1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 void llvm::DetatchDeadBlocks( 55 ArrayRef<BasicBlock *> BBs, 56 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 57 bool KeepOneInputPHIs) { 58 for (auto *BB : BBs) { 59 // Loop through all of our successors and make sure they know that one 60 // of their predecessors is going away. 61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 62 for (BasicBlock *Succ : successors(BB)) { 63 Succ->removePredecessor(BB, KeepOneInputPHIs); 64 if (Updates && UniqueSuccessors.insert(Succ).second) 65 Updates->push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 } 86 } 87 88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 89 bool KeepOneInputPHIs) { 90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 91 } 92 93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 94 bool KeepOneInputPHIs) { 95 #ifndef NDEBUG 96 // Make sure that all predecessors of each dead block is also dead. 97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 98 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 99 for (auto *BB : Dead) 100 for (BasicBlock *Pred : predecessors(BB)) 101 assert(Dead.count(Pred) && "All predecessors must be dead!"); 102 #endif 103 104 SmallVector<DominatorTree::UpdateType, 4> Updates; 105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 106 107 if (DTU) 108 DTU->applyUpdatesPermissive(Updates); 109 110 for (BasicBlock *BB : BBs) 111 if (DTU) 112 DTU->deleteBB(BB); 113 else 114 BB->eraseFromParent(); 115 } 116 117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 118 bool KeepOneInputPHIs) { 119 df_iterator_default_set<BasicBlock*> Reachable; 120 121 // Mark all reachable blocks. 122 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 123 (void)BB/* Mark all reachable blocks */; 124 125 // Collect all dead blocks. 126 std::vector<BasicBlock*> DeadBlocks; 127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 128 if (!Reachable.count(&*I)) { 129 BasicBlock *BB = &*I; 130 DeadBlocks.push_back(BB); 131 } 132 133 // Delete the dead blocks. 134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 135 136 return !DeadBlocks.empty(); 137 } 138 139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 140 MemoryDependenceResults *MemDep) { 141 if (!isa<PHINode>(BB->begin())) return; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 } 155 156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 157 // Recursively deleting a PHI may cause multiple PHIs to be deleted 158 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 159 SmallVector<WeakTrackingVH, 8> PHIs; 160 for (PHINode &PN : BB->phis()) 161 PHIs.push_back(&PN); 162 163 bool Changed = false; 164 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 165 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 166 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 167 168 return Changed; 169 } 170 171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 172 LoopInfo *LI, MemorySSAUpdater *MSSAU, 173 MemoryDependenceResults *MemDep) { 174 if (BB->hasAddressTaken()) 175 return false; 176 177 // Can't merge if there are multiple predecessors, or no predecessors. 178 BasicBlock *PredBB = BB->getUniquePredecessor(); 179 if (!PredBB) return false; 180 181 // Don't break self-loops. 182 if (PredBB == BB) return false; 183 // Don't break unwinding instructions. 184 if (PredBB->getTerminator()->isExceptionalTerminator()) 185 return false; 186 187 // Can't merge if there are multiple distinct successors. 188 if (PredBB->getUniqueSuccessor() != BB) 189 return false; 190 191 // Can't merge if there is PHI loop. 192 for (PHINode &PN : BB->phis()) 193 for (Value *IncValue : PN.incoming_values()) 194 if (IncValue == &PN) 195 return false; 196 197 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 198 << PredBB->getName() << "\n"); 199 200 // Begin by getting rid of unneeded PHIs. 201 SmallVector<AssertingVH<Value>, 4> IncomingValues; 202 if (isa<PHINode>(BB->front())) { 203 for (PHINode &PN : BB->phis()) 204 if (!isa<PHINode>(PN.getIncomingValue(0)) || 205 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 206 IncomingValues.push_back(PN.getIncomingValue(0)); 207 FoldSingleEntryPHINodes(BB, MemDep); 208 } 209 210 // DTU update: Collect all the edges that exit BB. 211 // These dominator edges will be redirected from Pred. 212 std::vector<DominatorTree::UpdateType> Updates; 213 if (DTU) { 214 Updates.reserve(1 + (2 * succ_size(BB))); 215 // Add insert edges first. Experimentally, for the particular case of two 216 // blocks that can be merged, with a single successor and single predecessor 217 // respectively, it is beneficial to have all insert updates first. Deleting 218 // edges first may lead to unreachable blocks, followed by inserting edges 219 // making the blocks reachable again. Such DT updates lead to high compile 220 // times. We add inserts before deletes here to reduce compile time. 221 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 222 // This successor of BB may already have PredBB as a predecessor. 