1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdates(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (BasicBlock &BB : F)
128     if (!Reachable.count(&BB))
129       DeadBlocks.push_back(&BB);
130 
131   // Delete the dead blocks.
132   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
133 
134   return !DeadBlocks.empty();
135 }
136 
137 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
138                                    MemoryDependenceResults *MemDep) {
139   if (!isa<PHINode>(BB->begin()))
140     return false;
141 
142   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
143     if (PN->getIncomingValue(0) != PN)
144       PN->replaceAllUsesWith(PN->getIncomingValue(0));
145     else
146       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
147 
148     if (MemDep)
149       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
150 
151     PN->eraseFromParent();
152   }
153   return true;
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
157                           MemorySSAUpdater *MSSAU) {
158   // Recursively deleting a PHI may cause multiple PHIs to be deleted
159   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
160   SmallVector<WeakTrackingVH, 8> PHIs;
161   for (PHINode &PN : BB->phis())
162     PHIs.push_back(&PN);
163 
164   bool Changed = false;
165   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
166     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
167       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
168 
169   return Changed;
170 }
171 
172 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
173                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
174                                      MemoryDependenceResults *MemDep,
175                                      bool PredecessorWithTwoSuccessors) {
176   if (BB->hasAddressTaken())
177     return false;
178 
179   // Can't merge if there are multiple predecessors, or no predecessors.
180   BasicBlock *PredBB = BB->getUniquePredecessor();
181   if (!PredBB) return false;
182 
183   // Don't break self-loops.
184   if (PredBB == BB) return false;
185   // Don't break unwinding instructions.
186   if (PredBB->getTerminator()->isExceptionalTerminator())
187     return false;
188 
189   // Can't merge if there are multiple distinct successors.
190   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
191     return false;
192 
193   // Currently only allow PredBB to have two predecessors, one being BB.
194   // Update BI to branch to BB's only successor instead of BB.
195   BranchInst *PredBB_BI;
196   BasicBlock *NewSucc = nullptr;
197   unsigned FallThruPath;
198   if (PredecessorWithTwoSuccessors) {
199     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
200       return false;
201     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
202     if (!BB_JmpI || !BB_JmpI->isUnconditional())
203       return false;
204     NewSucc = BB_JmpI->getSuccessor(0);
205     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
206   }
207 
208   // Can't merge if there is PHI loop.
209   for (PHINode &PN : BB->phis())
210     if (llvm::is_contained(PN.incoming_values(), &PN))
211       return false;
212 
213   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
214                     << PredBB->getName() << "\n");
215 
216   // Begin by getting rid of unneeded PHIs.
217   SmallVector<AssertingVH<Value>, 4> IncomingValues;
218   if (isa<PHINode>(BB->front())) {
219     for (PHINode &PN : BB->phis())
220       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
221           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
222         IncomingValues.push_back(PN.getIncomingValue(0));
223     FoldSingleEntryPHINodes(BB, MemDep);
224   }
225 
226   // DTU update: Collect all the edges that exit BB.
227   // These dominator edges will be redirected from Pred.
228   std::vector<DominatorTree::UpdateType> Updates;
229   if (DTU) {
230     SmallSetVector<BasicBlock *, 2> UniqueSuccessors(succ_begin(BB),
231                                                      succ_end(BB));
232     Updates.reserve(1 + (2 * UniqueSuccessors.size()));
233     // Add insert edges first. Experimentally, for the particular case of two
234     // blocks that can be merged, with a single successor and single predecessor
235     // respectively, it is beneficial to have all insert updates first. Deleting
236     // edges first may lead to unreachable blocks, followed by inserting edges
237     // making the blocks reachable again. Such DT updates lead to high compile
238     // times. We add inserts before deletes here to reduce compile time.
239     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
240       // This successor of BB may already have PredBB as a predecessor.
241       if (!llvm::is_contained(successors(PredBB), UniqueSuccessor))
242         Updates.push_back({DominatorTree::Insert, PredBB, UniqueSuccessor});
243     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
244       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
245     Updates.push_back({DominatorTree::Delete, PredBB, BB});
246   }
247 
248   Instruction *PTI = PredBB->getTerminator();
249   Instruction *STI = BB->getTerminator();
250   Instruction *Start = &*BB->begin();
251   // If there's nothing to move, mark the starting instruction as the last
252   // instruction in the block. Terminator instruction is handled separately.
253   if (Start == STI)
254     Start = PTI;
255 
256   // Move all definitions in the successor to the predecessor...
257   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
258                                BB->begin(), STI->getIterator());
259 
260   if (MSSAU)
261     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
262 
263   // Make all PHI nodes that referred to BB now refer to Pred as their
264   // source...
265   BB->replaceAllUsesWith(PredBB);
266 
267   if (PredecessorWithTwoSuccessors) {
268     // Delete the unconditional branch from BB.
269     BB->getInstList().pop_back();
270 
271     // Update branch in the predecessor.
272     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
273   } else {
274     // Delete the unconditional branch from the predecessor.
275     PredBB->getInstList().pop_back();
276 
277     // Move terminator instruction.
278     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
279 
280     // Terminator may be a memory accessing instruction too.
281     if (MSSAU)
282       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
283               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
284         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
285   }
286   // Add unreachable to now empty BB.
287   new UnreachableInst(BB->getContext(), BB);
288 
289   // Inherit predecessors name if it exists.
290   if (!PredBB->hasName())
291     PredBB->takeName(BB);
292 
293   if (LI)
294     LI->removeBlock(BB);
295 
296   if (MemDep)
297     MemDep->invalidateCachedPredecessors();
298 
299   // Finally, erase the old block and update dominator info.
