1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 void llvm::DetatchDeadBlocks( 55 ArrayRef<BasicBlock *> BBs, 56 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 57 bool KeepOneInputPHIs) { 58 for (auto *BB : BBs) { 59 // Loop through all of our successors and make sure they know that one 60 // of their predecessors is going away. 61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 62 for (BasicBlock *Succ : successors(BB)) { 63 Succ->removePredecessor(BB, KeepOneInputPHIs); 64 if (Updates && UniqueSuccessors.insert(Succ).second) 65 Updates->push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 } 86 } 87 88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 89 bool KeepOneInputPHIs) { 90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 91 } 92 93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 94 bool KeepOneInputPHIs) { 95 #ifndef NDEBUG 96 // Make sure that all predecessors of each dead block is also dead. 97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 98 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 99 for (auto *BB : Dead) 100 for (BasicBlock *Pred : predecessors(BB)) 101 assert(Dead.count(Pred) && "All predecessors must be dead!"); 102 #endif 103 104 SmallVector<DominatorTree::UpdateType, 4> Updates; 105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 106 107 if (DTU) 108 DTU->applyUpdatesPermissive(Updates); 109 110 for (BasicBlock *BB : BBs) 111 if (DTU) 112 DTU->deleteBB(BB); 113 else 114 BB->eraseFromParent(); 115 } 116 117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 118 bool KeepOneInputPHIs) { 119 df_iterator_default_set<BasicBlock*> Reachable; 120 121 // Mark all reachable blocks. 122 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 123 (void)BB/* Mark all reachable blocks */; 124 125 // Collect all dead blocks. 126 std::vector<BasicBlock*> DeadBlocks; 127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 128 if (!Reachable.count(&*I)) { 129 BasicBlock *BB = &*I; 130 DeadBlocks.push_back(BB); 131 } 132 133 // Delete the dead blocks. 134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 135 136 return !DeadBlocks.empty(); 137 } 138 139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 140 MemoryDependenceResults *MemDep) { 141 if (!isa<PHINode>(BB->begin())) return; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 } 155 156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 157 // Recursively deleting a PHI may cause multiple PHIs to be deleted 158 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 159 SmallVector<WeakTrackingVH, 8> PHIs; 160 for (PHINode &PN : BB->phis()) 161 PHIs.push_back(&PN); 162 163 bool Changed = false; 164 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 165 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 166 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 167 168 return Changed; 169 } 170 171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 172 LoopInfo *LI, MemorySSAUpdater *MSSAU, 173 MemoryDependenceResults *MemDep, 174 bool PredecessorWithTwoSuccessors) { 175 if (BB->hasAddressTaken()) 176 return false; 177 178 // Can't merge if there are multiple predecessors, or no predecessors. 179 BasicBlock *PredBB = BB->getUniquePredecessor(); 180 if (!PredBB) return false; 181 182 // Don't break self-loops. 183 if (PredBB == BB) return false; 184 // Don't break unwinding instructions. 185 if (PredBB->getTerminator()->isExceptionalTerminator()) 186 return false; 187 188 // Can't merge if there are multiple distinct successors. 189 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 190 return false; 191 192 // Currently only allow PredBB to have two predecessors, one being BB. 193 // Update BI to branch to BB's only successor instead of BB. 194 BranchInst *PredBB_BI; 195 BasicBlock *NewSucc = nullptr; 196 unsigned FallThruPath; 197 if (PredecessorWithTwoSuccessors) { 198 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 199 return false; 200 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 201 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 202 return false; 203 NewSucc = BB_JmpI->getSuccessor(0); 204 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 205 } 206 207 // Can't merge if there is PHI loop. 208 for (PHINode &PN : BB->phis()) 209 for (Value *IncValue : PN.incoming_values()) 210 if (IncValue == &PN) 211 return false; 212 213 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 214 << PredBB->getName() << "\n"); 215 216 // Begin by getting rid of unneeded PHIs. 217 SmallVector<AssertingVH<Value>, 4> IncomingValues; 218 if (isa<PHINode>(BB->front())) { 219 for (PHINode &PN : BB->phis()) 220 if (!isa<PHINode>(PN.getIncomingValue(0)) || 221 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 222 IncomingValues.push_back(PN.getIncomingValue(0)); 223 FoldSingleEntryPHINodes(BB, MemDep); 224 } 225 226 // DTU update: Collect all the edges that exit BB. 227 // These dominator edges will be redirected from Pred. 228 std::vector<DominatorTree::UpdateType> Updates; 229 if (DTU) { 230 Updates.reserve(1 + (2 * succ_size(BB))); 231 // Add insert edges first. Experimentally, for the particular case of two 232 // blocks that can be merged, with a single successor and single predecessor 233 // respectively, it is beneficial to have all insert updates first. Deleting 234 // edges first may lead to unreachable blocks, followed by inserting edges 235 // making the blocks reachable again. Such DT updates lead to high compile 236 // times. We add inserts before deletes here to reduce compile time. 237 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 238 // This successor of BB may already have PredBB as a predecessor. 239 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 240 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 241 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 242 Updates.push_back({DominatorTree::Delete, BB, *I}); 243 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 244 } 245 246 Instruction *PTI = PredBB->getTerminator(); 247 Instruction *STI = BB->getTerminator(); 248 Instruction *Start = &*BB->begin(); 249 // If there's nothing to move, mark the starting instruction as the last 250 // instruction in the block. Terminator instruction is handled separately. 251 if (Start == STI) 252 Start = PTI; 253 254 // Move all definitions in the successor to the predecessor... 255 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 256 BB->begin(), STI->getIterator()); 257 258 if (MSSAU) 259 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 260 261 // Make all PHI nodes that referred to BB now refer to Pred as their 262 // source... 263 BB->replaceAllUsesWith(PredBB); 264 265 if (PredecessorWithTwoSuccessors) { 266 // Delete the unconditional branch from BB. 267 BB->getInstList().pop_back(); 268 269 // Update branch in the predecessor. 270 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 271 } else { 272 // Delete the unconditional branch from the predecessor. 273 PredBB->getInstList().pop_back(); 274 275 // Move terminator instruction. 276 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 277 278 // Terminator may be a memory accessing instruction too. 279 if (MSSAU) 280 if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>( 281 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator()))) 282 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End); 283 } 284 // Add unreachable to now empty BB. 285 new UnreachableInst(BB->getContext(), BB); 286 287 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 288 for (auto Incoming : IncomingValues) { 289 if (isa<Instruction>(*Incoming)) { 290 SmallVector<DbgValueInst *, 2> DbgValues; 291 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 292 DbgValueSet; 293 llvm::findDbgValues(DbgValues, Incoming); 294 for (auto &DVI : DbgValues) { 295 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 296 if (!R.second) 297 DVI->eraseFromParent(); 298 } 299 } 300 } 301 302 // Inherit predecessors name if it exists. 303 if (!PredBB->hasName()) 304 PredBB->takeName(BB); 305 306 if (LI) 307 LI->removeBlock(BB); 308 309 if (MemDep) 310 MemDep->invalidateCachedPredecessors(); 311 312 // Finally, erase the old block and update dominator info. 313 if (DTU) { 314 assert(BB->getInstList().size() == 1 && 315 isa<UnreachableInst>(BB->getTerminator()) && 316 "The successor list of BB isn't empty before " 317 "applying corresponding DTU updates."); 318 DTU->applyUpdatesPermissive(Updates); 319 DTU->deleteBB(BB); 320 } else { 321 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 322 } 323 324 return true; 325 } 326 327 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 328 BasicBlock::iterator &BI, Value *V) { 329 Instruction &I = *BI; 330 // Replaces all of the uses of the instruction with uses of the value 331 I.replaceAllUsesWith(V); 332 333 // Make sure to propagate a name if there is one already. 334 if (I.hasName() && !V->hasName()) 335 V->takeName(&I); 336 337 // Delete the unnecessary instruction now... 338 BI = BIL.erase(BI); 339 } 340 341 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 342 BasicBlock::iterator &BI, Instruction *I) { 343 assert(I->getParent() == nullptr && 344 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 345 346 // Copy debug location to newly added instruction, if it wasn't already set 347 // by the caller. 