223 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 224 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 225 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 226 Updates.push_back({DominatorTree::Delete, BB, *I}); 227 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 228 } 229 230 if (MSSAU) 231 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin())); 232 233 // Delete the unconditional branch from the predecessor... 234 PredBB->getInstList().pop_back(); 235 236 // Make all PHI nodes that referred to BB now refer to Pred as their 237 // source... 238 BB->replaceAllUsesWith(PredBB); 239 240 // Move all definitions in the successor to the predecessor... 241 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 242 new UnreachableInst(BB->getContext(), BB); 243 244 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 245 for (auto Incoming : IncomingValues) { 246 if (isa<Instruction>(*Incoming)) { 247 SmallVector<DbgValueInst *, 2> DbgValues; 248 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 249 DbgValueSet; 250 llvm::findDbgValues(DbgValues, Incoming); 251 for (auto &DVI : DbgValues) { 252 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 253 if (!R.second) 254 DVI->eraseFromParent(); 255 } 256 } 257 } 258 259 // Inherit predecessors name if it exists. 260 if (!PredBB->hasName()) 261 PredBB->takeName(BB); 262 263 if (LI) 264 LI->removeBlock(BB); 265 266 if (MemDep) 267 MemDep->invalidateCachedPredecessors(); 268 269 // Finally, erase the old block and update dominator info. 270 if (DTU) { 271 assert(BB->getInstList().size() == 1 && 272 isa<UnreachableInst>(BB->getTerminator()) && 273 "The successor list of BB isn't empty before " 274 "applying corresponding DTU updates."); 275 DTU->applyUpdatesPermissive(Updates); 276 DTU->deleteBB(BB); 277 } 278 279 else { 280 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 281 } 282 return true; 283 } 284 285 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 286 BasicBlock::iterator &BI, Value *V) { 287 Instruction &I = *BI; 288 // Replaces all of the uses of the instruction with uses of the value 289 I.replaceAllUsesWith(V); 290 291 // Make sure to propagate a name if there is one already. 292 if (I.hasName() && !V->hasName()) 293 V->takeName(&I); 294 295 // Delete the unnecessary instruction now... 296 BI = BIL.erase(BI); 297 } 298 299 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 300 BasicBlock::iterator &BI, Instruction *I) { 301 assert(I->getParent() == nullptr && 302 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 303 304 // Copy debug location to newly added instruction, if it wasn't already set 305 // by the caller. 306 if (!I->getDebugLoc()) 307 I->setDebugLoc(BI->getDebugLoc()); 308 309 // Insert the new instruction into the basic block... 310 BasicBlock::iterator New = BIL.insert(BI, I); 311 312 // Replace all uses of the old instruction, and delete it. 313 ReplaceInstWithValue(BIL, BI, I); 314 315 // Move BI back to point to the newly inserted instruction 316 BI = New; 317 } 318 319 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 320 BasicBlock::iterator BI(From); 321 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 322 } 323 324 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 325 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 326 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 327 328 // If this is a critical edge, let SplitCriticalEdge do it. 329 Instruction *LatchTerm = BB->getTerminator(); 330 if (SplitCriticalEdge( 331 LatchTerm, SuccNum, 332 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 333 return LatchTerm->getSuccessor(SuccNum); 334 335 // If the edge isn't critical, then BB has a single successor or Succ has a 336 // single pred. Split the block. 337 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 338 // If the successor only has a single pred, split the top of the successor 339 // block. 340 assert(SP == BB && "CFG broken"); 341 SP = nullptr; 342 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 343 } 344 345 // Otherwise, if BB has a single successor, split it at the bottom of the 346 // block. 347 assert(BB->getTerminator()->getNumSuccessors() == 1 && 348 "Should have a single succ!"); 349 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 350 } 351 352 unsigned 353 llvm::SplitAllCriticalEdges(Function &F, 354 const CriticalEdgeSplittingOptions &Options) { 355 unsigned NumBroken = 0; 356 for (BasicBlock &BB : F) { 357 Instruction *TI = BB.getTerminator(); 358 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 359 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 360 if (SplitCriticalEdge(TI, i, Options)) 361 ++NumBroken; 362 } 363 return NumBroken; 364 } 365 366 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 367 DominatorTree *DT, LoopInfo *LI, 368 MemorySSAUpdater *MSSAU) { 369 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 370 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 371 ++SplitIt; 372 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); 373 374 // The new block lives in whichever loop the old one did. This preserves 375 // LCSSA as well, because we force the split point to be after any PHI nodes. 