300   if (DTU) {
301     assert(BB->getInstList().size() == 1 &&
302            isa<UnreachableInst>(BB->getTerminator()) &&
303            "The successor list of BB isn't empty before "
304            "applying corresponding DTU updates.");
305     DTU->applyUpdates(Updates);
306     DTU->deleteBB(BB);
307   } else {
308     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
309   }
310 
311   return true;
312 }
313 
314 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
315     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
316     LoopInfo *LI) {
317   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
318 
319   bool BlocksHaveBeenMerged = false;
320   while (!MergeBlocks.empty()) {
321     BasicBlock *BB = *MergeBlocks.begin();
322     BasicBlock *Dest = BB->getSingleSuccessor();
323     if (Dest && (!L || L->contains(Dest))) {
324       BasicBlock *Fold = Dest->getUniquePredecessor();
325       (void)Fold;
326       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
327         assert(Fold == BB &&
328                "Expecting BB to be unique predecessor of the Dest block");
329         MergeBlocks.erase(Dest);
330         BlocksHaveBeenMerged = true;
331       } else
332         MergeBlocks.erase(BB);
333     } else
334       MergeBlocks.erase(BB);
335   }
336   return BlocksHaveBeenMerged;
337 }
338 
339 /// Remove redundant instructions within sequences of consecutive dbg.value
340 /// instructions. This is done using a backward scan to keep the last dbg.value
341 /// describing a specific variable/fragment.
342 ///
343 /// BackwardScan strategy:
344 /// ----------------------
345 /// Given a sequence of consecutive DbgValueInst like this
346 ///
347 ///   dbg.value ..., "x", FragmentX1  (*)
348 ///   dbg.value ..., "y", FragmentY1
349 ///   dbg.value ..., "x", FragmentX2
350 ///   dbg.value ..., "x", FragmentX1  (**)
351 ///
352 /// then the instruction marked with (*) can be removed (it is guaranteed to be
353 /// obsoleted by the instruction marked with (**) as the latter instruction is
354 /// describing the same variable using the same fragment info).
355 ///
356 /// Possible improvements:
357 /// - Check fully overlapping fragments and not only identical fragments.
358 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
359 ///   instructions being part of the sequence of consecutive instructions.
360 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
361   SmallVector<DbgValueInst *, 8> ToBeRemoved;
362   SmallDenseSet<DebugVariable> VariableSet;
363   for (auto &I : reverse(*BB)) {
364     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
365       DebugVariable Key(DVI->getVariable(),
366                         DVI->getExpression(),
367                         DVI->getDebugLoc()->getInlinedAt());
368       auto R = VariableSet.insert(Key);
369       // If the same variable fragment is described more than once it is enough
370       // to keep the last one (i.e. the first found since we for reverse
371       // iteration).
372       if (!R.second)
373         ToBeRemoved.push_back(DVI);
374       continue;
375     }
376     // Sequence with consecutive dbg.value instrs ended. Clear the map to
377     // restart identifying redundant instructions if case we find another
378     // dbg.value sequence.
379     VariableSet.clear();
380   }
381 
382   for (auto &Instr : ToBeRemoved)
383     Instr->eraseFromParent();
384 
385   return !ToBeRemoved.empty();
386 }
387 
388 /// Remove redundant dbg.value instructions using a forward scan. This can
389 /// remove a dbg.value instruction that is redundant due to indicating that a
390 /// variable has the same value as already being indicated by an earlier
391 /// dbg.value.
392 ///
393 /// ForwardScan strategy:
394 /// ---------------------
395 /// Given two identical dbg.value instructions, separated by a block of
396 /// instructions that isn't describing the same variable, like this
397 ///
398 ///   dbg.value X1, "x", FragmentX1  (**)
399 ///   <block of instructions, none being "dbg.value ..., "x", ...">
400 ///   dbg.value X1, "x", FragmentX1  (*)
401 ///
402 /// then the instruction marked with (*) can be removed. Variable "x" is already
403 /// described as being mapped to the SSA value X1.
404 ///
405 /// Possible improvements:
406 /// - Keep track of non-overlapping fragments.
407 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
408   SmallVector<DbgValueInst *, 8> ToBeRemoved;
409   DenseMap<DebugVariable, std::pair<Value *, DIExpression *> > VariableMap;
410   for (auto &I : *BB) {
411     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
412       DebugVariable Key(DVI->getVariable(),
413                         NoneType(),
414                         DVI->getDebugLoc()->getInlinedAt());
415       auto VMI = VariableMap.find(Key);
416       // Update the map if we found a new value/expression describing the
417       // variable, or if the variable wasn't mapped already.
418       if (VMI == VariableMap.end() ||
419           VMI->second.first != DVI->getValue() ||
420           VMI->second.second != DVI->getExpression()) {
421         VariableMap[Key] = { DVI->getValue(), DVI->getExpression() };
422         continue;
423       }
424       // Found an identical mapping. Remember the instruction for later removal.
425       ToBeRemoved.push_back(DVI);
426     }
427   }
428 
429   for (auto &Instr : ToBeRemoved)
430     Instr->eraseFromParent();
431 
432   return !ToBeRemoved.empty();
433 }
434 
435 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
436   bool MadeChanges = false;
437   // By using the "backward scan" strategy before the "forward scan" strategy we
438   // can remove both dbg.value (2) and (3) in a situation like this:
439   //
440   //   (1) dbg.value V1, "x", DIExpression()
441   //       ...
442   //   (2) dbg.value V2, "x", DIExpression()
443   //   (3) dbg.value V1, "x", DIExpression()
444   //
445   // The backward scan will remove (2), it is made obsolete by (3). After
446   // getting (2) out of the way, the foward scan will remove (3) since "x"
447   // already is described as having the value V1 at (1).
448   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
449   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
450 
451   if (MadeChanges)
452     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
453                       << BB->getName() << "\n");
454   return MadeChanges;
455 }
456 
457 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
458                                 BasicBlock::iterator &BI, Value *V) {
459   Instruction &I = *BI;
460   // Replaces all of the uses of the instruction with uses of the value
461   I.replaceAllUsesWith(V);
462 
463   // Make sure to propagate a name if there is one already.
464   if (I.hasName() && !V->hasName())
465     V->takeName(&I);
466 
467   // Delete the unnecessary instruction now...
468   BI = BIL.erase(BI);
469 }
470 
471 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
472                                BasicBlock::iterator &BI, Instruction *I) {
473   assert(I->getParent() == nullptr &&
474          "ReplaceInstWithInst: Instruction already inserted into basic block!");
475 
476   // Copy debug location to newly added instruction, if it wasn't already set
477   // by the caller.