348 if (!I->getDebugLoc()) 349 I->setDebugLoc(BI->getDebugLoc()); 350 351 // Insert the new instruction into the basic block... 352 BasicBlock::iterator New = BIL.insert(BI, I); 353 354 // Replace all uses of the old instruction, and delete it. 355 ReplaceInstWithValue(BIL, BI, I); 356 357 // Move BI back to point to the newly inserted instruction 358 BI = New; 359 } 360 361 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 362 BasicBlock::iterator BI(From); 363 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 364 } 365 366 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 367 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 368 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 369 370 // If this is a critical edge, let SplitCriticalEdge do it. 371 Instruction *LatchTerm = BB->getTerminator(); 372 if (SplitCriticalEdge( 373 LatchTerm, SuccNum, 374 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 375 return LatchTerm->getSuccessor(SuccNum); 376 377 // If the edge isn't critical, then BB has a single successor or Succ has a 378 // single pred. Split the block. 379 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 380 // If the successor only has a single pred, split the top of the successor 381 // block. 382 assert(SP == BB && "CFG broken"); 383 SP = nullptr; 384 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 385 } 386 387 // Otherwise, if BB has a single successor, split it at the bottom of the 388 // block. 389 assert(BB->getTerminator()->getNumSuccessors() == 1 && 390 "Should have a single succ!"); 391 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 392 } 393 394 unsigned 395 llvm::SplitAllCriticalEdges(Function &F, 396 const CriticalEdgeSplittingOptions &Options) { 397 unsigned NumBroken = 0; 398 for (BasicBlock &BB : F) { 399 Instruction *TI = BB.getTerminator(); 400 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 401 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 402 if (SplitCriticalEdge(TI, i, Options)) 403 ++NumBroken; 404 } 405 return NumBroken; 406 } 407 408 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 409 DominatorTree *DT, LoopInfo *LI, 410 MemorySSAUpdater *MSSAU, const Twine &BBName) { 411 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 412 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 413 ++SplitIt; 414 std::string Name = BBName.str(); 415 BasicBlock *New = Old->splitBasicBlock( 416 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 417 418 // The new block lives in whichever loop the old one did. This preserves 419 // LCSSA as well, because we force the split point to be after any PHI nodes. 420 if (LI) 421 if (Loop *L = LI->getLoopFor(Old)) 422 L->addBasicBlockToLoop(New, *LI); 423 424 if (DT) 425 // Old dominates New. New node dominates all other nodes dominated by Old. 426 if (DomTreeNode *OldNode = DT->getNode(Old)) { 427 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 428 429 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 430 for (DomTreeNode *I : Children) 431 DT->changeImmediateDominator(I, NewNode); 432 } 433 434 // Move MemoryAccesses still tracked in Old, but part of New now. 435 // Update accesses in successor blocks accordingly. 436 if (MSSAU) 437 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 438 439 return New; 440 } 441 442 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 443 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 444 ArrayRef<BasicBlock *> Preds, 445 DominatorTree *DT, LoopInfo *LI, 446 MemorySSAUpdater *MSSAU, 447 bool PreserveLCSSA, bool &HasLoopExit) { 448 // Update dominator tree if available. 449 if (DT) { 450 if (OldBB == DT->getRootNode()->getBlock()) { 451 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 452 DT->setNewRoot(NewBB); 453 } else { 454 // Split block expects NewBB to have a non-empty set of predecessors. 455 DT->splitBlock(NewBB); 456 } 457 } 458 459 // Update MemoryPhis after split if MemorySSA is available 460 if (MSSAU) 461 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 462 463 // The rest of the logic is only relevant for updating the loop structures. 464 if (!LI) 465 return; 466 467 assert(DT && "DT should be available to update LoopInfo!"); 468 Loop *L = LI->getLoopFor(OldBB); 469 470 // If we need to preserve loop analyses, collect some information about how 471 // this split will affect loops. 