376 if (LI) 377 if (Loop *L = LI->getLoopFor(Old)) 378 L->addBasicBlockToLoop(New, *LI); 379 380 if (DT) 381 // Old dominates New. New node dominates all other nodes dominated by Old. 382 if (DomTreeNode *OldNode = DT->getNode(Old)) { 383 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 384 385 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 386 for (DomTreeNode *I : Children) 387 DT->changeImmediateDominator(I, NewNode); 388 } 389 390 // Move MemoryAccesses still tracked in Old, but part of New now. 391 // Update accesses in successor blocks accordingly. 392 if (MSSAU) 393 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 394 395 return New; 396 } 397 398 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 399 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 400 ArrayRef<BasicBlock *> Preds, 401 DominatorTree *DT, LoopInfo *LI, 402 MemorySSAUpdater *MSSAU, 403 bool PreserveLCSSA, bool &HasLoopExit) { 404 // Update dominator tree if available. 405 if (DT) { 406 if (OldBB == DT->getRootNode()->getBlock()) { 407 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 408 DT->setNewRoot(NewBB); 409 } else { 410 // Split block expects NewBB to have a non-empty set of predecessors. 411 DT->splitBlock(NewBB); 412 } 413 } 414 415 // Update MemoryPhis after split if MemorySSA is available 416 if (MSSAU) 417 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 418 419 // The rest of the logic is only relevant for updating the loop structures. 420 if (!LI) 421 return; 422 423 assert(DT && "DT should be available to update LoopInfo!"); 424 Loop *L = LI->getLoopFor(OldBB); 425 426 // If we need to preserve loop analyses, collect some information about how 427 // this split will affect loops. 428 bool IsLoopEntry = !!L; 429 bool SplitMakesNewLoopHeader = false; 430 for (BasicBlock *Pred : Preds) { 431 // Preds that are not reachable from entry should not be used to identify if 432 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 433 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 434 // as true and make the NewBB the header of some loop. This breaks LI. 435 if (!DT->isReachableFromEntry(Pred)) 436 continue; 437 // If we need to preserve LCSSA, determine if any of the preds is a loop 438 // exit. 439 if (PreserveLCSSA) 440 if (Loop *PL = LI->getLoopFor(Pred)) 441 if (!PL->contains(OldBB)) 442 HasLoopExit = true; 443 444 // If we need to preserve LoopInfo, note whether any of the preds crosses 445 // an interesting loop boundary. 446 if (!L) 447 continue; 448 if (L->contains(Pred)) 449 IsLoopEntry = false; 450 else 451 SplitMakesNewLoopHeader = true; 452 } 453 454 // Unless we have a loop for OldBB, nothing else to do here. 455 if (!L) 456 return; 457 458 if (IsLoopEntry) { 459 // Add the new block to the nearest enclosing loop (and not an adjacent 460 // loop). To find this, examine each of the predecessors and determine which 461 // loops enclose them, and select the most-nested loop which contains the 462 // loop containing the block being split. 463 Loop *InnermostPredLoop = nullptr; 464 for (BasicBlock *Pred : Preds) { 465 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 466 // Seek a loop which actually contains the block being split (to avoid 467 // adjacent loops). 468 while (PredLoop && !PredLoop->contains(OldBB)) 469 PredLoop = PredLoop->getParentLoop(); 470 471 // Select the most-nested of these loops which contains the block. 472 if (PredLoop && PredLoop->contains(OldBB) && 473 (!InnermostPredLoop || 474 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 475 InnermostPredLoop = PredLoop; 476 } 477 } 478 479 if (InnermostPredLoop) 480 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 481 } else { 482 L->addBasicBlockToLoop(NewBB, *LI); 483 if (SplitMakesNewLoopHeader) 484 L->moveToHeader(NewBB); 485 } 486 } 487 488 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 489 /// This also updates AliasAnalysis, if available. 490 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 491 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 492 bool HasLoopExit) { 493 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 494 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 495 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 496 PHINode *PN = cast<PHINode>(I++); 497 498 // Check to see if all of the values coming in are the same. If so, we 499 // don't need to create a new PHI node, unless it's needed for LCSSA. 