478   if (!I->getDebugLoc())
479     I->setDebugLoc(BI->getDebugLoc());
480 
481   // Insert the new instruction into the basic block...
482   BasicBlock::iterator New = BIL.insert(BI, I);
483 
484   // Replace all uses of the old instruction, and delete it.
485   ReplaceInstWithValue(BIL, BI, I);
486 
487   // Move BI back to point to the newly inserted instruction
488   BI = New;
489 }
490 
491 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
492   BasicBlock::iterator BI(From);
493   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
494 }
495 
496 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
497                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
498                             const Twine &BBName) {
499   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
500 
501   // If this is a critical edge, let SplitCriticalEdge do it.
502   Instruction *LatchTerm = BB->getTerminator();
503   if (SplitCriticalEdge(
504           LatchTerm, SuccNum,
505           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA(),
506           BBName))
507     return LatchTerm->getSuccessor(SuccNum);
508 
509   // If the edge isn't critical, then BB has a single successor or Succ has a
510   // single pred.  Split the block.
511   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
512     // If the successor only has a single pred, split the top of the successor
513     // block.
514     assert(SP == BB && "CFG broken");
515     SP = nullptr;
516     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
517                       /*Before=*/true);
518   }
519 
520   // Otherwise, if BB has a single successor, split it at the bottom of the
521   // block.
522   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
523          "Should have a single succ!");
524   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
525 }
526 
527 unsigned
528 llvm::SplitAllCriticalEdges(Function &F,
529                             const CriticalEdgeSplittingOptions &Options) {
530   unsigned NumBroken = 0;
531   for (BasicBlock &BB : F) {
532     Instruction *TI = BB.getTerminator();
533     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
534         !isa<CallBrInst>(TI))
535       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
536         if (SplitCriticalEdge(TI, i, Options))
537           ++NumBroken;
538   }
539   return NumBroken;
540 }
541 
542 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
543                                   DomTreeUpdater *DTU, DominatorTree *DT,
544                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
545                                   const Twine &BBName, bool Before) {
546   if (Before) {
547     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
548     return splitBlockBefore(Old, SplitPt,
549                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
550                             BBName);
551   }
552   BasicBlock::iterator SplitIt = SplitPt->getIterator();
553   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
554     ++SplitIt;
555   std::string Name = BBName.str();
556   BasicBlock *New = Old->splitBasicBlock(
557       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
558 
559   // The new block lives in whichever loop the old one did. This preserves
560   // LCSSA as well, because we force the split point to be after any PHI nodes.
561   if (LI)
562     if (Loop *L = LI->getLoopFor(Old))
563       L->addBasicBlockToLoop(New, *LI);
564 
565   if (DTU) {
566     SmallVector<DominatorTree::UpdateType, 8> Updates;
567     // Old dominates New. New node dominates all other nodes dominated by Old.
568     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
569                                                           succ_end(New));
570     Updates.push_back({DominatorTree::Insert, Old, New});
571     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
572     for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
573       Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
574       Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
575     }
576 
577     DTU->applyUpdates(Updates);
578   } else if (DT)
579     // Old dominates New. New node dominates all other nodes dominated by Old.
580     if (DomTreeNode *OldNode = DT->getNode(Old)) {
581       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
582 
583       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
584       for (DomTreeNode *I : Children)
585         DT->changeImmediateDominator(I, NewNode);
586     }
587 
588   // Move MemoryAccesses still tracked in Old, but part of New now.
589   // Update accesses in successor blocks accordingly.
590   if (MSSAU)
591     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
592 
593   return New;
594 }
595 
596 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
597                              DominatorTree *DT, LoopInfo *LI,
598                              MemorySSAUpdater *MSSAU, const Twine &BBName,
599                              bool Before) {
600   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
601                         Before);
602 }
603 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
604                              DomTreeUpdater *DTU, LoopInfo *LI,
605                              MemorySSAUpdater *MSSAU, const Twine &BBName,
606                              bool Before) {
607   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
608                         Before);
609 }
610 
611 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
612                                    DomTreeUpdater *DTU, LoopInfo *LI,
613                                    MemorySSAUpdater *MSSAU,
614                                    const Twine &BBName) {
615 
616   BasicBlock::iterator SplitIt = SplitPt->getIterator();
617   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
618     ++SplitIt;
619   std::string Name = BBName.str();
620   BasicBlock *New = Old->splitBasicBlock(
621       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
622       /* Before=*/true);
623 
624   // The new block lives in whichever loop the old one did. This preserves
625   // LCSSA as well, because we force the split point to be after any PHI nodes.
626   if (LI)
627     if (Loop *L = LI->getLoopFor(Old))
628       L->addBasicBlockToLoop(New, *LI);
629 
630   if (DTU) {
631     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
632     // New dominates Old. The predecessor nodes of the Old node dominate
633     // New node.
634     SmallSetVector<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
635                                                             pred_end(New));
636     DTUpdates.push_back({DominatorTree::Insert, New, Old});
637     DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
638     for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
639       DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
640       DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
641     }
642 
643     DTU->applyUpdates(DTUpdates);
644 
645     // Move MemoryAccesses still tracked in Old, but part of New now.
646     // Update accesses in successor blocks accordingly.
647     if (MSSAU) {
648       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
649       if (VerifyMemorySSA)
650         MSSAU->getMemorySSA()->verifyMemorySSA();
651     }
652   }
653   return New;
654 }
655 
656 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
657 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
658                                       ArrayRef<BasicBlock *> Preds,
659                                       DomTreeUpdater *DTU, DominatorTree *DT,
660                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
661                                       bool PreserveLCSSA, bool &HasLoopExit) {
662   // Update dominator tree if available.
663   if (DTU) {
664     // Recalculation of DomTree is needed when updating a forward DomTree and
665     // the Entry BB is replaced.