472 bool IsLoopEntry = !!L; 473 bool SplitMakesNewLoopHeader = false; 474 for (BasicBlock *Pred : Preds) { 475 // Preds that are not reachable from entry should not be used to identify if 476 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 477 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 478 // as true and make the NewBB the header of some loop. This breaks LI. 479 if (!DT->isReachableFromEntry(Pred)) 480 continue; 481 // If we need to preserve LCSSA, determine if any of the preds is a loop 482 // exit. 483 if (PreserveLCSSA) 484 if (Loop *PL = LI->getLoopFor(Pred)) 485 if (!PL->contains(OldBB)) 486 HasLoopExit = true; 487 488 // If we need to preserve LoopInfo, note whether any of the preds crosses 489 // an interesting loop boundary. 490 if (!L) 491 continue; 492 if (L->contains(Pred)) 493 IsLoopEntry = false; 494 else 495 SplitMakesNewLoopHeader = true; 496 } 497 498 // Unless we have a loop for OldBB, nothing else to do here. 499 if (!L) 500 return; 501 502 if (IsLoopEntry) { 503 // Add the new block to the nearest enclosing loop (and not an adjacent 504 // loop). To find this, examine each of the predecessors and determine which 505 // loops enclose them, and select the most-nested loop which contains the 506 // loop containing the block being split. 507 Loop *InnermostPredLoop = nullptr; 508 for (BasicBlock *Pred : Preds) { 509 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 510 // Seek a loop which actually contains the block being split (to avoid 511 // adjacent loops). 512 while (PredLoop && !PredLoop->contains(OldBB)) 513 PredLoop = PredLoop->getParentLoop(); 514 515 // Select the most-nested of these loops which contains the block. 516 if (PredLoop && PredLoop->contains(OldBB) && 517 (!InnermostPredLoop || 518 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 519 InnermostPredLoop = PredLoop; 520 } 521 } 522 523 if (InnermostPredLoop) 524 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 525 } else { 526 L->addBasicBlockToLoop(NewBB, *LI); 527 if (SplitMakesNewLoopHeader) 528 L->moveToHeader(NewBB); 529 } 530 } 531 532 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 533 /// This also updates AliasAnalysis, if available. 534 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 535 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 536 bool HasLoopExit) { 537 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 538 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 539 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 540 PHINode *PN = cast<PHINode>(I++); 541 542 // Check to see if all of the values coming in are the same. If so, we 543 // don't need to create a new PHI node, unless it's needed for LCSSA. 544 Value *InVal = nullptr; 545 if (!HasLoopExit) { 546 InVal = PN->getIncomingValueForBlock(Preds[0]); 547 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 548 if (!PredSet.count(PN->getIncomingBlock(i))) 549 continue; 550 if (!InVal) 551 InVal = PN->getIncomingValue(i); 552 else if (InVal != PN->getIncomingValue(i)) { 553 InVal = nullptr; 554 break; 555 } 556 } 557 } 558 559 if (InVal) { 560 // If all incoming values for the new PHI would be the same, just don't 561 // make a new PHI. Instead, just remove the incoming values from the old 562 // PHI. 563 564 // NOTE! This loop walks backwards for a reason! First off, this minimizes 565 // the cost of removal if we end up removing a large number of values, and 566 // second off, this ensures that the indices for the incoming values 567 // aren't invalidated when we remove one. 568 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 569 if (PredSet.count(PN->getIncomingBlock(i))) 570 PN->removeIncomingValue(i, false); 571 572 // Add an incoming value to the PHI node in the loop for the preheader 573 // edge. 574 PN->addIncoming(InVal, NewBB); 575 continue; 576 } 577 578 // If the values coming into the block are not the same, we need a new 579 // PHI. 580 // Create the new PHI node, insert it into NewBB at the end of the block 581 PHINode *NewPHI = 582 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 583 584 // NOTE! This loop walks backwards for a reason! First off, this minimizes 585 // the cost of removal if we end up removing a large number of values, and 586 // second off, this ensures that the indices for the incoming values aren't 587 // invalidated when we remove one. 588 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 589 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 590 if (PredSet.count(IncomingBB)) { 591 Value *V = PN->removeIncomingValue(i, false); 592 NewPHI->addIncoming(V, IncomingBB); 593 } 594 } 595 596 PN->addIncoming(NewPHI, NewBB); 597 } 598 } 599 600 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 601 ArrayRef<BasicBlock *> Preds, 602 const char *Suffix, DominatorTree *DT, 603 LoopInfo *LI, MemorySSAUpdater *MSSAU, 604 bool PreserveLCSSA) { 605 // Do not attempt to split that which cannot be split. 