500 Value *InVal = nullptr; 501 if (!HasLoopExit) { 502 InVal = PN->getIncomingValueForBlock(Preds[0]); 503 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 504 if (!PredSet.count(PN->getIncomingBlock(i))) 505 continue; 506 if (!InVal) 507 InVal = PN->getIncomingValue(i); 508 else if (InVal != PN->getIncomingValue(i)) { 509 InVal = nullptr; 510 break; 511 } 512 } 513 } 514 515 if (InVal) { 516 // If all incoming values for the new PHI would be the same, just don't 517 // make a new PHI. Instead, just remove the incoming values from the old 518 // PHI. 519 520 // NOTE! This loop walks backwards for a reason! First off, this minimizes 521 // the cost of removal if we end up removing a large number of values, and 522 // second off, this ensures that the indices for the incoming values 523 // aren't invalidated when we remove one. 524 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 525 if (PredSet.count(PN->getIncomingBlock(i))) 526 PN->removeIncomingValue(i, false); 527 528 // Add an incoming value to the PHI node in the loop for the preheader 529 // edge. 530 PN->addIncoming(InVal, NewBB); 531 continue; 532 } 533 534 // If the values coming into the block are not the same, we need a new 535 // PHI. 536 // Create the new PHI node, insert it into NewBB at the end of the block 537 PHINode *NewPHI = 538 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 539 540 // NOTE! This loop walks backwards for a reason! First off, this minimizes 541 // the cost of removal if we end up removing a large number of values, and 542 // second off, this ensures that the indices for the incoming values aren't 543 // invalidated when we remove one. 544 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 545 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 546 if (PredSet.count(IncomingBB)) { 547 Value *V = PN->removeIncomingValue(i, false); 548 NewPHI->addIncoming(V, IncomingBB); 549 } 550 } 551 552 PN->addIncoming(NewPHI, NewBB); 553 } 554 } 555 556 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 557 ArrayRef<BasicBlock *> Preds, 558 const char *Suffix, DominatorTree *DT, 559 LoopInfo *LI, MemorySSAUpdater *MSSAU, 560 bool PreserveLCSSA) { 561 // Do not attempt to split that which cannot be split. 562 if (!BB->canSplitPredecessors()) 563 return nullptr; 564 565 // For the landingpads we need to act a bit differently. 566 // Delegate this work to the SplitLandingPadPredecessors. 567 if (BB->isLandingPad()) { 568 SmallVector<BasicBlock*, 2> NewBBs; 569 std::string NewName = std::string(Suffix) + ".split-lp"; 570 571 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 572 LI, MSSAU, PreserveLCSSA); 573 return NewBBs[0]; 574 } 575 576 // Create new basic block, insert right before the original block. 577 BasicBlock *NewBB = BasicBlock::Create( 578 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 579 580 // The new block unconditionally branches to the old block. 581 BranchInst *BI = BranchInst::Create(BB, NewBB); 582 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 583 584 // Move the edges from Preds to point to NewBB instead of BB. 585 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 586 // This is slightly more strict than necessary; the minimum requirement 587 // is that there be no more than one indirectbr branching to BB. And 588 // all BlockAddress uses would need to be updated. 589 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 590 "Cannot split an edge from an IndirectBrInst"); 591 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 592 "Cannot split an edge from a CallBrInst"); 593 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 594 } 595 596 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 597 // node becomes an incoming value for BB's phi node. However, if the Preds 598 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 599 // account for the newly created predecessor. 600 if (Preds.empty()) { 601 // Insert dummy values as the incoming value. 602 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 603 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 604 } 605 606 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 607 bool HasLoopExit = false; 608 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 609 HasLoopExit); 610 611 if (!Preds.empty()) { 612 // Update the PHI nodes in BB with the values coming from NewBB. 613 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 614 } 615 616 return NewBB; 617 } 618 619 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 620 ArrayRef<BasicBlock *> Preds, 621 const char *Suffix1, const char *Suffix2, 622 SmallVectorImpl<BasicBlock *> &NewBBs, 623 DominatorTree *DT, LoopInfo *LI, 624 MemorySSAUpdater *MSSAU, 625 bool PreserveLCSSA) { 626 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 627 628 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 629 // it right before the original block. 630 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 631 OrigBB->getName() + Suffix1, 632 OrigBB->getParent(), OrigBB); 633 NewBBs.push_back(NewBB1); 634 635 // The new block unconditionally branches to the old block. 636 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 637 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 638 639 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 640 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 641 // This is slightly more strict than necessary; the minimum requirement 642 // is that there be no more than one indirectbr branching to BB. And 643 // all BlockAddress uses would need to be updated. 