666     if (NewBB == &NewBB->getParent()->getEntryBlock() && DTU->hasDomTree()) {
667       // The entry block was removed and there is no external interface for
668       // the dominator tree to be notified of this change. In this corner-case
669       // we recalculate the entire tree.
670       DTU->recalculate(*NewBB->getParent());
671     } else {
672       // Split block expects NewBB to have a non-empty set of predecessors.
673       SmallVector<DominatorTree::UpdateType, 8> Updates;
674       SmallSetVector<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
675       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
676       Updates.reserve(Updates.size() + 2 * UniquePreds.size());
677       for (auto *UniquePred : UniquePreds) {
678         Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
679         Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
680       }
681       DTU->applyUpdates(Updates);
682     }
683   } else if (DT) {
684     if (OldBB == DT->getRootNode()->getBlock()) {
685       assert(NewBB == &NewBB->getParent()->getEntryBlock());
686       DT->setNewRoot(NewBB);
687     } else {
688       // Split block expects NewBB to have a non-empty set of predecessors.
689       DT->splitBlock(NewBB);
690     }
691   }
692 
693   // Update MemoryPhis after split if MemorySSA is available
694   if (MSSAU)
695     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
696 
697   // The rest of the logic is only relevant for updating the loop structures.
698   if (!LI)
699     return;
700 
701   if (DTU && DTU->hasDomTree())
702     DT = &DTU->getDomTree();
703   assert(DT && "DT should be available to update LoopInfo!");
704   Loop *L = LI->getLoopFor(OldBB);
705 
706   // If we need to preserve loop analyses, collect some information about how
707   // this split will affect loops.
708   bool IsLoopEntry = !!L;
709   bool SplitMakesNewLoopHeader = false;
710   for (BasicBlock *Pred : Preds) {
711     // Preds that are not reachable from entry should not be used to identify if
712     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
713     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
714     // as true and make the NewBB the header of some loop. This breaks LI.
715     if (!DT->isReachableFromEntry(Pred))
716       continue;
717     // If we need to preserve LCSSA, determine if any of the preds is a loop
718     // exit.
719     if (PreserveLCSSA)
720       if (Loop *PL = LI->getLoopFor(Pred))
721         if (!PL->contains(OldBB))
722           HasLoopExit = true;
723 
724     // If we need to preserve LoopInfo, note whether any of the preds crosses
725     // an interesting loop boundary.
726     if (!L)
727       continue;
728     if (L->contains(Pred))
729       IsLoopEntry = false;
730     else
731       SplitMakesNewLoopHeader = true;
732   }
733 
734   // Unless we have a loop for OldBB, nothing else to do here.
735   if (!L)
736     return;
737 
738   if (IsLoopEntry) {
739     // Add the new block to the nearest enclosing loop (and not an adjacent
740     // loop). To find this, examine each of the predecessors and determine which
741     // loops enclose them, and select the most-nested loop which contains the
742     // loop containing the block being split.
743     Loop *InnermostPredLoop = nullptr;
744     for (BasicBlock *Pred : Preds) {
745       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
746         // Seek a loop which actually contains the block being split (to avoid
747         // adjacent loops).
748         while (PredLoop && !PredLoop->contains(OldBB))
749           PredLoop = PredLoop->getParentLoop();
750 
751         // Select the most-nested of these loops which contains the block.
752         if (PredLoop && PredLoop->contains(OldBB) &&
753             (!InnermostPredLoop ||
754              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
755           InnermostPredLoop = PredLoop;
756       }
757     }
758 
759     if (InnermostPredLoop)
760       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
761   } else {
762     L->addBasicBlockToLoop(NewBB, *LI);
763     if (SplitMakesNewLoopHeader)
764       L->moveToHeader(NewBB);
765   }
766 }
767 
768 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
769 /// This also updates AliasAnalysis, if available.
770 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
771                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
772                            bool HasLoopExit) {
773   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
774   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
775   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
776     PHINode *PN = cast<PHINode>(I++);
777 
778     // Check to see if all of the values coming in are the same.  If so, we
779     // don't need to create a new PHI node, unless it's needed for LCSSA.
780     Value *InVal = nullptr;
781     if (!HasLoopExit) {
782       InVal = PN->getIncomingValueForBlock(Preds[0]);
783       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
784         if (!PredSet.count(PN->getIncomingBlock(i)))
785           continue;
786         if (!InVal)
787           InVal = PN->getIncomingValue(i);
788         else if (InVal != PN->getIncomingValue(i)) {
789           InVal = nullptr;
790           break;
791         }
792       }
793     }
794 
795     if (InVal) {
796       // If all incoming values for the new PHI would be the same, just don't
797       // make a new PHI.  Instead, just remove the incoming values from the old
798       // PHI.
799 
800       // NOTE! This loop walks backwards for a reason! First off, this minimizes
801       // the cost of removal if we end up removing a large number of values, and
802       // second off, this ensures that the indices for the incoming values
803       // aren't invalidated when we remove one.
804       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
805         if (PredSet.count(PN->getIncomingBlock(i)))
806           PN->removeIncomingValue(i, false);
807 
808       // Add an incoming value to the PHI node in the loop for the preheader
809       // edge.
810       PN->addIncoming(InVal, NewBB);
811       continue;
812     }
813 
814     // If the values coming into the block are not the same, we need a new
815     // PHI.
816     // Create the new PHI node, insert it into NewBB at the end of the block
817     PHINode *NewPHI =
818         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
819 
820     // NOTE! This loop walks backwards for a reason! First off, this minimizes
821     // the cost of removal if we end up removing a large number of values, and
822     // second off, this ensures that the indices for the incoming values aren't
823     // invalidated when we remove one.
824     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
825       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
826       if (PredSet.count(IncomingBB)) {
827         Value *V = PN->removeIncomingValue(i, false);
828         NewPHI->addIncoming(V, IncomingBB);
829       }
830     }
831 
832     PN->addIncoming(NewPHI, NewBB);
833   }
834 }
835 
836 static void SplitLandingPadPredecessorsImpl(
837     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
838     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
839     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
840     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
841 
842 static BasicBlock *
843 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
844                            const char *Suffix, DomTreeUpdater *DTU,
845                            DominatorTree *DT, LoopInfo *LI,
846                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
847   // Do not attempt to split that which cannot be split.