606 if (!BB->canSplitPredecessors()) 607 return nullptr; 608 609 // For the landingpads we need to act a bit differently. 610 // Delegate this work to the SplitLandingPadPredecessors. 611 if (BB->isLandingPad()) { 612 SmallVector<BasicBlock*, 2> NewBBs; 613 std::string NewName = std::string(Suffix) + ".split-lp"; 614 615 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 616 LI, MSSAU, PreserveLCSSA); 617 return NewBBs[0]; 618 } 619 620 // Create new basic block, insert right before the original block. 621 BasicBlock *NewBB = BasicBlock::Create( 622 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 623 624 // The new block unconditionally branches to the old block. 625 BranchInst *BI = BranchInst::Create(BB, NewBB); 626 // Splitting the predecessors of a loop header creates a preheader block. 627 if (LI && LI->isLoopHeader(BB)) 628 // Using the loop start line number prevents debuggers stepping into the 629 // loop body for this instruction. 630 BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc()); 631 else 632 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 633 634 // Move the edges from Preds to point to NewBB instead of BB. 635 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 636 // This is slightly more strict than necessary; the minimum requirement 637 // is that there be no more than one indirectbr branching to BB. And 638 // all BlockAddress uses would need to be updated. 639 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 640 "Cannot split an edge from an IndirectBrInst"); 641 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 642 "Cannot split an edge from a CallBrInst"); 643 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 644 } 645 646 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 647 // node becomes an incoming value for BB's phi node. However, if the Preds 648 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 649 // account for the newly created predecessor. 650 if (Preds.empty()) { 651 // Insert dummy values as the incoming value. 652 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 653 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 654 } 655 656 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 657 bool HasLoopExit = false; 658 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 659 HasLoopExit); 660 661 if (!Preds.empty()) { 662 // Update the PHI nodes in BB with the values coming from NewBB. 663 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 664 } 665 666 return NewBB; 667 } 668 669 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 670 ArrayRef<BasicBlock *> Preds, 671 const char *Suffix1, const char *Suffix2, 672 SmallVectorImpl<BasicBlock *> &NewBBs, 673 DominatorTree *DT, LoopInfo *LI, 674 MemorySSAUpdater *MSSAU, 675 bool PreserveLCSSA) { 676 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 677 678 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 679 // it right before the original block. 680 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 681 OrigBB->getName() + Suffix1, 682 OrigBB->getParent(), OrigBB); 683 NewBBs.push_back(NewBB1); 684 685 // The new block unconditionally branches to the old block. 686 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 687 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 688 689 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 690 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 691 // This is slightly more strict than necessary; the minimum requirement 692 // is that there be no more than one indirectbr branching to BB. And 693 // all BlockAddress uses would need to be updated. 694 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 695 "Cannot split an edge from an IndirectBrInst"); 696 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 697 } 698 699 bool HasLoopExit = false; 700 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 701 HasLoopExit); 702 703 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 704 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 705 706 // Move the remaining edges from OrigBB to point to NewBB2. 707 SmallVector<BasicBlock*, 8> NewBB2Preds; 708 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 709 i != e; ) { 710 BasicBlock *Pred = *i++; 711 if (Pred == NewBB1) continue; 712 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 713 "Cannot split an edge from an IndirectBrInst"); 714 NewBB2Preds.push_back(Pred); 715 e = pred_end(OrigBB); 716 } 717 718 BasicBlock *NewBB2 = nullptr; 719 if (!NewBB2Preds.empty()) { 720 // Create another basic block for the rest of OrigBB's predecessors. 