644 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 645 "Cannot split an edge from an IndirectBrInst"); 646 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 647 } 648 649 bool HasLoopExit = false; 650 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 651 HasLoopExit); 652 653 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 654 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 655 656 // Move the remaining edges from OrigBB to point to NewBB2. 657 SmallVector<BasicBlock*, 8> NewBB2Preds; 658 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 659 i != e; ) { 660 BasicBlock *Pred = *i++; 661 if (Pred == NewBB1) continue; 662 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 663 "Cannot split an edge from an IndirectBrInst"); 664 NewBB2Preds.push_back(Pred); 665 e = pred_end(OrigBB); 666 } 667 668 BasicBlock *NewBB2 = nullptr; 669 if (!NewBB2Preds.empty()) { 670 // Create another basic block for the rest of OrigBB's predecessors. 671 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 672 OrigBB->getName() + Suffix2, 673 OrigBB->getParent(), OrigBB); 674 NewBBs.push_back(NewBB2); 675 676 // The new block unconditionally branches to the old block. 677 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 678 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 679 680 // Move the remaining edges from OrigBB to point to NewBB2. 681 for (BasicBlock *NewBB2Pred : NewBB2Preds) 682 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 683 684 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 685 HasLoopExit = false; 686 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 687 PreserveLCSSA, HasLoopExit); 688 689 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 690 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 691 } 692 693 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 694 Instruction *Clone1 = LPad->clone(); 695 Clone1->setName(Twine("lpad") + Suffix1); 696 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 697 698 if (NewBB2) { 699 Instruction *Clone2 = LPad->clone(); 700 Clone2->setName(Twine("lpad") + Suffix2); 701 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 702 703 // Create a PHI node for the two cloned landingpad instructions only 704 // if the original landingpad instruction has some uses. 705 if (!LPad->use_empty()) { 706 assert(!LPad->getType()->isTokenTy() && 707 "Split cannot be applied if LPad is token type. Otherwise an " 708 "invalid PHINode of token type would be created."); 709 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 710 PN->addIncoming(Clone1, NewBB1); 711 PN->addIncoming(Clone2, NewBB2); 712 LPad->replaceAllUsesWith(PN); 713 } 714 LPad->eraseFromParent(); 715 } else { 716 // There is no second clone. Just replace the landing pad with the first 717 // clone. 718 LPad->replaceAllUsesWith(Clone1); 719 LPad->eraseFromParent(); 720 } 721 } 722 723 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 724 BasicBlock *Pred, 725 DomTreeUpdater *DTU) { 726 Instruction *UncondBranch = Pred->getTerminator(); 727 // Clone the return and add it to the end of the predecessor. 728 Instruction *NewRet = RI->clone(); 729 Pred->getInstList().push_back(NewRet); 730 731 // If the return instruction returns a value, and if the value was a 732 // PHI node in "BB", propagate the right value into the return. 733 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 734 i != e; ++i) { 735 Value *V = *i; 736 Instruction *NewBC = nullptr; 737 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 738 // Return value might be bitcasted. Clone and insert it before the 739 // return instruction. 740 V = BCI->getOperand(0); 741 NewBC = BCI->clone(); 742 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 743 *i = NewBC; 744 } 745 if (PHINode *PN = dyn_cast<PHINode>(V)) { 746 if (PN->getParent() == BB) { 747 if (NewBC) 748 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 749 else 750 *i = PN->getIncomingValueForBlock(Pred); 751 } 752 } 753 } 754 755 // Update any PHI nodes in the returning block to realize that we no 756 // longer branch to them. 757 BB->removePredecessor(Pred); 758 UncondBranch->eraseFromParent(); 759 760 if (DTU) 761 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 762 763 return cast<ReturnInst>(NewRet); 764 } 765 766 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 767 Instruction *SplitBefore, 768 bool Unreachable, 769 MDNode *BranchWeights, 770 DominatorTree *DT, LoopInfo *LI, 771 BasicBlock *ThenBlock) { 772 BasicBlock *Head = SplitBefore->getParent(); 773 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 774 Instruction *HeadOldTerm = Head->getTerminator(); 775 LLVMContext &C = Head->getContext(); 776 Instruction *CheckTerm; 777 bool CreateThenBlock = (ThenBlock == nullptr); 778 if (CreateThenBlock) { 779 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 780 if (Unreachable) 781 CheckTerm = new UnreachableInst(C, ThenBlock); 782 else 783 CheckTerm = BranchInst::Create(Tail, ThenBlock); 784 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 785 } else 786 CheckTerm = ThenBlock->getTerminator(); 787 BranchInst *HeadNewTerm = 788 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 789 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 790 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 791 792 if (DT) { 793 if (DomTreeNode *OldNode = DT->getNode(Head)) { 794 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 795 796 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 797 for (DomTreeNode *Child : Children) 798 DT->changeImmediateDominator(Child, NewNode); 799 800 // Head dominates ThenBlock. 