848   if (!BB->canSplitPredecessors())
849     return nullptr;
850 
851   // For the landingpads we need to act a bit differently.
852   // Delegate this work to the SplitLandingPadPredecessors.
853   if (BB->isLandingPad()) {
854     SmallVector<BasicBlock*, 2> NewBBs;
855     std::string NewName = std::string(Suffix) + ".split-lp";
856 
857     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
858                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
859     return NewBBs[0];
860   }
861 
862   // Create new basic block, insert right before the original block.
863   BasicBlock *NewBB = BasicBlock::Create(
864       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
865 
866   // The new block unconditionally branches to the old block.
867   BranchInst *BI = BranchInst::Create(BB, NewBB);
868 
869   Loop *L = nullptr;
870   BasicBlock *OldLatch = nullptr;
871   // Splitting the predecessors of a loop header creates a preheader block.
872   if (LI && LI->isLoopHeader(BB)) {
873     L = LI->getLoopFor(BB);
874     // Using the loop start line number prevents debuggers stepping into the
875     // loop body for this instruction.
876     BI->setDebugLoc(L->getStartLoc());
877 
878     // If BB is the header of the Loop, it is possible that the loop is
879     // modified, such that the current latch does not remain the latch of the
880     // loop. If that is the case, the loop metadata from the current latch needs
881     // to be applied to the new latch.
882     OldLatch = L->getLoopLatch();
883   } else
884     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
885 
886   // Move the edges from Preds to point to NewBB instead of BB.
887   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
888     // This is slightly more strict than necessary; the minimum requirement
889     // is that there be no more than one indirectbr branching to BB. And
890     // all BlockAddress uses would need to be updated.
891     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
892            "Cannot split an edge from an IndirectBrInst");
893     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
894            "Cannot split an edge from a CallBrInst");
895     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
896   }
897 
898   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
899   // node becomes an incoming value for BB's phi node.  However, if the Preds
900   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
901   // account for the newly created predecessor.
902   if (Preds.empty()) {
903     // Insert dummy values as the incoming value.
904     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
905       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
906   }
907 
908   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
909   bool HasLoopExit = false;
910   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
911                             HasLoopExit);
912 
913   if (!Preds.empty()) {
914     // Update the PHI nodes in BB with the values coming from NewBB.
915     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
916   }
917 
918   if (OldLatch) {
919     BasicBlock *NewLatch = L->getLoopLatch();
920     if (NewLatch != OldLatch) {
921       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
922       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
923       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
924     }
925   }
926 
927   return NewBB;
928 }
929 
930 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
931                                          ArrayRef<BasicBlock *> Preds,
932                                          const char *Suffix, DominatorTree *DT,
933                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
934                                          bool PreserveLCSSA) {
935   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
936                                     MSSAU, PreserveLCSSA);
937 }
938 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
939                                          ArrayRef<BasicBlock *> Preds,
940                                          const char *Suffix,
941                                          DomTreeUpdater *DTU, LoopInfo *LI,
942                                          MemorySSAUpdater *MSSAU,
943                                          bool PreserveLCSSA) {
944   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
945                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
946 }
947 
948 static void SplitLandingPadPredecessorsImpl(
949     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
950     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
951     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
952     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
953   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
954 
955   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
956   // it right before the original block.
957   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
958                                           OrigBB->getName() + Suffix1,
959                                           OrigBB->getParent(), OrigBB);
960   NewBBs.push_back(NewBB1);
961 
962   // The new block unconditionally branches to the old block.
963   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
964   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
965 
966   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
967   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
968     // This is slightly more strict than necessary; the minimum requirement
969     // is that there be no more than one indirectbr branching to BB. And
970     // all BlockAddress uses would need to be updated.
971     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
972            "Cannot split an edge from an IndirectBrInst");
973     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
974   }
975 
976   bool HasLoopExit = false;
977   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
978                             PreserveLCSSA, HasLoopExit);
979 
980   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
981   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
982 
983   // Move the remaining edges from OrigBB to point to NewBB2.
984   SmallVector<BasicBlock*, 8> NewBB2Preds;
985   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
986        i != e; ) {
987     BasicBlock *Pred = *i++;
988     if (Pred == NewBB1) continue;
989     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
990            "Cannot split an edge from an IndirectBrInst");
991     NewBB2Preds.push_back(Pred);
992     e = pred_end(OrigBB);
993   }
994 
995   BasicBlock *NewBB2 = nullptr;
996   if (!NewBB2Preds.empty()) {
997     // Create another basic block for the rest of OrigBB's predecessors.
998     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
999                                 OrigBB->getName() + Suffix2,
1000                                 OrigBB->getParent(), OrigBB);
1001     NewBBs.push_back(NewBB2);
1002 
1003     // The new block unconditionally branches to the old block.
1004     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1005     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1006 
1007     // Move the remaining edges from OrigBB to point to NewBB2.
1008     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1009       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1010 
1011     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1012     HasLoopExit = false;
1013     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1014                               PreserveLCSSA, HasLoopExit);
1015 
1016     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1017     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1018   }
1019 
1020   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1021   Instruction *Clone1 = LPad->clone();
1022   Clone1->setName(Twine("lpad") + Suffix1);
1023   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1024 
1025   if (NewBB2) {
1026     Instruction *Clone2 = LPad->clone();
1027     Clone2->setName(Twine("lpad") + Suffix2);
1028     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1029 
1030     // Create a PHI node for the two cloned landingpad instructions only
1031     // if the original landingpad instruction has some uses.
1032     if (!LPad->use_empty()) {
1033       assert(!LPad->getType()->isTokenTy() &&
1034              "Split cannot be applied if LPad is token type. Otherwise an "
1035              "invalid PHINode of token type would be created.");
1036       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1037       PN->addIncoming(Clone1, NewBB1);
1038       PN->addIncoming(Clone2, NewBB2);
1039       LPad->replaceAllUsesWith(PN);
1040     }
1041     LPad->eraseFromParent();
1042   } else {
1043     // There is no second clone. Just replace the landing pad with the first
1044     // clone.