721 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 722 OrigBB->getName() + Suffix2, 723 OrigBB->getParent(), OrigBB); 724 NewBBs.push_back(NewBB2); 725 726 // The new block unconditionally branches to the old block. 727 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 728 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 729 730 // Move the remaining edges from OrigBB to point to NewBB2. 731 for (BasicBlock *NewBB2Pred : NewBB2Preds) 732 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 733 734 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 735 HasLoopExit = false; 736 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 737 PreserveLCSSA, HasLoopExit); 738 739 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 740 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 741 } 742 743 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 744 Instruction *Clone1 = LPad->clone(); 745 Clone1->setName(Twine("lpad") + Suffix1); 746 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 747 748 if (NewBB2) { 749 Instruction *Clone2 = LPad->clone(); 750 Clone2->setName(Twine("lpad") + Suffix2); 751 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 752 753 // Create a PHI node for the two cloned landingpad instructions only 754 // if the original landingpad instruction has some uses. 755 if (!LPad->use_empty()) { 756 assert(!LPad->getType()->isTokenTy() && 757 "Split cannot be applied if LPad is token type. Otherwise an " 758 "invalid PHINode of token type would be created."); 759 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 760 PN->addIncoming(Clone1, NewBB1); 761 PN->addIncoming(Clone2, NewBB2); 762 LPad->replaceAllUsesWith(PN); 763 } 764 LPad->eraseFromParent(); 765 } else { 766 // There is no second clone. Just replace the landing pad with the first 767 // clone. 768 LPad->replaceAllUsesWith(Clone1); 769 LPad->eraseFromParent(); 770 } 771 } 772 773 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 774 BasicBlock *Pred, 775 DomTreeUpdater *DTU) { 776 Instruction *UncondBranch = Pred->getTerminator(); 777 // Clone the return and add it to the end of the predecessor. 778 Instruction *NewRet = RI->clone(); 779 Pred->getInstList().push_back(NewRet); 780 781 // If the return instruction returns a value, and if the value was a 782 // PHI node in "BB", propagate the right value into the return. 783 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 784 i != e; ++i) { 785 Value *V = *i; 786 Instruction *NewBC = nullptr; 787 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 788 // Return value might be bitcasted. Clone and insert it before the 789 // return instruction. 790 V = BCI->getOperand(0); 791 NewBC = BCI->clone(); 792 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 793 *i = NewBC; 794 } 795 if (PHINode *PN = dyn_cast<PHINode>(V)) { 796 if (PN->getParent() == BB) { 797 if (NewBC) 798 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 799 else 800 *i = PN->getIncomingValueForBlock(Pred); 801 } 802 } 803 } 804 805 // Update any PHI nodes in the returning block to realize that we no 806 // longer branch to them. 807 BB->removePredecessor(Pred); 808 UncondBranch->eraseFromParent(); 809 810 if (DTU) 811 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 812 813 return cast<ReturnInst>(NewRet); 814 } 815 816 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 817 Instruction *SplitBefore, 818 bool Unreachable, 819 MDNode *BranchWeights, 820 DominatorTree *DT, LoopInfo *LI, 821 BasicBlock *ThenBlock) { 822 BasicBlock *Head = SplitBefore->getParent(); 823 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 824 Instruction *HeadOldTerm = Head->getTerminator(); 825 LLVMContext &C = Head->getContext(); 826 Instruction *CheckTerm; 827 bool CreateThenBlock = (ThenBlock == nullptr); 828 if (CreateThenBlock) { 829 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 830 if (Unreachable) 831 CheckTerm = new UnreachableInst(C, ThenBlock); 832 else 833 CheckTerm = BranchInst::Create(Tail, ThenBlock); 834 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 835 } else 836 CheckTerm = ThenBlock->getTerminator(); 837 BranchInst *HeadNewTerm = 838 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 839 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 840 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 841 842 if (DT) { 843 if (DomTreeNode *OldNode = DT->getNode(Head)) { 844 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 845 846 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 847 for (DomTreeNode *Child : Children) 848 DT->changeImmediateDominator(Child, NewNode); 849 850 // Head dominates ThenBlock. 