801 if (CreateThenBlock) 802 DT->addNewBlock(ThenBlock, Head); 803 else 804 DT->changeImmediateDominator(ThenBlock, Head); 805 } 806 } 807 808 if (LI) { 809 if (Loop *L = LI->getLoopFor(Head)) { 810 L->addBasicBlockToLoop(ThenBlock, *LI); 811 L->addBasicBlockToLoop(Tail, *LI); 812 } 813 } 814 815 return CheckTerm; 816 } 817 818 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 819 Instruction **ThenTerm, 820 Instruction **ElseTerm, 821 MDNode *BranchWeights) { 822 BasicBlock *Head = SplitBefore->getParent(); 823 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 824 Instruction *HeadOldTerm = Head->getTerminator(); 825 LLVMContext &C = Head->getContext(); 826 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 827 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 828 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 829 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 830 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 831 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 832 BranchInst *HeadNewTerm = 833 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 834 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 835 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 836 } 837 838 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 839 BasicBlock *&IfFalse) { 840 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 841 BasicBlock *Pred1 = nullptr; 842 BasicBlock *Pred2 = nullptr; 843 844 if (SomePHI) { 845 if (SomePHI->getNumIncomingValues() != 2) 846 return nullptr; 847 Pred1 = SomePHI->getIncomingBlock(0); 848 Pred2 = SomePHI->getIncomingBlock(1); 849 } else { 850 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 851 if (PI == PE) // No predecessor 852 return nullptr; 853 Pred1 = *PI++; 854 if (PI == PE) // Only one predecessor 855 return nullptr; 856 Pred2 = *PI++; 857 if (PI != PE) // More than two predecessors 858 return nullptr; 859 } 860 861 // We can only handle branches. Other control flow will be lowered to 862 // branches if possible anyway. 863 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 864 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 865 if (!Pred1Br || !Pred2Br) 866 return nullptr; 867 868 // Eliminate code duplication by ensuring that Pred1Br is conditional if 869 // either are. 870 if (Pred2Br->isConditional()) { 871 // If both branches are conditional, we don't have an "if statement". In 872 // reality, we could transform this case, but since the condition will be 873 // required anyway, we stand no chance of eliminating it, so the xform is 874 // probably not profitable. 875 if (Pred1Br->isConditional()) 876 return nullptr; 877 878 std::swap(Pred1, Pred2); 879 std::swap(Pred1Br, Pred2Br); 880 } 881 882 if (Pred1Br->isConditional()) { 883 // The only thing we have to watch out for here is to make sure that Pred2 884 // doesn't have incoming edges from other blocks. If it does, the condition 885 // doesn't dominate BB. 886 if (!Pred2->getSinglePredecessor()) 887 return nullptr; 888 889 // If we found a conditional branch predecessor, make sure that it branches 890 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 891 if (Pred1Br->getSuccessor(0) == BB && 892 Pred1Br->getSuccessor(1) == Pred2) { 893 IfTrue = Pred1; 894 IfFalse = Pred2; 895 } else if (Pred1Br->getSuccessor(0) == Pred2 && 896 Pred1Br->getSuccessor(1) == BB) { 897 IfTrue = Pred2; 898 IfFalse = Pred1; 899 } else { 900 // We know that one arm of the conditional goes to BB, so the other must 901 // go somewhere unrelated, and this must not be an "if statement". 902 return nullptr; 903 } 904 905 return Pred1Br->getCondition(); 906 } 907 908 // Ok, if we got here, both predecessors end with an unconditional branch to 909 // BB. Don't panic! If both blocks only have a single (identical) 910 // predecessor, and THAT is a conditional branch, then we're all ok! 911 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 912 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 913 return nullptr; 914 915 // Otherwise, if this is a conditional branch, then we can use it! 916 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 917 if (!BI) return nullptr; 918 919 assert(BI->isConditional() && "Two successors but not conditional?"); 920 if (BI->getSuccessor(0) == Pred1) { 921 IfTrue = Pred1; 922 IfFalse = Pred2; 923 } else { 924 IfTrue = Pred2; 925 IfFalse = Pred1; 926 } 927 return BI->getCondition(); 928 } 929