1045     LPad->replaceAllUsesWith(Clone1);
1046     LPad->eraseFromParent();
1047   }
1048 }
1049 
1050 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1051                                        ArrayRef<BasicBlock *> Preds,
1052                                        const char *Suffix1, const char *Suffix2,
1053                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1054                                        DominatorTree *DT, LoopInfo *LI,
1055                                        MemorySSAUpdater *MSSAU,
1056                                        bool PreserveLCSSA) {
1057   return SplitLandingPadPredecessorsImpl(
1058       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1059       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1060 }
1061 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1062                                        ArrayRef<BasicBlock *> Preds,
1063                                        const char *Suffix1, const char *Suffix2,
1064                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1065                                        DomTreeUpdater *DTU, LoopInfo *LI,
1066                                        MemorySSAUpdater *MSSAU,
1067                                        bool PreserveLCSSA) {
1068   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1069                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1070                                          PreserveLCSSA);
1071 }
1072 
1073 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1074                                              BasicBlock *Pred,
1075                                              DomTreeUpdater *DTU) {
1076   Instruction *UncondBranch = Pred->getTerminator();
1077   // Clone the return and add it to the end of the predecessor.
1078   Instruction *NewRet = RI->clone();
1079   Pred->getInstList().push_back(NewRet);
1080 
1081   // If the return instruction returns a value, and if the value was a
1082   // PHI node in "BB", propagate the right value into the return.
1083   for (Use &Op : NewRet->operands()) {
1084     Value *V = Op;
1085     Instruction *NewBC = nullptr;
1086     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1087       // Return value might be bitcasted. Clone and insert it before the
1088       // return instruction.
1089       V = BCI->getOperand(0);
1090       NewBC = BCI->clone();
1091       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1092       Op = NewBC;
1093     }
1094 
1095     Instruction *NewEV = nullptr;
1096     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1097       V = EVI->getOperand(0);
1098       NewEV = EVI->clone();
1099       if (NewBC) {
1100         NewBC->setOperand(0, NewEV);
1101         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1102       } else {
1103         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1104         Op = NewEV;
1105       }
1106     }
1107 
1108     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1109       if (PN->getParent() == BB) {
1110         if (NewEV) {
1111           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1112         } else if (NewBC)
1113           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1114         else
1115           Op = PN->getIncomingValueForBlock(Pred);
1116       }
1117     }
1118   }
1119 
1120   // Update any PHI nodes in the returning block to realize that we no
1121   // longer branch to them.
1122   BB->removePredecessor(Pred);
1123   UncondBranch->eraseFromParent();
1124 
1125   if (DTU)
1126     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1127 
1128   return cast<ReturnInst>(NewRet);
1129 }
1130 
1131 static Instruction *
1132 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1133                               bool Unreachable, MDNode *BranchWeights,
1134                               DomTreeUpdater *DTU, DominatorTree *DT,
1135                               LoopInfo *LI, BasicBlock *ThenBlock) {
1136   SmallVector<DominatorTree::UpdateType, 8> Updates;
1137   BasicBlock *Head = SplitBefore->getParent();
1138   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1139   if (DTU) {
1140     SmallSetVector<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
1141                                                            succ_end(Tail));
1142     Updates.push_back({DominatorTree::Insert, Head, Tail});
1143     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
1144     for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
1145       Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
1146       Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
1147     }
1148   }
1149   Instruction *HeadOldTerm = Head->getTerminator();
1150   LLVMContext &C = Head->getContext();
1151   Instruction *CheckTerm;
1152   bool CreateThenBlock = (ThenBlock == nullptr);
1153   if (CreateThenBlock) {
1154     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1155     if (Unreachable)
1156       CheckTerm = new UnreachableInst(C, ThenBlock);
1157     else {
1158       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1159       if (DTU)
1160         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1161     }
1162     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1163   } else
1164     CheckTerm = ThenBlock->getTerminator();
1165   BranchInst *HeadNewTerm =
1166       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1167   if (DTU)
1168     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1169   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1170   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1171 
1172   if (DTU)
1173     DTU->applyUpdates(Updates);
1174   else if (DT) {
1175     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1176       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1177 
1178       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1179       for (DomTreeNode *Child : Children)
1180         DT->changeImmediateDominator(Child, NewNode);
1181 
1182       // Head dominates ThenBlock.
1183       if (CreateThenBlock)
1184         DT->addNewBlock(ThenBlock, Head);
1185       else
1186         DT->changeImmediateDominator(ThenBlock, Head);
1187     }
1188   }
1189 
1190   if (LI) {
1191     if (Loop *L = LI->getLoopFor(Head)) {
1192       L->addBasicBlockToLoop(ThenBlock, *LI);
1193       L->addBasicBlockToLoop(Tail, *LI);
1194     }
1195   }
1196 
1197   return CheckTerm;
1198 }
1199 
1200 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1201                                              Instruction *SplitBefore,
1202                                              bool Unreachable,
1203                                              MDNode *BranchWeights,
1204                                              DominatorTree *DT, LoopInfo *LI,
1205                                              BasicBlock *ThenBlock) {
1206   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1207                                        BranchWeights,
1208                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1209 }
1210 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1211                                              Instruction *SplitBefore,
1212                                              bool Unreachable,
1213                                              MDNode *BranchWeights,
1214                                              DomTreeUpdater *DTU, LoopInfo *LI,
1215                                              BasicBlock *ThenBlock) {
1216   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1217                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1218                                        ThenBlock);
1219 }
1220 
1221 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1222                                          Instruction **ThenTerm,
1223                                          Instruction **ElseTerm,
1224                                          MDNode *BranchWeights) {
1225   BasicBlock *Head = SplitBefore->getParent();
1226   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1227   Instruction *HeadOldTerm = Head->getTerminator();
1228   LLVMContext &C = Head->getContext();
1229   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1230   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1231   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1232   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1233   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1234   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1235   BranchInst *HeadNewTerm =
1236     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1237   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1238   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1239 }
1240 
1241 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1242                              BasicBlock *&IfFalse) {
1243   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1244   BasicBlock *Pred1 = nullptr;
1245   BasicBlock *Pred2 = nullptr;
1246 
1247   if (SomePHI) {
1248     if (SomePHI->getNumIncomingValues() != 2)
1249       return nullptr;
1250     Pred1 = SomePHI->getIncomingBlock(0);
1251     Pred2 = SomePHI->getIncomingBlock(1);
1252   } else {
1253     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1254     if (PI == PE) // No predecessor
1255       return nullptr;
1256     Pred1 = *PI++;
1257     if (PI == PE) // Only one predecessor
1258       return nullptr;
1259     Pred2 = *PI++;
1260     if (PI != PE) // More than two predecessors
1261       return nullptr;
1262   }
1263 
1264   // We can only handle branches.  Other control flow will be lowered to
1265   // branches if possible anyway.