851 if (CreateThenBlock) 852 DT->addNewBlock(ThenBlock, Head); 853 else 854 DT->changeImmediateDominator(ThenBlock, Head); 855 } 856 } 857 858 if (LI) { 859 if (Loop *L = LI->getLoopFor(Head)) { 860 L->addBasicBlockToLoop(ThenBlock, *LI); 861 L->addBasicBlockToLoop(Tail, *LI); 862 } 863 } 864 865 return CheckTerm; 866 } 867 868 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 869 Instruction **ThenTerm, 870 Instruction **ElseTerm, 871 MDNode *BranchWeights) { 872 BasicBlock *Head = SplitBefore->getParent(); 873 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 874 Instruction *HeadOldTerm = Head->getTerminator(); 875 LLVMContext &C = Head->getContext(); 876 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 877 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 878 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 879 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 880 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 881 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 882 BranchInst *HeadNewTerm = 883 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 884 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 885 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 886 } 887 888 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 889 BasicBlock *&IfFalse) { 890 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 891 BasicBlock *Pred1 = nullptr; 892 BasicBlock *Pred2 = nullptr; 893 894 if (SomePHI) { 895 if (SomePHI->getNumIncomingValues() != 2) 896 return nullptr; 897 Pred1 = SomePHI->getIncomingBlock(0); 898 Pred2 = SomePHI->getIncomingBlock(1); 899 } else { 900 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 901 if (PI == PE) // No predecessor 902 return nullptr; 903 Pred1 = *PI++; 904 if (PI == PE) // Only one predecessor 905 return nullptr; 906 Pred2 = *PI++; 907 if (PI != PE) // More than two predecessors 908 return nullptr; 909 } 910 911 // We can only handle branches. Other control flow will be lowered to 912 // branches if possible anyway. 913 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 914 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 915 if (!Pred1Br || !Pred2Br) 916 return nullptr; 917 918 // Eliminate code duplication by ensuring that Pred1Br is conditional if 919 // either are. 920 if (Pred2Br->isConditional()) { 921 // If both branches are conditional, we don't have an "if statement". In 922 // reality, we could transform this case, but since the condition will be 923 // required anyway, we stand no chance of eliminating it, so the xform is 924 // probably not profitable. 925 if (Pred1Br->isConditional()) 926 return nullptr; 927 928 std::swap(Pred1, Pred2); 929 std::swap(Pred1Br, Pred2Br); 930 } 931 932 if (Pred1Br->isConditional()) { 933 // The only thing we have to watch out for here is to make sure that Pred2 934 // doesn't have incoming edges from other blocks. If it does, the condition 935 // doesn't dominate BB. 936 if (!Pred2->getSinglePredecessor()) 937 return nullptr; 938 939 // If we found a conditional branch predecessor, make sure that it branches 940 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 941 if (Pred1Br->getSuccessor(0) == BB && 942 Pred1Br->getSuccessor(1) == Pred2) { 943 IfTrue = Pred1; 944 IfFalse = Pred2; 945 } else if (Pred1Br->getSuccessor(0) == Pred2 && 946 Pred1Br->getSuccessor(1) == BB) { 947 IfTrue = Pred2; 948 IfFalse = Pred1; 949 } else { 950 // We know that one arm of the conditional goes to BB, so the other must 951 // go somewhere unrelated, and this must not be an "if statement". 952 return nullptr; 953 } 954 955 return Pred1Br->getCondition(); 956 } 957 958 // Ok, if we got here, both predecessors end with an unconditional branch to 959 // BB. Don't panic! If both blocks only have a single (identical) 960 // predecessor, and THAT is a conditional branch, then we're all ok! 961 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 962 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 963 return nullptr; 964 965 // Otherwise, if this is a conditional branch, then we can use it! 966 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 967 if (!BI) return nullptr; 968 969 assert(BI->isConditional() && "Two successors but not conditional?"); 970 if (BI->getSuccessor(0) == Pred1) { 971 IfTrue = Pred1; 972 IfFalse = Pred2; 973 } else { 974 IfTrue = Pred2; 975 IfFalse = Pred1; 976 } 977 return BI->getCondition(); 978 } 979