);
1263     } else if (Succ1 && !Succ0) {
1264       Branch->setSuccessor(1, FirstGuardBlock);
1265     } else {
1266       Branch->eraseFromParent();
1267       BranchInst::Create(FirstGuardBlock, BB);
1268     }
1269   }
1270 
1271   assert(Succ0 || Succ1);
1272   return std::make_tuple(Condition, Succ0, Succ1);
1273 }
1274 
1275 // Capture the existing control flow as guard predicates, and redirect
1276 // control flow from every incoming block to the first guard block in
1277 // the hub.
1278 //
1279 // There is one guard predicate for each outgoing block OutBB. The
1280 // predicate is a PHINode with one input for each InBB which
1281 // represents whether the hub should transfer control flow to OutBB if
1282 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1283 // evaluates them in the same order as the Outgoing set-vector, and
1284 // control branches to the first outgoing block whose predicate
1285 // evaluates to true.
1286 static void convertToGuardPredicates(
1287     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1288     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1289     const BBSetVector &Outgoing) {
1290   auto &Context = Incoming.front()->getContext();
1291   auto BoolTrue = ConstantInt::getTrue(Context);
1292   auto BoolFalse = ConstantInt::getFalse(Context);
1293 
1294   // The predicate for the last outgoing is trivially true, and so we
1295   // process only the first N-1 successors.
1296   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1297     auto Out = Outgoing[i];
1298     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1299     auto Phi =
1300         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1301                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1302     GuardPredicates[Out] = Phi;
1303   }
1304 
1305   for (auto In : Incoming) {
1306     Value *Condition;
1307     BasicBlock *Succ0;
1308     BasicBlock *Succ1;
1309     std::tie(Condition, Succ0, Succ1) =
1310         redirectToHub(In, FirstGuardBlock, Outgoing);
1311 
1312     // Optimization: Consider an incoming block A with both successors
1313     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1314     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1315     // first in the loop below, control will branch to Succ0 using the
1316     // corresponding predicate. But if that branch is not taken, then
1317     // control must reach Succ1, which means that the predicate for
1318     // Succ1 is always true.
1319     bool OneSuccessorDone = false;
1320     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1321       auto Out = Outgoing[i];
1322       auto Phi = GuardPredicates[Out];
1323       if (Out != Succ0 && Out != Succ1) {
1324         Phi->addIncoming(BoolFalse, In);
1325         continue;
1326       }
1327       // Optimization: When only one successor is an outgoing block,
1328       // the predicate is always true.
1329       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1330         Phi->addIncoming(BoolTrue, In);
1331         continue;
1332       }
1333       assert(Succ0 && Succ1);
1334       OneSuccessorDone = true;
1335       if (Out == Succ0) {
1336         Phi->addIncoming(Condition, In);
1337         continue;
1338       }
1339       auto Inverted = invertCondition(Condition);
1340       DeletionCandidates.push_back(Condition);
1341       Phi->addIncoming(Inverted, In);
1342     }
1343   }
1344 }
1345 
1346 // For each outgoing block OutBB, create a guard block in the Hub. The
1347 // first guard block was already created outside, and available as the
1348 // first element in the vector of guard blocks.
1349 //
1350 // Each guard block terminates in a conditional branch that transfers
1351 // control to the corresponding outgoing block or the next guard
1352 // block. The last guard block has two outgoing blocks as successors
1353 // since the condition for the final outgoing block is trivially
1354 // true. So we create one less block (including the first guard block)
1355 // than the number of outgoing blocks.
1356 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1357                               Function *F, const BBSetVector &Outgoing,
1358                               BBPredicates &GuardPredicates, StringRef Prefix) {
1359   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1360     GuardBlocks.push_back(
1361         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1362   }
1363   assert(GuardBlocks.size() == GuardPredicates.size());
1364 
1365   // To help keep the loop simple, temporarily append the last
1366   // outgoing block to the list of guard blocks.
1367   GuardBlocks.push_back(Outgoing.back());
1368 
1369   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1370     auto Out = Outgoing[i];
1371     assert(GuardPredicates.count(Out));
1372     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1373                        GuardBlocks[i]);
1374   }
1375 
1376   // Remove the last block from the guard list.
1377   GuardBlocks.pop_back();
1378 }
1379 
1380 BasicBlock *llvm::CreateControlFlowHub(
1381     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1382     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1383     const StringRef Prefix) {
1384   auto F = Incoming.front()->getParent();
1385   auto FirstGuardBlock =
1386       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1387 
1388   SmallVector<DominatorTree::UpdateType, 16> Updates;
1389   if (DTU) {
1390     for (auto In : Incoming) {
1391       for (auto Succ : successors(In)) {
1392         if (Outgoing.count(Succ))
1393           Updates.push_back({DominatorTree::Delete, In, Succ});
1394       }
1395       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1396     }
1397   }
1398 
1399   BBPredicates GuardPredicates;
1400   SmallVector<WeakVH, 8> DeletionCandidates;
1401   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1402                            Incoming, Outgoing);
1403 
1404   GuardBlocks.push_back(FirstGuardBlock);
1405   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1406 
1407   // Update the PHINodes in each outgoing block to match the new control flow.
1408   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1409     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1410   }
1411   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1412 
1413   if (DTU) {
1414     int NumGuards = GuardBlocks.size();
1415     assert((int)Outgoing.size() == NumGuards + 1);
1416     for (int i = 0; i != NumGuards - 1; ++i) {
1417       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1418       Updates.push_back(
1419           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1420     }
1421     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1422                        Outgoing[NumGuards - 1]});
1423     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1424                        Outgoing[NumGuards]});
1425     DTU->applyUpdates(Updates);
1426   }
1427 
1428   for (auto I : DeletionCandidates) {
1429     if (I->use_empty())
1430       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1431         Inst->eraseFromParent();
1432   }
1433 
1434   return FirstGuardBlock;
1435 }
1436