1266   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1267   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1268   if (!Pred1Br || !Pred2Br)
1269     return nullptr;
1270 
1271   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1272   // either are.
1273   if (Pred2Br->isConditional()) {
1274     // If both branches are conditional, we don't have an "if statement".  In
1275     // reality, we could transform this case, but since the condition will be
1276     // required anyway, we stand no chance of eliminating it, so the xform is
1277     // probably not profitable.
1278     if (Pred1Br->isConditional())
1279       return nullptr;
1280 
1281     std::swap(Pred1, Pred2);
1282     std::swap(Pred1Br, Pred2Br);
1283   }
1284 
1285   if (Pred1Br->isConditional()) {
1286     // The only thing we have to watch out for here is to make sure that Pred2
1287     // doesn't have incoming edges from other blocks.  If it does, the condition
1288     // doesn't dominate BB.
1289     if (!Pred2->getSinglePredecessor())
1290       return nullptr;
1291 
1292     // If we found a conditional branch predecessor, make sure that it branches
1293     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1294     if (Pred1Br->getSuccessor(0) == BB &&
1295         Pred1Br->getSuccessor(1) == Pred2) {
1296       IfTrue = Pred1;
1297       IfFalse = Pred2;
1298     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1299                Pred1Br->getSuccessor(1) == BB) {
1300       IfTrue = Pred2;
1301       IfFalse = Pred1;
1302     } else {
1303       // We know that one arm of the conditional goes to BB, so the other must
1304       // go somewhere unrelated, and this must not be an "if statement".
1305       return nullptr;
1306     }
1307 
1308     return Pred1Br->getCondition();
1309   }
1310 
1311   // Ok, if we got here, both predecessors end with an unconditional branch to
1312   // BB.  Don't panic!  If both blocks only have a single (identical)
1313   // predecessor, and THAT is a conditional branch, then we're all ok!
1314   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1315   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1316     return nullptr;
1317 
1318   // Otherwise, if this is a conditional branch, then we can use it!
1319   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1320   if (!BI) return nullptr;
1321 
1322   assert(BI->isConditional() && "Two successors but not conditional?");
1323   if (BI->getSuccessor(0) == Pred1) {
1324     IfTrue = Pred1;
1325     IfFalse = Pred2;
1326   } else {
1327     IfTrue = Pred2;
1328     IfFalse = Pred1;
1329   }
1330   return BI->getCondition();
1331 }
1332 
1333 // After creating a control flow hub, the operands of PHINodes in an outgoing
1334 // block Out no longer match the predecessors of that block. Predecessors of Out
1335 // that are incoming blocks to the hub are now replaced by just one edge from
1336 // the hub. To match this new control flow, the corresponding values from each
1337 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1338 //
1339 // This operation cannot be performed with SSAUpdater, because it involves one
1340 // new use: If the block Out is in the list of Incoming blocks, then the newly
1341 // created PHI in the Hub will use itself along that edge from Out to Hub.
1342 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1343                           const SetVector<BasicBlock *> &Incoming,
1344                           BasicBlock *FirstGuardBlock) {
1345   auto I = Out->begin();
1346   while (I != Out->end() && isa<PHINode>(I)) {
1347     auto Phi = cast<PHINode>(I);
1348     auto NewPhi =
1349         PHINode::Create(Phi->getType(), Incoming.size(),
1350                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1351     for (auto In : Incoming) {
1352       Value *V = UndefValue::get(Phi->getType());
1353       if (In == Out) {
1354         V = NewPhi;
1355       } else if (Phi->getBasicBlockIndex(In) != -1) {
1356         V = Phi->removeIncomingValue(In, false);
1357       }
1358       NewPhi->addIncoming(V, In);
1359     }
1360     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1361     if (Phi->getNumOperands() == 0) {
1362       Phi->replaceAllUsesWith(NewPhi);
1363       I = Phi->eraseFromParent();
1364       continue;
1365     }
1366     Phi->addIncoming(NewPhi, GuardBlock);
1367     ++I;
1368   }
1369 }
1370 
1371 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1372 using BBSetVector = SetVector<BasicBlock *>;
1373 
1374 // Redirects the terminator of the incoming block to the first guard
1375 // block in the hub. The condition of the original terminator (if it
1376 // was conditional) and its original successors are returned as a
1377 // tuple <condition, succ0, succ1>. The function additionally filters
1378 // out successors that are not in the set of outgoing blocks.
1379 //
1380 // - condition is non-null iff the branch is conditional.
1381 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1382 // - Succ2 is non-null iff condition is non-null and the fallthrough
1383 //         target is an outgoing block.
1384 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1385 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1386               const BBSetVector &Outgoing) {
1387   auto Branch = cast<BranchInst>(BB->getTerminator());
1388   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1389 
1390   BasicBlock *Succ0 = Branch->getSuccessor(0);
1391   BasicBlock *Succ1 = nullptr;
1392   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1393 
1394   if (Branch->isUnconditional()) {
1395     Branch->setSuccessor(0, FirstGuardBlock);
1396     assert(Succ0);
1397   } else {
1398     Succ1 = Branch->getSuccessor(1);
1399     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1400     assert(Succ0 || Succ1);
1401     if (Succ0 && !Succ1) {
1402       Branch->setSuccessor(0, FirstGuardBlock);
1403     } else if (Succ1 && !Succ0) {
1404       Branch->setSuccessor(1, FirstGuardBlock);
1405     } else {
1406       Branch->eraseFromParent();
1407       BranchInst::Create(FirstGuardBlock, BB);
1408     }
1409   }
1410 
1411   assert(Succ0 || Succ1);
1412   return std::make_tuple(Condition, Succ0, Succ1);
1413 }
1414 
1415 // Capture the existing control flow as guard predicates, and redirect
1416 // control flow from every incoming block to the first guard block in
1417 // the hub.
1418 //
1419 // There is one guard predicate for each outgoing block OutBB. The
1420 // predicate is a PHINode with one input for each InBB which
1421 // represents whether the hub should transfer control flow to OutBB if
1422 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1423 // evaluates them in the same order as the Outgoing set-vector, and
1424 // control branches to the first outgoing block whose predicate
1425 // evaluates to true.
1426 static void convertToGuardPredicates(
1427     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1428     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1429     const BBSetVector &Outgoing) {
1430   auto &Context = Incoming.front()->getContext();
1431   auto BoolTrue = ConstantInt::getTrue(Context);
1432   auto BoolFalse = ConstantInt::getFalse(Context);
1433 
1434   // The predicate for the last outgoing is trivially true, and so we
1435   // process only the first N-1 successors.
1436   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1437     auto Out = Outgoing[i];
1438     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1439     auto Phi =
1440         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1441                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1442     GuardPredicates[Out] = Phi;
1443   }
1444 
1445   for (auto In : Incoming) {
1446     Value *Condition;
1447     BasicBlock *Succ0;
1448     BasicBlock *Succ1;
1449     std::tie(Condition, Succ0, Succ1) =
1450         redirectToHub(In, FirstGuardBlock, Outgoing);
1451 
1452     // Optimization: Consider an incoming block A with both successors
1453     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1454     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1455     // first in the loop below, control will branch to Succ0 using the
1456     // corresponding predicate. But if that branch is not taken, then
1457     // control must reach Succ1, which means that the predicate for
1458     // Succ1 is always true.
1459     bool OneSuccessorDone = false;
1460     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1461       auto Out = Outgoing[i];
1462       auto Phi = GuardPredicates[Out];
1463       if (Out != Succ0 && Out != Succ1) {
1464         Phi->addIncoming(BoolFalse, In);
1465         continue;
1466       }
1467       // Optimization: When only one successor is an outgoing block,
1468       // the predicate is always true.
1469       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1470         Phi->addIncoming(BoolTrue, In);
1471         continue;
1472       }
1473       assert(Succ0 && Succ1);
1474       OneSuccessorDone = true;
1475       if (Out == Succ0) {
1476         Phi->addIncoming(Condition, In);
1477         continue;
1478       }
1479       auto Inverted = invertCondition(Condition);
1480       DeletionCandidates.push_back(Condition);
1481       Phi->addIncoming(Inverted, In);
1482     }
1483   }
1484 }
1485 
1486 // For each outgoing block OutBB, create a guard block in the Hub. The
1487 // first guard block was already created outside, and available as the
1488 // first element in the vector of guard blocks.
1489 //
1490 // Each guard block terminates in a conditional branch that transfers
1491 // control to the corresponding outgoing block or the next guard
1492 // block. The last guard block has two outgoing blocks as successors
1493 // since the condition for the final outgoing block is trivially
1494 // true. So we create one less block (including the first guard block)
1495 // than the number of outgoing blocks.
1496 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1497                               Function *F, const BBSetVector &Outgoing,
1498                               BBPredicates &GuardPredicates, StringRef Prefix) {
1499   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1500     GuardBlocks.push_back(
1501         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1502   }
1503   assert(GuardBlocks.size() == GuardPredicates.size());
1504 
1505   // To help keep the loop simple, temporarily append the last
1506   // outgoing block to the list of guard blocks.
1507   GuardBlocks.push_back(Outgoing.back());
1508 
1509   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1510     auto Out = Outgoing[i];
1511     assert(GuardPredicates.count(Out));
1512     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1513                        GuardBlocks[i]);
1514   }
1515 
1516   // Remove the last block from the guard list.
1517   GuardBlocks.pop_back();
1518 }
1519 
1520 BasicBlock *llvm::CreateControlFlowHub(
1521     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1522     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1523     const StringRef Prefix) {
1524   auto F = Incoming.front()->getParent();
1525   auto FirstGuardBlock =
1526       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1527 
1528   SmallVector<DominatorTree::UpdateType, 16> Updates;
1529   if (DTU) {
1530     for (auto In : Incoming) {
1531       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1532       for (auto Succ : successors(In)) {
1533         if (Outgoing.count(Succ))
1534           Updates.push_back({DominatorTree::Delete, In, Succ});
1535       }
1536     }
1537   }
1538 
1539   BBPredicates GuardPredicates;
1540   SmallVector<WeakVH, 8> DeletionCandidates;
1541   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1542                            Incoming, Outgoing);
1543 
1544   GuardBlocks.push_back(FirstGuardBlock);
1545   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1546 
1547   // Update the PHINodes in each outgoing block to match the new control flow.
1548   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1549     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1550   }
1551   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1552 
1553   if (DTU) {
1554     int NumGuards = GuardBlocks.size();
1555     assert((int)Outgoing.size() == NumGuards + 1);
1556     for (int i = 0; i != NumGuards - 1; ++i) {
1557       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1558       Updates.push_back(
1559           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1560     }
1561     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1562                        Outgoing[NumGuards - 1]});
1563     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1564                        Outgoing[NumGuards]});
1565     DTU->applyUpdates(Updates);
1566   }
1567 
1568   for (auto I : DeletionCandidates) {
1569     if (I->use_empty())
1570       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1571         Inst->eraseFromParent();
1572   }
1573 
1574   return FirstGuardBlock;
1575 }
1576